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Abstract
Large pretrained language models have demon-
strated impressive capabilities, but there is still
much to learn about how they operate me-
chanically. In this study, we conduct a multi-
faceted investigation of the autoregressive trans-
former’s ability to perform basic addition opera-
tions. Specifically, we use casual tracing to locate
the information flow between attention and the
fully-connected layer. For attention layers, we
found that they exploit fixed patterns in the inter-
mediate stage to perform the transfer of carry and
numeric information. They project the input onto
the distribution of a few neurons in later fully-
connected layers, where the neurons activate the
vocabulary distribution existing in the parameter
space to implement the mapping relationship. In
addition, our research can be further extended to
the study of interpretability of general classifica-
tion tasks like sentiment analysis. The findings
suggest that, although the model appears to have
learned some arithmetic rules, most of its reason-
ing still relies on statistical patterns.

1. Introduction
As large pre-trained language models increase in scale, they
demonstrate increasingly powerful performance on an in-
creasing number of tasks (Brown et al., 2020). But their
working principle is still a black box. As the application of
large models expands, we have to start to care about safety
and ethical issues(Weidinger et al., 2021).

Current research has different views regarding the nature of
the black box of the model. On the one hand, some studies
believe that the model is just a model that relies on statistics
(Bender & Koller, 2020; Merrill et al., 2021). On the other
hand, some studies have found that the language model
internally encodes other basic world concepts (Abdou et al.,
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2021; Patel & Pavlick, 2021).

Mathematics have solid rules and logic to follow compared
with other linguistic tasks, however, the performance of
the models in mathematics, especially arithmetic tasks, is
often unsatisfactory (Brown et al., 2020). We believe that
the reason behind this phenomenon could shed light on
the nature of the model. To look into the mechanics of
transformers, this paper studies how the current mainstream
pre-trained language models complete simple addition tasks.

Recent interpretability studies of language models aim to
identify circuits and components that are interpretable to
humans(Geiger et al., 2021; Conmy et al., 2023; Wang et al.,
2022). Mechanical interpretation methods, which treat the
model as a computational graph composed of attention and
Multi-layer Perceptron (MLP) components, seek to locate
the sub-graph responsible for the actual task computation
within the entire computational graph. The goal of these
methods is to identify the key components of the model that
contribute to its performance on specific tasks.

In this paper, we focus on the current mainstream pre-
training models, such as LLaMA (Touvron et al., 2023),
Mistral (Jiang et al., 2023), and Qwen (Bai et al., 2023), and
investigate their behavior on a simple addition task (e.g.,
1482+2309=). Despite differences in architecture and train-
ing data, these models exhibit similar mechanisms. We
employ causal tracing (Pearl, 2022; Meng et al., 2022; Vig
et al., 2020) to locate the attention and MLP components
critical to the model’s reasoning process. By dividing the
component influence into direct and indirect effects, we fur-
ther narrow our research focus to the later MLP component.

To under the whole process of arithmetic, besides continuing
to explore related model components, we also investigate on
MLP neuron activation and parameters. By treating the MLP
internal structure as Key-value pairs (Geva et al., 2020) and
projecting the MLP parameters into the model’s vocabulary
space, we obtain human-understandable concepts related to
the task.

We demonstrate that this framework can be extended to
general classification tasks by verifying its applicability on
a sentiment analysis task. Finally, we delve into the question
of whether the model truly understands the mechanism of
addition by examining its learning of the commutative law
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and its ability to perform carry calculations.

2. Causal tracing
2.1. Background

Consider two n-digit integers x = (x1, x2, . . . , xn) ,
y = (y1, y2, . . . , yn) and their addition result z =
(z1, z2, . . . , zn). The numbers are tokenized into the se-
quence numbers of the vocabulary, mapping to the embed-
ding di, and the hidden state of ith token in the first layer
is h0

i = di + pos(i), Recall that, in the autoregressive case,
tokens only derive information from past (above) tokens:
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We adopt a clear and practical perspective on the hidden
state h. The attention and MLP components of the model
perform read and write operations: they read information
from h, process it, and then update the residual stream
(Elhage et al., 2021).

Our primary focus is on models that segment continuous
numbers into individual digits and encode them (xi → di).
Although our study is applicable to models with discontinu-
ous encoding, such as LLaMA3 and GPT-2, these models
introduce additional uncertainty to the research.

2.2. Activation intervention

Causal analysis (Pearl, 2022; Vig et al., 2020; Meng et al.,
2022) is used to find the component for recovering output.
Consider x+y, the autoregressive language model needs to
output results in sequence, z1 → z2 → . . . We first consider
the calculation without carry, that is, xi + yi = zi. In
this case, the model needs to master the simplest mapping (
xi+yi → zi) without requiring other digital bit information.
In causal analysis , we first create a set of two different
inputs (x + y), (x′ + y′), where x1 ̸= x′

1, z1 ̸= z′1. We
conduct three rounds of model inference.

• In the first run: (x + y) as the input to
obtain the final probability output p(z|x, y) and
p(z′|x, y) and collect all the activation o ∈
{m(1)

1 , . . . ,m
(L)
t , a

(1)
1 , . . . , a

(L)
t }.

• In the second run: (x′ + y′) as the in-
put and collect all the activation o′ ∈
{m′

1
(1), . . . ,m′

t
(L), a′1

(1), . . . , a′t
(L)}.

• In the third run: (x + y) as the input and replace

the activation o with o′ to obtain the probability output
p∗(z′|x, y).

When intervening in reasoning, we sequentially use z′ to
override the original activation z to change the model’s prob-
ability output. Intuitively, this should lead to an increase in
the model’s output probability for z′. The total effect is de-
fined as 4. We fixed the length of the numbers to the addition
of 4-digit numbers, as the model exhibits higher accuracy
at this length. Increasing the length leads to decreased ac-
curacy, which could introduce unnecessary variability into
the experiment. We used 100 sets of numbers as input for
LLaMA2-7B and calculated their average total effect (TE).

Total Effect (TE) = p∗(z′|x, y)− p(z′|x, y) (4)

We found that for the attention layers, the impact is primar-
ily concentrated in the middle layers (14-17) and is focused
on the last token position. In contrast, the MLP’s impact
is concentrated in the later layers and is also focused on
the last token. These results are similar to those found by
(Stolfo et al., 2023), who also studied arithmetic reasoning.
However, our research aims to uncover the underlying mech-
anisms by which the model performs addition tasks, rather
than merely examining the information flow.

2.3. Effect breakdown

When performing activation intervention on a certain com-
ponent, its total effect can be divided into two parts (Vig
et al., 2020): one is that the component directly affects the
output probability by writing the residual stream value to
cause direct effects (DE), and the other is that the residual
stream passes the influence to downstream components to
cause indirect effects (IE) (See Figure 2). To distinguish the
degree of influence between the two, we set up an additional
experimental process.

To calculate the DE, when we perform activation inter-
vention on m′

1
l we fix all the downstream components as

their original activation ml+1
i ,ml+2

i . . . , al+1
i , al+2

i . . . . To
calculate IE, we first perform an activation intervention
and collect the activation values of downstream compo-
nents m∗l+1

i ,m∗l+2
i . . . , a∗l+1

i , a∗l+2
i . . . . Then, we per-

form model inference and only cover the downstream com-
ponents with the collected activation values.

As shown in Figure 3. We focus on the components with
significant TE, which are the attention layers in the middle
of the model and the MLP layers in the later stage, and cal-
culate IE and DE. We found that intervention in the attention
layer almost entirely depends on the impact on subsequent
components to intervene in the model output, while for the
MLP layer, the situation is the opposite. They directly in-
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Figure 1: Upper Left, Upper Right: present the results of activation replacement by tokens in attention and MLP layers
respectively. Lower Left, Lower Right: the outcomes of replacing all tokens in attention and MLP layers respectively,
indicating the layer-level interventions.

Figure 2: Total Effect, Direct Effect and Indirect Effect

tervene in the model output by updating the residual stream,
and even compensate for negative IE values.

Since our goal is to identify the key components, we will
continue tracing the indirect effect caused by the attention
layer. This time, instead of analyzing different components
in different layers, we adopt a more holistic approach. We
classify the overall downstream components into two types:
attention and MLP. To achieve this, we calculate the indirect
effect by isolating the activation of each type of compo-
nent (m∗l+1

i ,m∗l+2
i . . .) or (a∗l+1

i , a∗l+2
i . . .), allowing us

to determine the indirect effect specific to each type.

The results of the further breakdown of the indirect effect
(IE) are shown in Figure 4. It is evident that the IE caused
by the attention and MLP components in the middle layers

is dominated by the MLP effect. This indicates that the
components in the middle layers influence the model out-
put primarily by indirectly affecting the downstream MLP
components. These downstream MLP components, as we
discovered, directly update the residual stream.

In conclusion, we found that the attention mechanisms pri-
marily operate in the middle layers, while the MLPs exert
their influence mainly in the later layers. The components
in the middle layers, including both attention and MLP, sig-
nificantly affect the downstream MLPs, causing an indirect
effect. Conversely, the MLPs in the later layers directly
modify the residual stream, impacting the final probability.
Our research consistently highlights the crucial role of the
later MLP layers.

3. MLP implements mapping relationship
Recent research regards MLPs as key-value memory struc-
tures (Geva et al., 2020; Meng et al., 2022), where the model
stores knowledge in the corresponding relationships within
the MLP. By adjusting the MLP parameters, we can modify
the facts stored in the model. In this section, we exam-
ine how the model implements the mapping xi + yi → zi
through the MLP, focusing specifically on the MLPs in the
later layers.

The feed-forward network has the following form(bias ig-
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Figure 3: Total Effect breakdown, the effect caused by attention entirely depends on the indirect effect. As a comparison,
the effect caused by MLP mostly relies on directly updating the residual stream

Figure 4: The breakdown of Indirect Effect

nored)

FFN(x) = f(xWup)Wdown (5)

where x ∈ Rdmodel is a vector which has encoded the input
text prefix, Wup ∈ Rdmodel×dmlp and Wdown ∈ Rdmlp×dmodel

are the parameter matrices, f is nonlinear activation func-
tion.

We take the Geva’s (Geva et al., 2022) view of key-value in
MLP, f(xWup) represents the key k (k ∈ Rdmlp ) which is
a distribution captures the patterns of the input, while the
value is a row vector v (v ∈ Rdmodel ) of the Wdown which
represents the target distribution. By taking this view, the
FFN network can be seen as projecting the hidden state hi

to ki through the Wup matrix, and k is used as a weight to
sum v in the Wdown matrix and add the result to the residual
stream. Since the results of the FFN are linearly added to
the residual stream, we have the following expression

hl
i = hl−1

i + kWdown = hl−1
i +

dmlp∑
j=1

ajvj (6)

p = softmax(hfinal
i Eu) (7)

where k is vector (a1, a2 . . . admlp) ∈ Rdmlp . By observ-
ing 6, the increasing the value of aj will cause the hidden
state hl to move closer to vj . When aj approaches infinity,
softmax(hfinal

i Eu) = softmax(vjEu).

3.1. Finding value in vocabulary space

One of the benefits of viewing an MLP as a key-value pair
is that the value can be analyzed separately. The value is
explicitly stored within the model as internal knowledge.
This knowledge is encoded into the model’s parameters
during training and is independent of the input.

In order to find the meaning of v, we uses the unembed-
ding matrix Eu ∈ Rdmodel×V (as Geva did in (Geva et al.,
2022)) to project v into the vocabulary space (8). Related re-
search includes logits-lens (Nostalgebraist, 2020) and other
improved versions (Belrose et al., 2023; Pal et al., 2023),
which projects the hidden state hi into the vocabulary space.
This approach is highly effective for achieving interpretabil-
ity.

w = softmax(vEu) (8)

where w ∈ RV is a probability distribution of the vocabulary.
We hypothesize that the model relies on the key-value pairs
in MLP to implement the mapping relationship of xi +
yi → zi. This is achieved by mapping the numbers x, y
and operator + to a specific key to activate the target value
distribution. In other words, the key represents x+ y, and
the value represents z. v is a model parameter, which allows
us to obtain the distribution represented by v before the
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model receives input. Our goal is to identify the v values
that encode single digits from 0 to 9.

Specifically, for the probability distribution w of the vocabu-
lary space generated by each v, we truncate the top k words
with the highest probability to represent the main meaning
conveyed by v. For the top k words, if they contain more
than r word that is related to number z, then we think that v
has encoded the number z. The definition of related words
can be found in Appendix C.

We explained total 32*11008 of v in LLaMA2-7b (with
k=10, r=3). As shown in table 1, from digit 1 to 9, the quan-
tity of v generally shows a decreasing trend (See Appendix
C). Interestingly, the phenomenon follows the Benford’s
law. This may be because 1 and 2 account for the largest
proportion of the numbers seen by the model during train-
ing. In addition, when applying TSNE (Van der Maaten &
Hinton, 2008) visualization on the hidden state, the data that
should output 1 or 2 will form clusters earlier than other
data.

Figure 5: the number of v that encoded the concept of digit 5
in each layer. Most v appear in the later layers of the model,
which is consistent with previous research (See Figure 4)).

3.2. Neurons activation

The advantage of locating these v is that we can, in turn,
focus on the specific neuron activation (key) corresponding
to these v. In this paper, we leverage the one-to-one cor-
respondence between activation k and v to quickly locate
specific neurons in a particular layer. Recent research on
neurons is mainly troubled by the large number of neurons
and their ambiguity (Olah et al., 2020; Arora et al., 2018).
Neurons are activated simultaneously in different contexts,
which makes it difficult to focus on specific locations. Re-
lated research uses dictionary learning (Yun et al., 2021;
Zhang et al., 2019) or sparse models (Cunningham et al.,
2023) to solve the problem of ambiguity and automatically
interpret neurons with a much more powerful model (Bills
et al.).

If the model relies on the key-value mechanism of MLP

to achieve a mapping relationship of xi + yi → zi, then
the neurons a corresponding to the v vector encoding the
number z should be activated.

We use n-digit plus n-digit inputs to observe the activation
of neurons ali. Specifically, when the autoregressive model
is required to output the digit z as the first digit,, then we
collect all the activations aji corresponding to z. We use the
sum of activation values and average them on a dataset of
200 data points. Finally, we conduct experiments on dif-
ferent digit lengths from 2 to 25 to observe the universality
of the conclusion. On one hand, we record the activation
values of neurons

∑total
j=1 abs(aj), and on the other hand,

we record the output probability p(z) of the model for the
answer. As a comparison, we selected random neurons as
the baseline and neurons ali related to vli which also has
encoded other digit z′, (z′ ̸= z).

Figure 6: The correlation between neurons activation and
probability output p(z) on LLaMA2-7B, results of more
models refer to Appendix D.

The activation and probability output p(z) of the target neu-
ron activation showed the same trend of change (See Figure
6). This indicates that the neuron activation corresponding
to result z does indeed reflect the output probability of the
final output. It should be noted that the proportion of neu-
rons we studied in the entire model is very small, usually
less than 50, but they still demonstrate a strong correlation
with the results. As a comparison, the activation of random
neurons showed lower levels of activation. For neurons cor-
responding to the v encoding other numbers z′, (z′ ̸= z),
they had activation values higher than random but lower
than the target neurons.

3.3. Task expansion

The arithmetic task can be seen as a continuous ten-class
classification problem. To expand the research scope, con-
sider a sentiment binary classification task, where the model
will receive a segment of text to determine whether it is
positive or negative. As before, we first searched for v en-
coding positive and negative semantics, as we did not need
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Table 1: Some representative v that encode digit in LLaMA2-7B.

Position of v Encoded digit Tokens with top probability
v31
5643 9 nine, 9, nine (In Chinese), September, IX, Sep, Sept, september, nin, III

v29
5643 8 8, eight, eight(In Chinese), VIII, acht, huit, eig, otto

v24
4958 3 third, Third, III, troisième, III, 3, three, thirty

v26
10820 2 2, two, twenty, ², two(In Chinese), II, ²), II

to consider the issue of discontinuous encoding of num-
bers. Therefore, our experimental subjects also included
LLaMA3,

Similarly, for the samples with label y, y ∈
{positive, negative}, we take the ay as the target neurons
which we intervene on, ay′ as the opposite label neurons. As
discussed earlier, the model can increase the activation ay to
assign larger weights to vy , or it can decrease the activation
ay′ to assign negative weights to vy′ to indirectly increase
the probability p(y).

We conduct our experiment on the sst-2 dataset. We de-
fine four types of neuron activations, target positive neu-
rons activation:

∑total
j=1 ayj (a

y
j > 0), target negative neurons

activation:
∑total

j=1 ayj (a
y
j < 0), opposite positive neurons

activation:
∑total

j=1 ay
′

j (ay
′

j > 0), opposite negative neurons

activation:
∑total

j=1 ay
′

j (ay
′

j < 0). As shown in Figure 7,
surprisingly, except for Mistral, the rest of the models indi-
rectly increase the probability p(y) by assigning negative
weight to the wrong vy′ . Correspondingly, ay has consis-
tently maintained a relatively low positive activation value
which is counterintuitive.

4. Stochastic parrot
We have studied how the model achieves mapping from
x+ y to z. However, implementing this mapping relation-
ship is an easy task for today’s models. For the number n,
the model only needs to remember all n+1 combinations
from (0+n) to (n+0) to achieve an operation (without carry
and borrow). The key to the problem lies in whether the
model learns knowledge beyond simple mappings, such as
commutative laws, carry, and number alignment operations.
In this section, the discussion will focus on whether the
model has learned commutative laws and carry mechanisms,
which are higher than general mapping relationships

4.1. Commutative law

The model does not need to know a+b = b+a. It only needs
to remember two different mapping rules a+b = z, b+a =

z. However, we still investigate from the perspective of
neurons. a+b and b+a are essentially the same in arithmetic,
but they are in different states when they enter the model
through the embedding layer because of positional encoding.
We believe that if the model ultimately maps these two
different inputs to the same neuron activation distribution, it
can be said that it has learned the commutative law. While
it’s not practical to directly obtain the activation distribution
of all neurons, the model will capture unrelated features of
other concepts, resulting in inconsistent final distributions.

We also used the neurons located in section 3 for analysis,
which are strongly correlated with the task and are capa-
ble of filtering out irrelevant activation caused by other
input features. Specifically, considering a target output
number z = (z1, z2, . . . , zn), we created a dataset con-
taining x + y (without carry), where number starts form
(x1 = 1, y1 = z1 − 1) to (x1 = z1 − 1, y1 = 1). For each
number pair, we collected their neuron activations, and each
pair consisted of twenty sets for averaging. We calculated
the cosine similarity matrix N ∈ Rz1−1×z1−1.

It can be observed that when z1 = 9, the similarity matrix
presents an X-shaped pattern(See Figure 9), which means
the model combines a+ b and = b+ a well. However, when
z1 = 8, their similarity is not so obvious, some less relevant
inputs (5-3 and 1-7) have a rather higher similarity.

Overall, the model seems to have learned some knowledge
about commutative laws, but it is not obvious in some cases
and further confirmation is needed in the future.

4.2. Carry propagation

Looking back at the causal analysis experiment (See sec-
tion 2), we found that the attention layer played a dominant
role in the mid-term. Attention naturally has interpretabil-
ity, we visualize attention heads(See Appendix E) with dis-
tinct features and notice that attention presents attention to
computational digit x1, y1, and x2, y2. This makes sense,
models need to calculate the first digit, so x1 and y1 are
the calculation digits that should be considered, while x2

and y2 are the basis for judging whether carry will occur.
When we melt the attention head’s focus on x2 and y2 with
zero ablation, we find that the model cancels carry or bor-
row in the calculation equations that should have a carry or
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Figure 7: Four types of averaged activation representing how the model chooses the way to output the probability,

A case of z1 = 9

A case of z1 = 8

Figure 8: The cosine similarity of neuronal activation, where
each pair of numbers a + b represents the first digit of
two numbers, is averaged over 100 sets of data for each
activation. This figure shows cases for digits 9 and 8. More
result see Appendix E.

borrow(See Appendix E).

Attention naturally has interpretability, and we visualize
attention heads with distinct features, noticing that atten-
tion presents an effect on the computational digit x1, y1,
and x2, y2’s attention. This makes sense. Unlike humans,
the model needs to first calculate the result, so x1, y1 is
the computational bit that should be considered, while x2

and y2 is used as a basis to determine whether carry will
occur. When we perform a zero value ablation of the at-
tention head’s focus on x2 and y2, we find that the model
cancels carry in or borrow from the original formula(See
Figure), such as 140+180 → 220. This phenomenon not
only exists in explicit addition formulas but also in arith-
metic application problems. If the carry occurs at a later
position xcarry, ycarry, carry > 2, the zero ablation will
still stop the carry.

Figure 9: Ablation on the position of xcarry. For the case
in the figure, carry = 2.

We examine whether the model has learned the carry mech-
anism from the perspective of carry propagation. Con-
sider an addition equation x = (x1, x2, . . . , xn) , y =
(y1, y2, . . . , yn) that generates carry when x2 + y2 > 9,
and does not generate carry when x2 + y2 < 9. When
x2 + y2 = 9, the model needs to focus on x3 and y3 to
continue determining whether x3 + y3 will generate carry,
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Figure 10: Averaged probability representing four types of addition. When x2 + y2 = 9, it is difficult for the model to
determine whether there is a carry, and the output probabilities of both results are at a high level.

the carry propagation detection stops until it is determined
whether carry exists.

We found the model only uses a fixed attention weight in
the attention head to weigh the computational digit and the
digit after it. This is a clear statistical pattern, as detection
of later digits is only required when xi + yi = 9, which is
relatively rare in the training data.

When xi + yi = 9, the model simply just increases the
probability of carrying (See Figure 10), rather than truly
propagating the carry mechanism. This is also based on
statistical patterns: ”When xi + yi = 9, carry is likely to
occur.”. Until now, the ChatGPT4 has not been able to
escape this phenomenon. Given the input ’answer directly:
652734181+247265817=’, the output is 900000000 (answer:
899999998), the first digit of the model output is 9, which
causes errors to accumulate and makes subsequent output
become 0.

5. Conclusion
We investigated how the model performs addition tasks.
By using causal tracing, we investigated the information
flow path in the model and located it on the attention as the
carry operator and the MLP layer as the execution mapping
relationship. Our research found that the model achieves
mapping relationships to implement addition by activating
the parameter and prompting a certain vocabulary distri-
bution in later MLP, verifying the hypothesis that MLP is
a memory network. The framework can be extended to
general mapping relationships, especially for classification
tasks. We also explain from the perspectives of carry and
commutation laws whether the model truly learns addition
rules, providing insights for the debate on the nature of the

model.

Ethics Statement
Our research on the model has enhanced its interpretability
and transparency. We can judge the decision results of the
model from within, which is of great help in managing
increasingly powerful models in the future.

The main concern for the article comes from its description
of mapping relationships. Like other studies on memory
networks, the mapping relationships of the model’s memory
can be modified, leading to the model being manipulated
to output harmful content. Therefore, strict control is re-
quired for the modification of memory networks, and con-
tent should not be redirected to other risky content at any
time.
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A. Limitations
We have conducted research on how pre-trained language models complete addition tasks, and our research has profoundly
revealed the basic principles of using attention heads to transmit numerical and carry information, implementing basic
mapping relationships using MLP, and discovering the possibility of the model learning addition rules. We believe that this
study takes a firm step toward interpretability research.

However, the characteristic of language models lies in their comprehensiveness. The mechanism by which the model
specifically locates each digit that needs to participate in the operation is not yet understood. How changes in attention affect
the distribution of MLP activation in the later stages has not been studied. Why does the model assign negative activation to
the answer, which may decrease the probability.

Another crucial point is that our research builds on the findings of previous researchers on memory networks, which still
have many unexplained aspects. For example, a significant portion of model parameters cannot be accounted for using
vocabulary projection, highlighting the need for further investigation into these unexplained parameters.

B. Additional information for casual tracing
In this section, we discuss casual tracing for other models and some interactions we observed between attention and MLP.

Figure 11: Total effect in Mistral-7B. Figures demonstrate the impact of activation replacement by tokens and interventions
at the layer level, highlighting significant effects primarily concentrated on the last token and specific layers. For the
attention layer, impacts are mainly on layer 20, while for MLP, impacts are notably on layer 20 and beyond.

Mistral has a special pattern, as it concentrates almost all attention effects on the 20th layer. By visualizing the attention
heads of the 20th layer, we found that this layer contains attention to both the computational digit and the last digit, while
the attention heads of other models separate these two functions. MLP suddenly experienced a peak in the 16th layer, which
was caused by the first number of the first digit. This may be due to the model transmitting information between tokens.

Gemma also has a similar situation as it concentrates almost all attention effects on the 21st layer. The difference is that
Mistral has more information on the first number of the first digit.

The influence of the attention layers on output probability may occur in the mid to late stage, but it will be earlier than the
MLP layer, which is intuitively reasonable. On the one hand, attention transmits information between tokens, while MLP
processes information. In addition, most of the v distribution related to answers only exists in the MLP layer in the later

11



Is Transformer a Stochastic Parrot? A Case Study in Simple Arithmetic Task

Figure 12: Total effect in Gemma-7B. For the attention layer, its impact is mainly on layer 21, while for MLP, its impact is
mainly on layers 22 and later.

stage.

C. Finding v in parameter space
In this section, we give details of how we find the v.

Table 2 shows the definition of related words. For each v , we take the top k token with the highest probability of the top k
and intersect it with the digit in the table. If the number of intersections is greater than r , v is classified as vi which has
encoded i.

From 1 to 9, the quantity generally shows a decreasing trend (See Figure 13). According to Benford’s law, the probability of
a number with 1 as the first digit appearing in a pile of real-life data is about 30% of the total. In terms of promotion, the
larger the number, the lower the probability of its first few digits appearing.

We hypothesize that this is due to the presence of more 1 and 2 in the training data, resulting in a higher degree of training
by the model. Furthermore, we use TSNE (Van der Maaten & Hinton, 2008) visualization to observe the internal clustering
situation of the model. Specifically, we tested on a dataset with 9000 data points, where the first digit of the calculation
result represents its label, with 1000 samples in each group of labels from 1 to 9.

As for the sentiment classification task, we use a similar approach to find the v, the related words are listed in table 3. The
distribution of v that has encoded the sentiment concepts is shown in Figure 15. We found that the positive and negative
tokens are usually mixed in one v, so we increase r from 3 to 5 to get more distinct v.
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Figure 13: Total vz that have encoded ten digits in LLaMA2-7B (k=10, r=3)
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Figure 14: Total vz that have encoded ten digits in Qwen1.5-7B (k=10, r=3)
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Table 2: Defination of number related word

Digit Related tokens
0 zero, zero(In Chinese), null, nil, zeros
1 one, one(In Chinese), January, Jan, 1, I, first, ten, uno, Uno, First, One
2 two, two(In Chinese), February, Feb, 2, II, second, twenty, duo, deux
3 three, three(In Chinese), March, Mar, 3, III, third, thirty, tri, Tres, triple,

Three
4 four, four(In Chinese), April, Apr, 4, IV, fourth, forty, tetra, quatre, quad
5 five, five(In Chinese), May, 5, V, fifth, fifty, penta
6 six, six(In Chinese), June, Jun, 6, VI, sixth, sixty, hexa
7 seven, seven(In Chinese), July, Jul, 7, VII, seventh, seventy
8 eight, eight(In Chinese), August, Aug, 8, VIII, eighth, eighty, octa
9 nine, nine(In Chinese), September, Sep, 9, IX, ninth, ninety

Table 3: Defination of sentiment related word

Sentiment Related tokens
positive positive, posit, Pos, pos, happy, favor, fav
negative negative, neg, Neg, bad

Figure 15: Total vz that have encoded sentiment concepts in LLaMA3-7B (k=10, r=5)
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Figure 16: t-SNE visualization of the last token hidden state across different layers, highlighting the classification of class 1
in blue and class 2 in red through layers 0, 11, 22, and 31.
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D. Neurons activation and model output

LLaMA2, Qwen, and Mistal all use Gated-MLP (Dauphin et al., 2017) and SiLU activation function, leading to the existance
of negative activation values. In the experiment, we found that considerable activations are in negative values. On the one
hand, negative activation often means a decrease in p(z) probability, and on the other hand, the output probability is strongly
correlated with the sum of the absolute values of activations. This may indicate that the model does not simply activate all v
to positive values to output the final answer. The model has learned a positive and negative distribution.

By observing Figure 17. The absolute sum of activation values reflects the probability of the model’s output z to a relatively
sensitive extent. The activation of random neurons remains at a relatively low level. The neuron activation of other digits
remains at a higher level but lower than target neurons, which indicates that the model chooses to directly increase the value
of the target instead of decreasing other neurons’ activations.

When the model completes the addition task, other neurons related to numbers but not the answer will also be slightly
activated. This may be due to the ambiguity of the selected v. For example, we found that the top-k word of some v selected
in LLaMA2 includes both the number 9 and the number 8.

Interestingly, even randomly selected neurons exhibit a slight trend of change consistent with current neuronal activation,
which may be related to other mechanisms in the model. Changes in input length may affect all neurons as a whole.

E. Additional information of commutative law and carry
In this section, we show more details about model learning commutative law and carry propagation.

Combine Figure 9 and Figure 18, model learns commutative law well when z = 9, 6, worst when z = 7.

The attention head presents a stepped pattern(See Figure(19)), and the model moves the attention backward one bit for each
bit calculated.

We conducted ablation of the attention head to verify the specific effect of attention and found that when we performed zero
value ablation, the model canceled the calculation of carry or borrow.

The problem is that attention does not dynamically change with the calculation results. when xi+ yi = 9 attention does not
keep tracking the next digits, the model simply increases the probability of adding a carry.

F. Compute resources
All experiments can be completed within 5 hours using the A40 graphics card.

17



Is Transformer a Stochastic Parrot? A Case Study in Simple Arithmetic Task

Neurons activation and probability output p(z) on Qwen1.5-7B

Neurons activation and probability output p(z) on Mistral-7B

Neurons activation and probability output p(z) on Qwen-7B

Figure 17: The trend of activation and probability changes in numbers of different lengths with double y-axis: top image
represents Qwen1.5-7B, middle image represents Mistral-7B, and bottom image represents Qwen-7B.
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Figure 18: Cosine similarity of neuronal activation for digits 3, 4, 5, and 6, illustrating changes in activation patterns across
different network layers. Each image represents the neuron activation and probability output p(z) for different classes,
averaged over 100 datasets.
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Figure 19: Visualization of various attention heads across different layers in LLaMA2-7B, demonstrating how each attention
head contributes to controlling the carry in a neural network model.
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