Under review as a conference paper at ICLR 2019

END-TO-END HIERARCHICAL TEXT CLASSIFICATION
WITH LABEL ASSIGNMENT POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an end-to-end reinforcement learning approach to hierarchical text
classification where documents are labeled by placing them at the right positions
in a given hierarchy. While existing “global” methods construct hierarchical losses
for model training, they either make “local” decisions at each hierarchy node or
ignore the hierarchy structure during inference. To close the gap between train-
ing/inference and capture label dependencies in an end-to-end manner, we pro-
pose to learn a label assignment policy to determine where to place the documents
and when to stop. The proposed method, HiLAP, directly optimizes metrics over
the hierarchy, makes inter-dependent decisions during inference, and can be com-
bined with different text encoding models for end-to-end training. Experiments on
three public datasets show that HILAP yields an average improvement of 33.4%
in Macro-F1 and 5.0% in Samples-F1, outperforming state-of-the-art methods by
alarge marginﬂ

1 INTRODUCTION

In recent years there has been a surge of interest in leveraging taxonomies and hierarchies to orga-
nize and classify text documents, leading to the development of hierarchical text classification (HTC)
methods—methods that can predict for a document multiple appropriate labels (which together con-
stitute a sub-tree) in a given hierarchy. These methods have found a wide range of applications
such as question answering (Qu et al.l [2012), online advertising (Agrawal et al.| |2013), and scien-
tific literature organization (Peng et al.,2016). In contrast to traditional “flat” classification, the key
challenge of HTC lies in modeling the inter-dependent, large-scale, and imbalanced label space.

Due to the complexity of HTC, how to better utilize the label hierarchy remains an open prob-
lem. HTC methods are traditionally divided into three categories, namely flat, local, and global
approaches (Silla & Freitas, 2011). Flat approaches generally ignore the label hierarchy. Some
only predict labels at the leaf nodes and then add all the ancestors of the predicted leaf nodes. Oth-
ers ignore the hierarchy and perform standard multi-label classification, in which inconsistencies
(i.e., one label is predicted but its ancestors are not) may occur and post-processing is thus needed.
Local approaches train a set of local classifiers per node/per parent node/per level, which function
independently and (usually) make predictions in a top-down order to avoid inconsistencies. Tra-
ditional global approaches (Cai & Hofmann), [2004; |Vens et al., [2008; [Silla Jr & Freitas, 2009)) are
largely modified based on specific flat models and rely on static, human curated features as input.
In addition, many existing global approaches make unrealistic assumptions of the problem as in
flat approaches. For example, Hierarchical-SVM (Cai & Hofmann| 2004) requires that all possible
labels are on the leaf nodes and the heights of leaf nodes are the same.

Recent approaches (Kiml 2014} Lai et al., 2015} [Yang et al.,2016)) to text classification mainly focus
on flat classification and have been shown to be very effective. However, their performance in HTC
is relatively less studied. Even if the classification task is essentially hierarchical, prior work (Gopal
& Yang] 2013 Johnson & Zhang|, 2014} Peng et al., 2016} 2018)) still makes flar and independent
predictions and utilizes intuitive constraints, such as the embeddings of one label and its parent
should be close. One recent framework (Wehrmann et al., 2018) attempted to leverage both local
and global information. However, it uses static features and its inference is essentially flat, which
may lead to inconsistencies.

!Code and data will be released on GitHub upon acceptance.

Under review as a conference paper at ICLR 2019

t=6
STOP is taken

Figure 1: An illustrative example showing our label assignment policy. At ¢ = 0, the document
x; is placed at the root label and the policy would decide if x; should be placed to its two adjacent
(denoted by purple) labels. Att = 1, z; is placed at label 1, which adds another three adjacent
labels as the candidates. Att = 6, the stop action is taken and the label assignment process is thus
terminated. We then take all the labels where x; has been placed (a sub-tree consisting of label 0, 1,
..., J) as x;’s document labels.

In this paper, we present an end-to-end reinforcement learning approach to HTC where documents
are labeled by placing them at the right positions in a label hierarchy. We propose HiLAP, a prin-
cipled global framework that learns a label assignment policy to determine where to place the doc-
uments and when to stop. HiLAP optimizes its policy by exploring the label hierarchy, in which
training and inference follow the same routine and inter-dependent decisions are made. Compared
to flat and local approaches, HILAP achieves better effectiveness because it examines the global
hierarchical structure during both training and inference phases. Compared to most existing global
approaches, HILAP has more flexibility in that it has no constraints on the structure of the hierarchy.
Furthermore, the label assignment policy of HILAP ensures that its predictions are always consistent
and no post-processing is needed.

HiL AP can be combined with different text representation learning models and trained in an end-
to-end fashion. We select three representative text encoding models as the base models to evaluate
the effectiveness of HILAP. Experiments on three public datasets from different domains show that
combining HiLAP with existing representation learning models yields an average performance im-
provement of 33.4% in Macro-F1 and 5.0% in Samples-F1, outperforming state-of-the-art HTC
methods by a large margin. In particular, ablation study shows that HILAP is especially beneficial
to those unpopular labels at the bottom levels.

2 LEARNING LABEL ASSIGNMENT POLICY FOR END-TO-END
HIERARCHICAL TEXT CLASSIFICATION

This section presents the proposed end-to-end reinforcement learning approach to hierarchical text
classification. We first introduce our label assignment policy including the design of its actions and
rewards, and then describe the details of policy learning.

2.1 HIERARCHICAL LABEL ASSIGNMENT

We define a label hierarchy H = (L, E) as a tree or DAG (directed acyclic graph)-structured hi-
erarchy with node set L (i.e., the labels), and edge set E (which indicates the parent-child rela-
tionship between labels). Taking a set of documents {z1,z2,...,2y} and their document labels
{L1,Lo,...., Ly} € L as input, we aim to learn a policy P to place each documents x; to its labels
L; on the label hierarchy H. Specifically, the policy P puts z; at the root label in the beginning
and at each time step, decides which label x; should be further placed to, among all the adjacent
labels of where x; has been placed, until a special stop action is taken. An illustration of our label
assignment policy is shown in Figure [l} We define one base model B as a mapping f that converts
each raw document z; to a finite dimensional vector as its representation, i.e., the document embed-
ding e; € RP (D denotes the embedding size). B can be any neural text representation learning
model and its output e, is used as the input of the policy P. The challenge, compared to standard
classification setup, is that we need to model E, i.e., the relationship between labels.

Under review as a conference paper at ICLR 2019

Max poolin\g\\ |

Word i C

Layer

[[ooo][od/o][oc;oﬂ

Document Embedding €4 Policy Network

Base Model

Figure 2: The architecture of the proposed framework HiLAP. One CNN model (Kim, |2014) is
used as the base model for illustration. The document embedding e; generated by the base model is
combined with the label embedding I; and used as the state representation s;, based on which actions
are taken by the policy network.

2.2 REINFORCEMENT LEARNING FOR LABEL ASSIGNMENT

To learn the label assignment policy, we train a policy network to determine where to place the
documents and when to stop as follows.

Actions We regard the process of placing a document x; to the right positions on the label hierarchy
as making a sequence of actions. Specifically, we define that an action a; at time step ¢ is to select
one label /; from the action space A; and place x; to that label [;. We denote the children of label
Iy as C(I;). The action space A; consists of all the adjacent labels of where the document x; has
been placed. In this way, for example, HILAP can first place z; to a label at level 3 if the confidence
(probability) of that label is higher and then place it to another label at level 1.

At the beginning of each episode, x; is placed at the root label /y and the action space A; = C(lp),
i.e., all the labels at level 1. When z; is placed at another label [y, its children C(l;) would then
be added to the action space A;. In addition, one stop action eyop € RC (C denotes the em-
bedding size) is added to the action space A; so that the model can learn when to stop placing
document x; to new labels. Intuitively, when the confidence of placing z; to another label is lower
than the sfop action, the label assignment process would be terminated. In short, the size of A; is
H{C(ln),C(ly),...,C(l¢), stop} — {l1,la, ..., 1+ }|. Note that in other local/global approaches the pre-
dictions on different paths are independent while in HILAP the inter-dependencies of labels across
different paths and levels are considered and we optimize the metrics over the hierarchy by providing
the policy network with rewards that capture the overall quality of its label assignment.

Rewards HiLAP receives rewards from the environment as feedback for its actions. Different from
existing work where each label of one sample is treated independently, HILAP captures the quality
of all the labels assigned to each sample z; by rewarding the agent with the per-sample F1 (see
Sectionfor details): F17 = %, where P** and R** denote per-sample precision and
recall respectively that compare the predicted labels with gold labels of z;.

Instead of waiting until the end of the label assignment process and comparing the predicted labels
with the gold labels, we use reward shaping (Mao et al.| 2018), i.e., giving intermediate rewards at
each time step, to accelerate the learning process. Specifically, we set the reward r of x; at time
step t to be the difference of its F1 score between current and last time step: r;* = F1y* — F17" .
If current F1 is better than that at last time step, the reward would be positive, and vice versa. The
cumulative reward from current time step to the end of an episode would cancel the intermediate
rewards and thus reflect whether current action improves the overall label assignment of one sample
or not. As a result, the learned policy would not focus on the current placement but have a long-term
view that takes following actions into account.

Policy Network We parameterize each action a; by a policy network 7(a | s; W). The architecture
of HiLAP is shown in Figure [2] For each document, its representation ey is generated by the base
model B. For each label, a label embedding 1 € R is randomly initialized and updated during
training. To model the label relationship E, the embeddings of the document e; and current label 1,

Under review as a conference paper at ICLR 2019

are concatenated and projected to a vector s; € R via a two-layer feed-forward network. s; has
the same size as the label embedding 1 and we use s; as the state representation of the document at
current label 1;. By stacking the action embeddings, we can obtain an action matrix A; with size
{C(l),C(ly), ..., C(ly), stop} — {l1,l2, ..., 11 }] x C. Ay is multiplied with the state embedding s;,
which outputs the probability distribution of actions. Finally, an action a; is sampled based on the
probability distribution of the action space:

i = ReLU(W}ReLU(W?[es:1])).
mw(a|s; W) = softmax(A;s;),
a; ~ m(a|s;W).

We use REINFORCE (Williams|, [1992)), one instance of the policy gradient methods, as the opti-
mization algorithm. To reduce variance, 10 rollouts for each training sample are run and the rewards
are averaged. In addition, we adopt a self-critical training approach (Rennie et al., 2017). For each
document z;, two label assignments are generated: I~/zi is sampled from the probability distribution,
and IA%., the baseline label assignment, is greedily generated by choosing the action with the highest

probability at each time step. We use r(L,,) — 7(L,,) as the actual reward, which ensures that
the policy network learns to place the document to positions with higher F1 score than the greedy

baseline. At the time of inference, we greedily select labels with the highest probability as ﬁI

2.3 ToprP-DOWN SUPERVISED PRE-TRAINING

It is known that reinforcement learning models often suffer from high variance during training.
Instead of learning from scratch, we use supervised learning to pre-train our framework. We denote
the supervised variant as HILAP-SL. While most parameters of HILAP-SL are shared with HiLAP,
its action space and way of exploring of the label hierarchy H are dissimilar.

The main difference is that HILAP-SL explores the label hierarchy H in a top-down manner. At each
time step ¢, the document goes down one level on the hierarchy. HILAP-SL concentrates on the local
discrimination of labels with the same parent. The local per-parent label probability distribution p3-
is generated as follows.

piL = U(Ctst)a

where o denotes the sigmoid function, and C; € RICU)IXC denotes the action space of HiLAP-SL,
i.e., an embedding matrix consisting of the children of current label [; (rather than all the labels
where x; has been placed as in HILAP).

Another difference is that in HILAP the actions are sampled and thus the documents might be placed
to wrong labels, while in HILAP-SL only the ground-truth positions are traversed during training.
Specifically, if there are K (> 1) ground-truth labels at the same level, the document embedding e,
would be cloned K times following each label and K different paths would be generated indepen-
dently. The loss function of HiLAP-SL is defined as follows.

T
Li=3 L,
t=0

where T is the lowest label’s height of one sample (1" may vary by samples) and £; estimates the
binary cross entropy over the candidate labels C(l;) at each time step ¢. HILAP-SL works as if there
were a set of local classifiers, although most of its parameters (except for the label embeddings 1)
are shared by all the labels so that one does not need to actually train a set of classifiers. During
inference, HILAP-SL follows the same top-down routine as in training using the per-parent label
probability pSt and thus no post-processing is needed for inconsistency correction.

All the parameters of HiLAP are shared with HiLAP-SL and can be initialized by the pre-trained
HiLAP-SL model except for the embedding of the stop action e, (Which is randomly initialized).

2.4 COMBINING FLAT, LOCAL, AND GLOBAL INFORMATION FOR POLICY LEARNING

We further add a flat component to our framework as a regularization of the base model. Specifically,
the flat component is a simple feed-forward network consisting of a fully connected layer and the

Under review as a conference paper at ICLR 2019

sigmoid function. It projects the document embedding e, to a label probability distribution p ; of all
the labels L on the hierarchy.

p; = o(Wyey).

The combination of the base model and the flat component is exactly the same as a flat model and
ensures that the document representation e, learned by the base model B has the capability of flat
classification among all the labels L. We use a flat loss L to measure the binary cross entropy
over all the labels as in the flat models. Combining the flat loss with local loss, the supervised loss
in HILAP-SL is defined as L. = ALy + (1 — A) Zf,T:o Ly, where A € [0,1] is the mixed ratio.
Similar to |Celikyilmaz et al.[(2018)), we also found that mixing a proportion of the supervised loss
is beneficial to the learning process of HiLAP. Further combining the global information, the total
loss of HiLAP is defined as Lyixea = LrL + aLsL, where « is a scaling factor accounting for the
difference in magnitude between Ly and Lg. While we do not directly use the flat component
during inference, it helps the learning process of the base model and improves the performance of
both HILAP-SL and HiLAP, which we will show in Section3.3]

3 EXPERIMENTS

We evaluate the benefits of our framework against a number of state-of-the-art HTC approaches,
with the goal of answering the following questions:

Q1 How does our proposed method (HiLAP) compare to state-of-the-art HTC approaches?

Q2 How does HiLAP compare to other hierarchical classification frameworks when the same base
models are adopted by all the frameworks?

Q3 How do different components in HiILAP contribute to its performance in terms of the popu-
lar(sparse) labels?

3.1 DATASETS AND EVALUATION METRICS

We conduct experiments on three public and commonly used datasets from different domains. The
first two datasets are related to news categorization, including RCV1 (Lewis et al.l [2004) and the
New York Times (NYT) annotated corpus (Sandhaus| [2008). We follow the original training/test
split for RCV1 and sub-sample NYT due to its large size. The third dataset is the Yelp Dataset
Challenge 201 which consists of a subset of Yelp businesses and their reviews. We use the Yelp
Business Categorieaﬂ as the label hierarchy and predict the categories of one business using its
reviews. For each dataset, there may be more than one label at each level and the lowest labels of
a sample may not be at the leaf nodes. A summary of the datasets is shown in Table [I|and further
details can be found in Appendix [A]

Table 1: Summary of the three datasets. |L| denotes the number of labels in the label hierarchy.
Avg(|L;|) and Max(|L;|) denote the average and maximum number of labels of one sample, respec-
tively.

Dataset Taxonomy |L| Avg(|L;|) Max(|L;|) Training Test

RCV1 Tree 103 3.24 17 23,149 781,265
NYT Tree 115 2.52 14 25,279 10,828
Yelp DAG 539 3.77 32 87,375 37,265

We use standard metrics (Johnson & Zhang] 2014} [Peng et al., 2016)) for HTC including Micro-F1,
Macro-F1, and Samples-F lﬂ Micro-F1 measures the overall precision/recall and favors labels with
more samples. Macro-F1 calculates the F1 scores of all the labels and performs an unweighted
average over them. Similarly, Samples-F1 calculates the F1 scores of all the samples and averages

them (#). Recall that F1%¢ is used as the reward in HILAP.

Zhttps://www.yelp.com/dataset/challenge
3https://www.yelp.com/developers/documentation/v3/all_category list

“We take the name Samples-F1 from sklearn.metrics.fI_score. It is referred to as Example-based F1 in|Par-
talas et al.[(2015), EBF in Peng et al.|(2016) and Edge-F1 inMao et al.| (2018).

Under review as a conference paper at ICLR 2019

3.2 BASE MODELS

In our experiments, three representative text classification models with different characteristics are
selected as the base models to prove the robustness and versatility of HILAP. As one will see, HILAP
consistently improves the base model through better exploration of the label hierarchies.

TextCNN (Kiml [2014) is the classic convolutional neural network for text classification. In our
implementation, TextCNN is composed of one convolutional layer with three kernels of different
sizes (3, 4, 5), followed by max pooling, a dropout layer, and a fully-connected layer. We chose
TextCNN because it was one of the first successful and well used neural-based models for text
classification.

HAN (Yang et al.| 2016)) first learns the representation of sentences by feeding words in each sen-
tence to a GRU-based sequence encoder (Bahdanau et al., [2014) and then feeds the representation
of the encoded sentences into another GRU-based sequence encoder, which generates the represen-
tation of the whole document. Attention mechanism such as word attention and sentence attention
is also used. We chose HAN because it uses RNNs instead of CNNs and is shown to be effective on
the Yelp Review datasets (Zhang et al., 2015).

bow-CNN (Johnson & Zhang, [2014) employs bag of words (multi-hot zero-one vectors) as input
and directly applies CNN to high-dimensional text data. It learns the representation of small text
regions (rather than single words) for use in classification. We chose bow-CNN since it does not use
any word embeddings as in TextCNN and HAN. In addition, bow-CNN achieved the state-of-the-art
performance on the RCV1 dataset (Lewis et al., 2004).

3.3 BASELINES

We compare our framework with state-of-the-art HTC methods. The traditional methods that we
compare with are Support Vector Machines (SVM) and its hierarchical variants. Specifically, SVM
performs standard multi-label classification using one-vs-the-rest (OVR) strategy. Leaf-SVM treats
each leaf node as a label and adds the ancestors of predicted leaf nodes. Other variants include
HSVM (Tsochantaridis et al., |2005), Top-Down SVM (TD-SVM) (Liu et al.,[2005)), and Hierarchi-
cally Regularized Support Vector Machines (HR-SVM) (Gopal & Yang) 2013). The neural-based
methods that we compare with include HLSTM (Chen et all [2016), HR-DGCNN (Peng et al.,
2018) and HMCN (Wehrmann et al.l |2018). We also compare with the base models, namely,
TextCNN (Kim), 2014), HAN (Yang et al., 2016), and bow-CNN (Johnson & Zhang| 2014) to see
how much we could improve upon them via better exploration of the hierarchy.

3.4 IMPLEMENTATION DETAILS

For each base model, we follow its original implementation and fix the hyper-parameters for differ-
ent datasets. We randomly sample 10% from the training set as development set (Johnson & Zhang,
20145 |Peng et al., [2018)). We set batch size to 32 and use the first 256 tokens of each document
for representation learning. We use a constant threshold (0.5) for all the labels. All the models are
trained using an Adam optimizer with initial learning rate le-3 and weight decay le-6. We use pre-
trained GloVe word vectors (Pennington et al., |2014) with dimensionality 50 as word embeddings
for TextCNN and HAN. We limit the vocabulary to the most frequent 30000 words in the training
data and generate multi-hot vectors as the input of bow-CNN. For our framework, we set the size of
W7 to 500 and the sizes of W} and label embedding 1; to 50.

3.5 EXPERIMENTAL RESULTS

Main Results Table [2] and [3| compare the performance of HiLAP to the state-of-the-art HTC base-
lines. These results provide positive answers to our question Q1: On the RCV1 dataset, HILAP
(HAN) achieves similar performance to HR-DGCNN even though the original flat HAN is worse
than HR-DGCNN. Our HiLAP (TextCNN) outperforms most baselines in Macro-F1 and HiLAP

Under review as a conference paper at ICLR 2019

(bow-CNN) achieves the best performance on all the three metricsE] On the NYT dataset, sim-
ilar results are observed: TextCNN and HAN are both improved when combining with HiLAP
and HiLAP (bow-CNN) again achieves the best performance. On the Yelp dataset, HILAP (HAN)
achieves the best Micro-F1 and Samples-F1, while HILAP (bow-CNN) obtains the highest Macro-
F1. Interestingly, a simple SVM outperforms several neural-based models, indicating that traditional
feature-based methods still play an important role in HTC.

Table 2: Comparison results on the RCV1 dataset. * denotes the results reported in [Peng et al.
(2018)) on the same dataset split. Note that the original results of RCV1 in|Gopal & Yang|(2013) are
not comparable because they used a different label hierarchy.

Method Micro-F1 ~ Macro-F1 ~ Samples-F1
Leaf-SVM* 69.1 33.0 -
SVM 80.4 46.2 80.5
= HLSTM" (Chen et al.||2016) 67.3 31.0 -
= TextCNN (Kim|[2014) 76.6 43.0 75.8
HAN (Yang et al.[[2016) 75.3 40.6 76.1
bow-CNN (Johnson & Zhang|[2014) 82.7 447 83.3
TD-SVM (Liu et al.|[2005) 80.1 50.7 80.5
= HSVM* (Tsochantaridis et al./|2005) 69.3 33.3 -
€ HR-SVM™ (Gopal & Yang|2013) 72.8 38.6 -
O HR-DGCNN™ (Peng et al.[[2018) 76.1 432 -
% HMCN (Wehrmann et al.| 2018} 80.8 54.6 82.2
S HiLAP (TextCNN) 78.6 50.5 80.1
S HIiLAP (HAN) 75.4 45.5 77.4
HiLAP (bow-CNN) 83.3 60.1 85.0

Table 3: Results of various methods on the NYT and Yelp datasets.

Method NYT Yelp
Micro-F1 ~ Macro-F1 ~ Samples-F1 ~ Micro-F1 =~ Macro-F1 ~ Samples-F1

SVM 72.4 37.1 74.0 66.9 36.3 68.0
= TextCNN (Kim/[2014) 69.5 39.5 71.6 62.8 27.3 63.1
= HAN (Yang et al.[2016) 62.8 22.8 65.5 66.7 29.0 67.9

bow-CNN (Johnson & Zhang|[2014) 72.9 334 74.1 63.6 239 63.9
E TD-SVM (Liu et al.|[2005) 73.7 43.7 75.0 67.2 40.5 67.8
g HMCN (Wehrmann et al.[[2018) 72.2 474 74.2 66.4 42.7 67.6
& HILAP (TextCNN) 69.9 432 72.8 65.5 37.3 68.4
= HILAP (HAN) 65.2 28.7 68.0 69.7 38.1 72.4
E HiLAP (bow-CNN) 74.6 51.6 76.6 68.9 42.8 71.5

Performance Comparison using the Same Text Encoding Model To answer Q2 and Q3, we com-
pare different frameworks that support the use of exactly the same base model and Figure [3] sum-
marizes the comparison resultsE] As one may notice, due to the extreme imbalance of the datasets,
directly applying a flat multi-label classification model may suffer from low Macro-F1, i.e., the pre-
dictions of flat models are inevitably biased to the most popular labels. HMCN also has the same
issue, resulting in Macro-F1 scores lower than 10 when combining with some base models. In con-
trast, HILAP significantly outperforms the baselines especially in Macro-F1, which implies that our
policy network is better at tackling labels with relatively few samples. On the downside, it is also
observed that HILAP-SL may have a negative effect in terms of Micro-F1 (although it is usually
marginal compared with the gain in Macro-F1). However, such negative effects are eliminated by
HiL AP through better exploration of the label hierarchy H. Overall, HILAP obtains the highest
performance on 24/27 results across three datasets, three base models, and three evaluation metrics.

Ablation Study of Framework Components in HILAP To better understand Q3, We show the
ablation analysis of our framework in Table[d Using Flar Component Only degenerates our frame-
work to the flat baseline. By comparing the results of Flat Component Only and HILAP-SL-NoFlat
(a variant of HILAP-SL without flat loss), we further confirm that flat approaches are likely to ne-
glect sparse labels, which results in low Macro-F1. By combining the two components, HILAP-SL

3Qur results are not directly comparable with [Johnson & Zhang| (2014) and [Lewis et al. (2004) due to
implementation details and the fact that they tune the threshold for each label using k-fold cross-validation. See
Appendix |B|for more discussions of the baselines.

SFor HMCN, we replace its static features with a base model for fair comparison. The original HMCN +
HAN failed to learn and we removed its batch normalization. See Appendix for more details.

Under review as a conference paper at ICLR 2019

TextCNN HAN bow-CNN
80 781766778788 mmm HMCN 79557720 80 TT4753754754 mem HMON BS761767774 506827825833 mmm HMCN 505523800 oy
- Flat - Flat 80 m— Flat
HILAP-SL HILAP-SL HILAP-SL
60 - HiLAP 60 - HiLAP - HILAPG, 4
60 5.3
— 50.5 s £
> st e 4064170 447
O 40 40 e 40 39.4/
x 334
20 20 20
0 0 0
Micro-F1 Macro-F1 Samples-F1 Micro-F1 Macro-F1 Samples-F1 Micro-F1 Macro-F1 Samples-F1
72.8 68.0 80 76.6
70 634695050699 mm HuON 703716712 70 3765 52 HMCN 65.965.5 64 0| 734729740746 mmm HMCN 742741755
= Flat 60 360.5 = Flat = Flat
60 HILAP-SL HILAP-SL HILAP-SL
- HiLAP 50 - HiLAP 60 - HiLAP
50 516
472]
= % 30,540 6 40
> 40 s
z 20 300! 30 287 633.4
21822.8232|
20 20 20
10 10
0 0 0
Micro-F1 Macro-F1 Samples-F1 Micro-F1 Macro-F1 Samples-F1 Micro-F1 Macro-F1 Samples-F1
70 68.4 708 72.0 724 715
65.5 = HMCN 70 7,082 = HMCN 167.968.7] 70 68.9 = HMCN 6.2
60 2862.1 — Flat (il ez 2ng - Flat 636649 - Flat 63.9°°
55.9 HiAPSL 23 60 HILAP-SL 60 580 HiLAP-SL 953
50 - HILAP - HLAP - HLAP
50 50
428
S0 373 40 38.1 40
] 324
> 30 27.3 30 29.030.1 30
23,9254
20 20 187 20
10 6.7 10 10 1
0 0 0
Micro-F1 Macro-F1 Samples-F1 Micro-F1 Macro-F1 Samples-F1 Micro-F1 Macro-F1 Samples-F1

Figure 3: Performance comparison of different frameworks using the same base model as input. We
improved HMCN + HAN by removing its batch normalization.

Table 4: Ablation study of HiLAP-SL and HiLAP when combining with bow-CNN (Johnson &/
2014) on the RCV1 dataset (Lewis et all 2004).

Method Micro-F1 ~ Macro-F1 ~ Samples-F1
Flat Component Only 82.7 44.7 83.3
HiLAP-SL-NoFlat 81.0 52.1 81.7
HiLAP-SL 82.5 55.3 83.0
HiLAP-NoSL 83.2 59.3 85.0
HiLAP-NoFlat 83.0 59.8 84.7
HiLAP 83.3 60.1 85.0

achieves close performance to Flat Component Only on Micro-F1 and Samples-F1 and even higher
Macro-F1 than HILAP-SL-NoFlat. HILAP-NoSL is initialized by the pre-trained HILAP-SL model
without mixing the supervised loss during its training. We can see that using the reinforced loss
alone still improves the performance on all the three metrics. After removing the flat loss during the
training of HiILAP, HiLAP-NoFlat shows slightly lower performance than the full HILAP model,
indicating that the flat component serves as a regularization of the base model and is beneficial to
the overall performance.

We also analyze the source of the performance gains by dividing the labels based on their levels and
number of supporting samples. Figure 4] shows one comparison of absolute Macro-F1 differences
between various methods and the base model. We observe similar trends for other setups/metrics and
omit them for better view. As depicted in Figure] HILAP and HiLAP-SL are especially beneficial
to those unpopular labels at the bottom levels.

4 RELATED WORK

Hierarchical text classification and general hierarchical classification approaches have been devel-
oped for many applications. In the biomedical domain, medical subject headings (MeSH) indexing,
which is to assign a set of MeSH main headings to citations, has been studied for years
[2015}, [Peng et alL[2016)). In addition, there are plenty of methods focusing on the hierarchical predic-
tion of protein and gene functions (Clare & King}, 2003} [Silla Jr & Freitas|, [2009; [Secker et al., 2010}

Under review as a conference paper at ICLR 2019

Level-based Macro-F1 Gains Popularity-based Macro-F1 Gains

—¥— HiLAP
—e— HiLAP-SL
—&— HMCN

—¥— HiLAP
—— HiLAP-SL
—&— HMCN

8 8

20

Absolute Macro-F1 Difference
Absolute Macro-F1 Difference

Figure 4: Level-based and popularity-based Macro-F1 gains compared to bow-CNN (Johnson &
Zhang|, [2014) on the NYT (Sandhaus| |2008) dataset. We show the per-level gains on the left, in
which L1, L2, and L3 denote the levels of the hierarchy. We divide the labels into three equal sized
categories, namely P1, P2, and P3, in a descending order based on their number of samples, and
show their gains on the right.

Cerri et al, [2016). Another line of work concentrates on document categorization. Both traditional
methods (Lewis et al.l [2004; |Gopal & Yang| |2013) and neural methods (Johnson & Zhang, 2014
Peng et al.,2018) have been proposed to classify the topics of newswire and web content (Dumais &
Chenl 20005 Sun & Liml [2001), categories of laws and patents (B1 & Kwok|[2015}|Cai & Hofmann)
2004; Rousu et al., [2005).

Many previous works (Liu et al., 2005; [Xue et al., |2008} |Sun & Lim, 2001) train a set of local
classifiers and make predictions in a top-down manner. In particular, (Bi & Kwokl 2015) develop
Bayes-optimal predictions that minimize the global risks with the trained model but the model is still
locally trained. Such local approaches are not popularly used among recent neural-based hierarchical
classification models (Johnson & Zhang|, 2014} 2016} |Peng et al.,2018)) since it is infeasible to train
many neural classifiers locally.

Global methods, on the other hand, train only one classifier. Although global methods are desirable,
they are relatively less studied due to the complexity of the problem. Existing global models are gen-
erally modified based on specific flat models. Hierarchical-SVM (Cai & Hofmann), 2004; 2007; |Qiu
et al.| [2009) generalizes Support Vector Machine (SVM) learning based on discriminant functions
that are structured in a way that mirrors the label hierarchy. One limitation is that Hierarchical-SVM
only supports balanced tree (all possible labels are presumed to be at the same height in their ex-
periments). Hierarchical naive Bayes (Silla Jr & Freitas| [2009) modifies naive Bayes by updating
weights of one’s ancestors as well whenever one label’s weights are updated. There are other global
methods that are based on association rules (Wang et al., [2001)), C4.5 (Clare & King} [2003), kernel
machines (Rousu et al., 2005)), and decision tree (Vens et al.,[2008)). Constraints such as the regular-
ization that enforces the parameters of one node and its parent to be similar (Gopal & Yang] 2013
2015) are also proposed to leverage the label hierarchy while maintaining scalability. However, their
use of hierarchies is somewhat limited.

In addition to the most relevant prior studies mentioned above, dataless classification (Ha-Thuc &
Renders, 2011;|Song & Roth, 2014} Meng et al., [2018]) leverages the labels in the hierarchy as weak
supervision and requires almost no training data. |Yu et al.|(2014); [Bhatia et al.| (2015) scale to
hundreds of thousands of labels but do not assume and leverage the existence of label hierarchies.

5 CONCLUSION

We proposed an end-to-end reinforcement learning approach to hierarchical text classification where
documents are labeled by placing them at the right positions in the label hierarchy. The proposed
framework makes consistent and inter-dependent predictions, in which any neural-based representa-
tion learning model can be used as a base model and a label assignment policy is learned to determine
where to place the documents and when to stop. Experiments on three public datasets of different
domains showed that our approach outperforms state-of-the-art hierarchical text classification meth-
ods significantly. In the future, we will explore the effectiveness of the proposed framework on
other base models and forms of data (e.g., images). We also plan to mix more losses covering other
aspects in the objective function and test whether they could further improve the performance of our
framework.

Under review as a conference paper at ICLR 2019

REFERENCES

Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. Multi-label learning with mil-
lions of labels: Recommending advertiser bid phrases for web pages. In Proceedings of the 22nd
international conference on World Wide Web, pp. 13-24. ACM, 2013.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain. Sparse local em-
beddings for extreme multi-label classification. In Advances in Neural Information Processing

Systems, pp. 730-738, 2015.

Wei Bi and Jame T Kwok. Bayes-optimal hierarchical multilabel classification. I[EEE Transactions
on Knowledge and Data Engineering, 27(11):2907-2918, 2015.

Lijuan Cai and Thomas Hofmann. Hierarchical document categorization with support vector ma-
chines. In Proceedings of the thirteenth ACM international conference on Information and knowl-
edge management, pp. 78-87. ACM, 2004.

Lijuan Cai and Thomas Hofmann. Exploiting known taxonomies in learning overlapping concepts.
In IJCAIL, volume 7, pp. 708-713, 2007.

Asli Celikyilmaz, Antoine Bosselut, Xiaodong He, and Yejin Choi. Deep communicating agents for
abstractive summarization. In Proceedings of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers), volume 1, pp. 1662—-1675, 2018.

Ricardo Cerri, Rodrigo C Barros, André CPLF de Carvalho, and Yaochu Jin. Reduction strategies
for hierarchical multi-label classification in protein function prediction. BMC bioinformatics, 17
(1):373, 2016.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin, and Zhiyuan Liu. Neural sentiment clas-
sification with user and product attention. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 1650-1659, 2016.

Amanda Clare and Ross D King. Predicting gene function in saccharomyces cerevisiae. Bioinfor-
matics, 19(suppl_2):ii42-ii49, 2003.

Susan T. Dumais and Hao Chen. Hierarchical classification of web content. In SIGIR, pp. 256-263,
2000.

Siddharth Gopal and Yiming Yang. Recursive regularization for large-scale classification with hi-
erarchical and graphical dependencies. In Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 257-265. ACM, 2013.

Siddharth Gopal and Yiming Yang. Hierarchical bayesian inference and recursive regularization for
large-scale classification. ACM Transactions on Knowledge Discovery from Data (TKDD), 9(3):
18, 2015.

Viet Ha-Thuc and Jean-Michel Renders. Large-scale hierarchical text classification without labelled
data. In Proceedings of the fourth ACM international conference on Web search and data mining,
pp. 685-694. ACM, 2011.

Rie Johnson and Tong Zhang. Effective use of word order for text categorization with convolutional
neural networks. arXiv preprint arXiv:1412.1058, 2014.

Rie Johnson and Tong Zhang. Supervised and semi-supervised text categorization using lstm for
region embeddings. arXiv preprint arXiv:1602.02373, 2016.

Yoon Kim. Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882, 2014.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pp. 2267-2273, 2015.

10

Under review as a conference paper at ICLR 2019

David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcvl: A new benchmark collection for
text categorization research. Journal of machine learning research, S(Apr):361-397, 2004.

Ke Liu, Shengwen Peng, Junqiu Wu, Chengxiang Zhai, Hiroshi Mamitsuka, and Shanfeng Zhu.
Meshlabeler: improving the accuracy of large-scale mesh indexing by integrating diverse evi-
dence. Bioinformatics, 31(12):1339-1347, 2015.

Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-Ying Ma. Support vec-
tor machines classification with a very large-scale taxonomy. Acm Sigkdd Explorations Newslet-
ter, 7(1):36-43, 2005.

Yuning Mao, Xiang Ren, Jiaming Shen, Xiaotao Gu, and Jiawei Han. End-to-end reinforcement
learning for automatic taxonomy induction. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2462-2472. As-
sociation for Computational Linguistics, 2018. URL http://aclweb.org/anthology/
P18-1229.

Yu Meng, Jiaming Shen, Chao Zhang, and Jiawei Han. Weakly-supervised neural text classifica-
tion. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, pp. 983-992. ACM, 2018.

Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres, George Paliouras, Eric
Gaussier, lon Androutsopoulos, Massih-Reza Amini, and Patrick Gallinari. LSHTC: A bench-
mark for large-scale text classification. CoRR, abs/1503.08581, 2015.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang, Yangqiu Song, and Qiang
Yang. Large-scale hierarchical text classification with recursively regularized deep graph-cnn. In
Proceedings of the 2018 World Wide Web Conference on World Wide Web, pp. 1063-1072, 2018.

Shengwen Peng, Ronghui You, Hongning Wang, Chengxiang Zhai, Hiroshi Mamitsuka, and Shan-
feng Zhu. Deepmesh: deep semantic representation for improving large-scale mesh indexing.
Bioinformatics, 32(12):170-i79, 2016.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532-1543, 2014.

Xipeng Qiu, Wenjun Gao, and Xuanjing Huang. Hierarchical multi-class text categorization with
global margin maximization. In Proceedings of the acl-ijcnlp 2009 conference short papers, pp.
165-168, 2009.

Bo Qu, Gao Cong, Cuiping Li, Aixin Sun, and Hong Chen. An evaluation of classification models
for question topic categorization. JASIST, 63:889-903, 2012.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In CVPR, volume 1, pp. 3, 2017.

Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor. Learning hierarchical multi-
category text classification models. In Proceedings of the 22nd international conference on Ma-
chine learning, pp. 744-751. ACM, 2005.

Evan Sandhaus. The new york times annotated corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752, 2008.

Andrew Secker, Matthew N Davies, Alex Alves Freitas, EB Clark, Jonathan Timmis, and Darren R
Flower. Hierarchical classification of g-protein-coupled receptors with data-driven selection of
attributes and classifiers. International journal of data mining and bioinformatics, 4(2):191-210,
2010.

Carlos N Silla and Alex A Freitas. A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery, 22(1-2):31-72, 2011.

Carlos N Silla Jr and Alex A Freitas. A global-model naive bayes approach to the hierarchical
prediction of protein functions. In ICDM 09, pp. 992-997. IEEE, 2009.

11

http://aclweb.org/anthology/P18-1229
http://aclweb.org/anthology/P18-1229

Under review as a conference paper at ICLR 2019

Yangqiu Song and Dan Roth. On dataless hierarchical text classification. In AAAI, volume 7, 2014.
Aixin Sun and Ee-Peng Lim. Hierarchical text classification and evaluation. In /CDM, 2001.

Toannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin
methods for structured and interdependent output variables. Journal of machine learning research,
6(Sep):1453-1484, 2005.

Celine Vens, Jan Struyf, Leander Schietgat, SaSo Dzeroski, and Hendrik Blockeel. Decision trees
for hierarchical multi-label classification. Machine Learning, 73(2):185, 2008.

Ke Wang, Senqgiang Zhou, and Yu He. Hierarchical classification of real life documents. In Pro-
ceedings of the 2001 SIAM International Conference on Data Mining, pp. 1-16. SIAM, 2001.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. Hierarchical multi-label classification net-
works. In International Conference on Machine Learning, pp. 5225-5234, 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. Deep classification in large-scale text
hierarchies. In Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pp. 619-626. ACM, 2008.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 1480-1489, 2016.

Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit Dhillon. Large-scale multi-label learning
with missing labels. In International conference on machine learning, pp. 593-601, 2014.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Processing Systems 28, pp. 649-657. Curran Asso-
ciates, Inc., 2015.

12

Under review as a conference paper at ICLR 2019

A DATASET DETAILS

In this section, we describe the details of the datasets. The RCV1 dataset (Lewis et al.l 2004) is a
manually labeled newswire collection of Reuters News from 1996 to 1997. Its news documents are
categorized with three aspects: industries, topics, and regions. We use its topic-based label hierarchy
for classification as it has been well used in prior work (Gopal & Yang, [2013} Johnson & Zhang,
2014; |Peng et al., 2018; [Wehrmann et al., 2018)). There are 103 categories and four levels in total
including all labels except for the root label in the hierarchy.

The NYT annotated corpus (Sandhaus, |2008)) is a collection of New York Times news from 1987 to
2007. Due to its large size, we randomly sampled 36107 documents from all the news documents,
and further split them into training and test set of 25279 and 10828 samples, respectively. We use
the first 3 layers in the hierarchy and keep the labels with at least 40 supporting samples.

For the preprocessing of the Yelp dataset, we first removed categories that have fewer than 100
businesses and then businesses that have fewer than 5 reviews. We concatenated (at most) the
first 10 reviews of each business as its representation. We set the training/test ratio to 70%/30%,
which results in a training set of 87,375 samples and a test set of 37,517 samples. This is an even
more challenging task because the reviews are usually written in an informal way and it is more
imbalanced than the RCV1 or NYT datasets (e.g., label Restaurants has 32,357 businesses in the
training set while Retirement Homes has 23).

B PERFORMANCE ANALYSIS OF BASELINES

There are several things to note in terms of the performance of the baselines. First, our results are
not directly comparable to |[Lewis et al.[(2004); Johnson & Zhang| (2014)) due to implementation
details and the fact that they tune the threshold for each label using scutfbr. According to the
implementation in LibSV the scutfbr threshold tuning algorithm uses two nested 3-fold cross
validation for each of the 103 labels and the classifier is trained 3 x 3 x 103 = 927 times, which is
infeasible in our case.

Secondly, we found that the performance of HMCN (Wehrmann et al., 2018)) is sometimes much
lower than expected. After tuning their model, we observed that if we first do a weighted sum of the
local and global outputs and then apply the sigmoid function, HMCN’s performance becomes much
better (see Table[5) than doing them in the opposite order as in the paper. In addition, we found that
HMCN + HAN (Yang et al., |2016)) would result in extremely low performance. We had to remove
HMCN’s batch normalization to make it compatible with HAN. Combining HMCN with other base
models did not encounter similar issues.

Table 5: Comparison of different implementations of HMCN.

Model RCV1 Yelp NYT
Micro-F1 ~ Macro-F1 ~ Samples-F1 ~ Micro-F1 = Macro-F1 ~ Samples-F1 ~ Micro-F1 ~ Macro-F1 ~ Samples-F1
HMCN (Wehrmann et al.||2018) 78.2 332 78.9 56.3 85 57.3 62.1 324 62.7
HMCN (Ours) 80.8 54.6 82.2 66.4 4.7 67.6 722 47.4 74.2

Thirdly, our implementation of TextCNN (Kim, [2014) and HAN (Yang et al., 2016) shows better
performance than those reported in[Peng et al.| (2018]) due to implementation details. A comparison
can be found in Table[6l

"https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/multilabel/

13

Under review as a conference paper at ICLR 2019

Table 6: Comparison of different implementations of HAN and TextCNN on the RCV1 dataset.

Model Micro-F1 = Macro-F1
TextCNN (Peng et al.|[2018) 73.2 39.9
TextCNN (Ours) 76.6 43.0
HAN (Peng et al.|{[2018) 69.6 32.7
HAN (Ours) 75.3 40.6

14

	Introduction
	Learning Label Assignment Policy for End-to-End Hierarchical Text Classification
	Hierarchical Label Assignment
	Reinforcement Learning for Label Assignment
	Top-Down Supervised Pre-training
	Combining Flat, Local, and Global Information for Policy Learning

	Experiments
	Datasets and Evaluation Metrics
	Base Models
	Baselines
	Implementation Details
	Experimental Results

	Related Work
	Conclusion
	Dataset Details
	Performance Analysis of Baselines

