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ABSTRACT

Adpversaries in neural networks have drawn much attention since their first debut.
While most existing methods aim at deceiving image classification models into
misclassification or crafting attacks for specific object instances in the object se-
tection tasks, we focus on creating universal adversaries to fool object detectors
and hide objects from the detectors. The adversaries we examine are universal in
three ways: (1) They are not specific for specific object instances; (2) They are
image-independent; (3) They can further transfer to different unknown models.
To achieve this, we propose two novel techniques to improve the transferability
of the adversaries: piling-up and monochromatization. Both techniques prove
to simplify the patterns of generated adversaries, and ultimately result in higher
transferability.

1 INTRODUCTION

Despite the success of machine learning and deep learning models, recently it has been shown that
these models are susceptible and sensitive to what is termed as adversarial examples, ak.a. ad-
versaries ( s s ). Adversaries are usually derived from
ordinary data and retain the same semantic content, but can result in wrong predictions. Previous
studies have shown that adversarial examples can be crafted efficiently and successfully in some
conditions, which poses significant security threats ( , ). Formally speaking, given
amodel y = F(x), input X and original or ground-truth output Y = F'(X), adversaries are mod-
ified versions of the original data, denoted as X + AX such that F(X + AX) # Y. Generally,
AX is constrained by its norm value (e.g. Lo,) or other metrics to preserve the original semantic
meaning of input X.

Existing studies on adversarial examples focus on (1) designing effective and efficient methods to

craft AX, e.g. L-BFGS ( , ), FGSM ( s ), iterative methods
( , ); (2) defense methods including defensive distillation ( , ),
random transformation ( , ), JPEG-compression ( , ) and etc.; (3)

how to improve the transferability of attacks crafted on one model to deceive another model, both
for differently 1n1t1ahzed and trained models and models of different architecture ( ;

s ; , ). Up till now, these efforts malnly focus
on image class1ﬁcatlon models.

More recent work has studied the robustness of object detectors and tned to fool these models (
However most of these works only attack spe01ﬁc object 1nstances Few proposed methods have
attempted to attack multiple objects and images or verify the capacity to transfer to another model.

In this work, we aim to craft universal and transferable adversaries to fool object detectors and
conceal objects. As far as we know, we are the first to carry out such large-scale attacks on object
detectors. Our target is three-fold: (1) The adversary should work for different objects, regardless
of their types, positions, sizes, and etc.. (2) The adversary is not limited to one image only, i.e.
achieving image-independence. (3) The adversary should be able to attack detectors that they are
not crafted on, i.e. achieving black-box attack.

Specifically, we craft an adversarial mask of the same size as input image, denoted as AX €
[0, 1]Himage xWimage X3 and impose a norm-value constraint, [|AX||s < €. Such an adversarial
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mask is in fact similar to what the community has used to fool image classification models. How-
ever, optimizing over it is a non-trivial task. A full-sized mask would introduce a total amount of
0.5M parameters, putting our method on risk of overfitting. Further, using the concept of Effective
Receptive Field ( , ), we found that gradients obtained through back propagation are
sparse in spatial positions, making optimization difficult.

To achieve our objective, we propose to use the following techniques: (1) Optimizing A X over a set
of images; (2) Using identical small patches that are piled-up to form the full-sized mask AX; (3)
Crafting monochromatic masks instead of colorful ones as done in previous work. Our motivation is
that piling-up identical small patches in a grid can incorporate translation invariance in a similar way
to Convolutional Neural Networks (CNNs), which is also connected with the intuition that any part
of the mask should perform equally to attack an object in any position. Constraining the adversarial
mask to monochrome further forces the mask to learn coarse-grained patterns that may be universal.

In experiments, we compare with decent baseline methods and found that our methods can consis-
tently surpasses them. While our adversarial mask can conceal as many as 80% objects from YOLO
V3 ( ), on which it is crafted, it can also hide more than 40% objects from
the eyes of Faster- RCNN ( , ), in a black-box setting. Further, we compare the patterns
generated by different methods and carry out detailed analysis. We found that our techniques did
help in crafting more coarse-grained patterns. These patterns have generic appearance, which we
attribute as the key for good transferability.

In conclusion, we make the following contributions in this work: (1) We successfully craft universal
adversarial mask that can fool object detectors that are independent in object-level, image-level and
model-level. (2) We show that, with the proposed techniques, we can learn and generate masks that
have generic and coarse-grained patterns. The pattern we generate is different from those in previous
works by large, which may be the key for better transferability.

2 RELATED WORK

Norm-Ball Attack ( ) first demonstrates how deep learning models can be fooled
by images, denoted as X € [0, 1]77*W 3 that are mixed with imperceptible perturbations, denoted
as AX € RHXWx3  Tater, various methods for crafting such perturbations have been proposed
( ; ; , ; ; ; )

s ). A major common
characterlstlc for these methods is that the crafted perturbatlons satisfied the following constraint:
||AX [loo < €, where e measures how much the images are perturbed. These efforts mainly focus on
image classification models. Few shed light on object detectors. We also refer readers to these com-
prehensive surveys for more detailed introduction ( s ; s ;

) )-

Efforts on Transferability In real world application, the attackers usually have no knowledge
about the target models, including their architecture, hyper-parameters, and learned parameters.
Such situation is termed as black-box attack. Transferability between different models is thus a proxy
for black-box methods, and several methods have been proposed. Ensemble attack ( s

) is based on the assumption that if an adversary can fool a set of N models, it is more likely
to be able to generalize well and fool a IV + 1-th one. ( ) analyze the cosine similarity
between gradient obtained from different models and propose to smooth the loss landscape (

, ) to improve the generalization capacity among models. Specifically, they optimize over
a set of data points sampled from the norm-ball of the target image. Another similar work (

, ) demonstrates how to generate image-independent adversaries for image classification.
They optimize an adversarial patch that has not norm-value constraint but can only modify a small
region of the target images. By optimizing over a set of images, the trained patch can transfer to new
images successfully.

Attack on Object Detector Methods to attack object detectors can be categorized into two classes:
(1) stickers that are glued onto target ob]ects to interfere with classification or onto backgrounds as
counterfeit objects ( , ); (2) perturbation masks that are aligned
to and trained for one specific object ( , ) or one image only ( , ;b). Ina
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nutshell, these methods are specific to designated object instances, which means that to successfully
fool detectors, one needs to craft adversaries and attacks the target objects one-by-one.

( ) is the first to explore the possibility of transferability. However, the success rate it not very
promising.
Recently, ( ) demonstrate the effects of feature inference, where randomly trans-

planted generic objects prove to have non-local adversarial effects, distorting detection results even
far from the original transplantation position. More concretely, features attained from areas that do
not belong to the object of interest have an impact on the detectors’ behavior. This holds true both
for pixels inside the region-of-interest (ROI) of the object and for those outside of it. The wide-range
existence of such phenomenon is a proof that the obejct detectors are fragile and sensitive. Note that
the probing approaches used in ( ) are not practical attack strategies, as the
authors’ method is a type of random search and the results are random. Such method may also be
dependent on the architecture of target models, as we implemented this method on YOLO V3 but
did not observe similar results. Besides, ( ) did not study how the objectiveness
is influenced in this setting. Extending from ( ), we use a learned mask to probe
how to hide an object by modifying its surroundings in a systematic way.

3 BACKGROUND: THE OBJECT DETECTION TASK

Object detection aims to localize the existence of objects of interest, and recognize the categories
of them. There are mainly two branches, i.e. region-proposal based methods, including RCNN by
( ), Fast-RCNN by ( ) and Faster-RCNN by ( ), and
unified methods including SSD by ( ) and YOLO by ( ). In our
research, we experiment with YOLOV3 as it runs the fastest and also performs at state-of-the-art
level. We do experiment to see how well the adversaries crafted on YOLOV3, representative of
unified methods, can transfer to Faster-RCNN, which is also a representative method for region-
proposal based methods. We briefly introduce the core concept of YOLOvV3 and Faster-RCNN.

YOLO V3 performs two functions: (1) spotting the existence of objects of interest, i.e. those
in a pre-defined list; (2) classifying spotted objects into the correct categories. Input images are
first fed into the backbone network, producing a sequence of H x W x C feature maps. Each
1 x 1 x C vector represents the potential object at the corresponding position. Classifiers, which
are 1 x 1 convolutional layers in practice, predict the existence of objects, its types and positions.
Non-Maximal Suppression (NMS) is performed to deliver the final results. YOLO V3 has a set of 3
classifiers, each deployed in different layers and aimed at objects of different sizes. In total, there are
Np = 10647 such prediction points, also termed as anchor. In essence, YOLO V3 can be viewed
as a multi-head image classifier.

Faster-RCNN incorporates a Region-Proposal Network (RPN) to make detection proposals, which
are bounding boxes indicating the existence of objects. Sub-regions are cropped from a shared
feature map to perform classification. However, the detection and localization of objects in Faster-
RCNN is solely dependent on RPN, which works in the same way as YOLO V3.

4 METHODOLOGY

In this section, we introduce how to obtain adversarial masks, AX € [—¢, e]7*W >3 and further
introduce the two techniques we propose to generate adversarial masks that better transfer to other
settings. Note that the attack is performed on YOLO V3, and therefore H = W = 416.

4.1 BASELINE METHOD: FULL-MASK GENERATION

The simplest way is to follow the tradition in adversaries for image classification, model the mask
as a 416 x 416 x 3 parameter, and optimize over some metric. We denote it as AX = my,y €
[—€, €] 416%416X3  To conceal objects, we minimize the objectiveness score produced by the model.
We set the minimization target as the average log-likelihood of the top-200 anchors of highest scores
in YOLO V3. This is an adaptation of Online Hard Example Mining (OHEM) (

) to balance the number of different categories. In our case, such Online Hard Positive M1n1ng
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Figure 1: Left: pile-up configuration. Right: pile-up configuration + monochromatizaiton.

(OHPM) can avoid the overwhelming effects of the large number of negative anchors '. Optimiza-
tion is done over a set of training images in the way of ( ). Data augmentation is
used to improve the robustness of the trained mask. Specifically, we minimize the following target:

N
1 2 : . mar=
Ew,A[N lOg ptOP*i(Clmein:OI {iIJ + A(mfull)})]
i=1

where z’s are images sampled from the training set, A is a randomly composed data augmentation
scheme(rotation, translation, scaling), p;p—; is the probability value of the 7—th highest scored an-
chor, N = 200, Clip is a per-pixel clipping to ensure the attacked image is still in valid scope, and
other symbols are as defined above. In practice, the norm-value constraint is done by applying an
element-wise tanh function to the parametrized mask and then multiply it with a designated distor-
tion rate €, which is proposed in ( , ). Training is continued until performance
on a held-out test-set is not improved further.

As there are no other baselines, the basic setting of full-mask will in practice serve as a baseline for
the two newly proposed techniques.

4.2 TECHNIQUE 1: PILE-UP CONFIGURATION

The baseline setting of parameterization would result in a total number of 519K parameters. Al-
though it allows for fine-grained patterns and thus stronger capacity, such exploitation of details may
make it difficult to transfer to other models ( s ). Besides, an ideal adversarial mask
should be translation-invariant, as it should be able to attack objects in any positions. To explicitly
encode such intuitions, we propose a pile-up configuration to obtain adversarial masks.

As shown in Fig.1, we parametrize a much smaller mask, denoted as my;. € RL41671x14167]x3

where r € [0, 1] measures the size of the mask. To obtain a full-sized mask, we duplicate and pile
up these small masks in a grid-aligned way. Specifically, we stack them into a [1] x [1] grid. We
denote the aforementioned pile-up process as a function: y = pile(x).

In the case of pile-up configuration, the adversarial mask is obtained by:

AX = cropsiexaie{A(pile(mpie))}

During training, the mask is applied to input images by addition followed by clipping: z* =
Clipma*=3{x + AX}. Other training details are the same as Section 4.1. Gradients are averaged
over the grid cells.

4.3 TECHNIQUE 2: MONOCHROMATIZATION

The motivation for a monochromatic adversarial mask is two-fold. On the one hand, such adver-
saries require much fewer parameters. On the other hand, monochromatic patterns are less conspic-

"'Statistically, at least 99.9% anchors are not activated given images from COCO dataset.
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Figure 2: Top: detection results by YOLO V3; Bottom: by Faster-RCNN. The adversary is crafted
solely on YOLO V3. Green bounding boxes represent objects that are detected both before and after
attack; Red ones stand for those detected before attack, but concealed after attack.

uous and may better blend into objects, which may show potential in physical world application.
Monochromatic mask can further be interpreted as changes of brightness.

We implement monochromatic adversarial masks by setting the values of the three color channels
as the same. Training is the same as the one described above. Note that technique 1 and technique
2 can be combined together. In such case, there are only 10816 parameters, and only 2.1% of the
baseline full-mask setting. Later we would show that such constraints results in simplified and even
stylish adversarial patterns.

5 EXPERIMENTS

We design experiments to answer the following questions: (Q1) How effective are our trained ad-
versarial masks on YOLO V3 and Faster-RCNN respectively? How successful it the transfer to
Faster-RCNN? (Q2) How do the techniques we employ help in generating effective attacks?

Empirically, we show that: (1) All three methods can achieve decent performance in the task of
hiding objects from detectors. (2) The two proposed techniques improve transferability signif-
icantly. (3) Adversaries generated with the two proposed techniques demonstrate repetitive and
coarse-grained patterns, which seems more robust than the finer ones. Samples for detection results
are shown in Fig.2.

5.1 SETTING

All experiments are based on off-the-shelf PyTorch implementations of YOLO V3? and Faster-
RCNN?. Models are pretrained on COCO Detection dataset ( R ), with an mAP value
of 33.0 for YOLO V3 and 37.0 for Faster-RCNN on test set. For the pile-up configuration, we set
r = 0.25. We randomly sample images from the validation set of the COCO Detection dataset as
training set and test set for our methods, 512 for each. The adversaries are constructed by applying
mini-batch SGD with a batch size of 16, a learning rate of 1le + 2, and momentum of 5e — 1, until
convergence.

As we aim at hiding objects from detectors, we propose to use the average number of detected
objects per image as our main evaluation metric. Previous work on interfering with object detectors
at large scale ( , ) uses more detailed evaluation method, taking into accounts
cases like mis-classification of detected objects. We argue that our metric is suitable enough for our
task, as it directly measures our main goal of making objects disappear. To make comparison easier,
we use a derived metric in practice, where we compute the ratio of attacked image to clean image.

ttps://github.com/eriklindernoren/PyTorch-YOLOvV3
3https ://github.com/jwyang/faster-rcnn.pytorch
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Figure 3: Performance on YOLO V3 and transfer performance on Faster-RCNN: y—axis:detection
rate as introduced in Section 5.1; x—axis: distortion level e. Different line represents different
methods. clean stands for un-attacked setting, as control group. full, pile-up, monochrome stand for
the three methods introduced in Section 4.

We term it as Detection Rate, measuring the proportion of objects that are still detected when being
attacked. Here, the lower the measure, the better.

For a more comprehensive comparison, we train the adversaries with different values of ¢, and plot a
curve to characterize its dynamics. Samples for different levels of distortion are shown appendix.B.
Overall performance evaluations are shown in Fig.3.

Further, we perform experiments under the setting of black box attack to truly evaluate the effective-
ness of our methods: we transfer the adversaries trained on YOLO V3 to Faster-RCNN and compute
the detection rate for each sample. Similarly, we evaluate over different levels of distortion. Results
are shown in Fig.3 (Right).

5.2 PERFORMANCE ON YOLO V3: WHITE BOX SETTING

Our first observation from Fig.3 (Left) is that, all the three methods’ performance are decent under
the imperceptible level of distortion (¢ = %) and are promising under the mild distortion (e = %).
The pile-up setting can achieve nearly 100% success rate at concealing objects for € = %. For
€ = %, the monochronical mask can still conceal nearly half of the objects detected in clean
images.

The second observation is that, while the full-mask attack has much more parameters than the other
two methods, it achieves slightly lower success rate* at concealing objects. This may seem unrea-
sonable at first glance as more parameters means stronger capacity. However, as we show in the
next section, this may be due to the fact that the full-mask attack is much harder in training. We also
notice that the colorful pile-up setting performs better that the other two methods by a significant
margin. This can be explained by the fact that it has more parameters but not too many, therefore

containing enough capacity and still being easy to train.

5.3 TRANSFER PERFORMANCE ON FASTER-RCNN: BLACK BOX SETTING

From Fig.3 (Right), one basic observation is that, even with mild distortion (¢ < %), the best
performing method can still conceal 40% of the objects. The success rate of the proposed methods
perform better than the white noise baseline, demonstrating some inherent potential in transferring.

The most important observation is that, the two proposed techniques are significantly better than the
full-mask baseline. At the same time, the monochromatic is better than the pile-up configuration.
The comparison of the results supports our arguments that, pile-up and monochromatization are
both effective technique in improving transferability, while monochromatization can further push

*The success rate gap is around 2%-5%, depending on the value of epsilon
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Figure 4: Visualization: magnified to € = %, shifted rightward 0.5, normalized back to [0, 255].

The upper row are zoom-in crops that illustrate the patterns learnt. Zoom-in for better view.

the envelope. Specifically, pile-up setting can reduce detection rate by a large margin over the full-
mask baseline, ranging from 5% to 30%, depending on the ¢ value. Monochromatization can further
reduce by 5%.

We also notice that the detection rate bounces back for pile-up setting when € > %. We manually

check the attacked images and detection results, and found that the repetitive circle patterns in the
trained pattern are sometimes mistaken as round objects, e.g. apple and orange, resulting in higher
detection rate. We consider that this is one defect in the evaluation metric we use. We manually
check all the attacked im2a§es again and found that this phenomenon only occurs in the colorful

pile-up masks when € > S==.

6 ANALYSIS AND DISCUSSION

In this section, we visually evaluate how the two techniques play their role in improving transfer-
ability. Especially, we discuss about how pile-up helps in significantly improve transferability, as
is shown in the experiments. Further, we study a strong method for comparison to provide further
insight into adversaries for object detectors.

6.1 VISUALIZATION OF TRAINED ADVERSARIES

To observe what impact the two proposed techniques actually have, we visualize the trained adver-
saries in Fig.4 for full-mask, pile-up, and monochromitization respectively. We notice that, as we
train with our techniques, the generated adversaries are much different from naively trained ones.

Specifically, when we use pile-up configuration, the adversaries are repetitive as expected by design,
and more smooth. We zoom in to compare the pixel-level landscape, and found that while full-mask
consists of tiny color lumps that are nearly as complex as white noise, the pile-up mask is much
more smooth, containing less fine-grained details.

When we monochromatize the mask, the mask becomes highly repetitive and stylish. The zoom-in
view shows that the patterns are even more coarse-grained than using pile-up solely. We attribute
the success in improving transferability to such highly simplified patterns for adversarial attacks.

6.2 PILE-UP: GRIDDED ARRANGEMENT

In this section, we try to give a theoretical explanation as to why the less parametrized pile-up con-
figuration can perform better even in the white-box setting. It would not be surprising for performing
worse on Faster-RCNN, which can be attributed as overfitting, due to the large number of parame-
ters. Here we introduce our hypothesis that the full-mask adversary is harder to train, and the reason
may lie in the sparsity of gradients.
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For crafting adversaries, most existing methods, including ours, are based on gradients propagated
from the last layer, and thus the quality of the gradients are important. We found that for each image,
the gradients propagated from the classifier layer only cover a small region of the adversarial mask.
The large majority of the parameters in full-mask setting are not getting gradients at all>. Under
such condition, using adaptive training methods e.g. Adam would result in erroneous estimation
of amounts of recent updates; using momentum based methods would result in over-update; using
vanilla SGD would only update a small fraction of the mask.

There is a related concept named Effective Receptive Field (ERF) ( R ), which essen-
tially computes the gradient of a certain neuron over the input image. In fact, the objectiveness score
is the activation value of that classifier neuron. Therefore, we can compute ERF for each anchor to
analyze how the full-mask attack is updated. Some examples is shown in appendix.A. We notice
that the gradients basically only cover the object region (not even the bounding box!). Significant
variance exists for each pixel across different samples. As objects in images usually take up small
fractions, the updates of such a large mask may thus be inefficient and difficult.

Different from full-mask setting, piled-up small and identical patches, in turn, can gather the gra-
dients up, making the updates more efficient and accurate. We assume this is the main reason why
pile-up configuration can beat full-mask setting by large.

6.3 ARE THERE ANY OTHER STRONGER BASELINES OR COMPETITORS?

As far as we know, there are no other methods that perform similar tasks to our target setting.
Therefore, we use white noise of the same distortion level as the baseline for our three methods. We
also contend that our main contribution rests in proposing and exploring two techniques to improve
transferability, and that therefore, the full-mask method itself is a strong and appropriate baseline
such that improvements over it provide appropriate experimental analysis.

However, we also provide experimentation below with a method adapted from adversaries for image
classification approaches, to establish another benchmark for universal attack on object detectors.
Following Adversarial Patch approach in ( ), we train a patch to conceal neighbor-
ing objects. One may argue that by placing the patch onto objects to conceal it can also serve as a
baseline. While there is existing work on specific objects by applying stickers, they are specially
designed for each object instance and still change the object a lot. One could argue that altering a
scene with such large distortion does not make sense in the real world as it’s too conspicuous or one
could simply cover the object with a cloth. Therefore, we consider it interesting if we can design an
object that can conceal neighboring objects contactlessly.

Basically we follow the original training method ( , ) . We found that the patch is
indeed able to conceal other objects contactlessly. The training setting and more detailed results and
are in appendix.C.

We notice that the success rate depends on the distance to the objects. For objects that are close
enough, the success rate can be as high as 50%. An interesting observation is that the trained patch
contains circular patterns that are similar to those in the pile-up and monochromatization setting.
Overall, it’s a well-performing baseline, but it’s essentially another type of attack. We have just
included it here to provide a better understanding of the task of concealing objects.

7 LIMITATIONS

This paper provides effective methods to fool object detectors. We admit that one major limitation is:
object detectors themselves are not robust enough yet. Current image classification can attain a top-1
accuracy higher than 80% and top-5 accuracy, which has surpassed the human level. Therefore, the
wide-range existence of adversaries are intriguing: how are these intricate models fooled? On the
contrary, the performance of object detectors are still far from human level. Though the experiments
presented here show that our methods can beat baselines directly adapted from methods for attacking
image classification models, the mechanism behind errors in object detectors still remains unknown.

SGradients in these regions are smaller than the covered area by several orders of magnitude, thus making
it difficult to train.
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APPENDIX A VISUALIZING GRADIENTS WITH EFFECTIVE RECEPTIVE FIELD

We randomly pick 100 samples to analyze how gradients are being propagated. Among the samples
we analyzed, we randomly pick 4 as representatives and show them in Fig.5. For each image sample,
we randomly select one object that’s detected, compute gradients of its objectiveness scores, and
visualize the gradients propagated to the adversarial mask. We manually check all the samples and
found that only the object area can obtain gradients that are not negligible.
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We need more detailed specification of being negligible. For object area, i.e. pixels belonging to the
object we study, the average norm of gradient has a magnitude from lel to 1le2. For area outside
object, the magnitude drops to 1le — 6. Although some current optimization methods suggest that
different parameters can have different level of gradients, e.g. Adam ( , ), this
is not the case for us. In our case, parameters are not receiving gradients of different magnitudes.
On the contrary, parameters are receiving gradients of unstable magnitudes, while intuitively, there
should be some level of symmetry or repetition in the pattern of the mask. We argue that such
unstable gradient flow may make it hard to train, and finally result in lower performance despite
larger potential capacity.

APPENDIX B IMAGES ATTACKED BY DIFFERENT VALUES OF ¢

For better illustration of how much images are distorted, we randomly select some samples ans show
them in Fig.6, Fig.7, Fig.8, and Fig.9 respectively. (Zoom-in for better view.)

APPENDIX C ADVERSARIAL PATCH THAT HIDES NEIGHBORING OBJECTS

C.1 TRAINING

We parametrize the artificial object as a tensor p € [0, 1]****3 in round shape, and train the patch

with gradient descent methods on a training set of images. Standard data augmentations are per-
formed to improve robustness, including scaling and rotation. However, we need to adapt the train-
ing details for better suitability. Specifically, the artificial object is randomly placed around objects,
but not overlapping with objects.

Specifically, for each image, we first randomly select one object, around which we place the artificial
object. Then we rescale the artificial object to a proper size:

r = maz(min(0.25, Wobject; Robject ), 0.1) X U(0.9,1.1)

where Ul(a,b) is a uniform random variable used as scaling factor for data augmentation,

Wobject, Robject € [0, 1] are the size of the selected object as proportion to input image size, 7 is

the ratio of the proper size to the image size. The size ratio makes sure that the size of the artificial
1

object is neither too big nor too small. Then we randomly rotate the object, ranging from —gm

to %w. The last step is to pick a point to place the artificial object. We enlarge the bounding box
of the selected object in-place by 10%, and uniformly sample one point from the periphery. We
place the artificial such that the center of it are located at the sampled point. We denote the trans-
formation aforementioned as function A. For training, we minimize the expected log probability of
objectiveness of all predictions in YOLOV3 over transformations and images in the training set:

N
min : ELA(% sz(f + A(p)))
i=1

where p; denote the probability of being an object for prediction point ¢ in YOLOV3, and N denotes
the number of prediction points in the model®. In practice, most prediction points (around 99.9%) in
YOLOV3 are negative, which would obfuscate the positives that are in minority and be disastrous.
We alternatively optimize over the top 12 positive prediction points.

C.2 EXPERIMENT

We explore the effect of different sizes and distances to target objects. We measure the size of the
object as proportion of its diameter to the side length of the input image. The distance is computed
as the absolute distance between the center of the trained adversarial object, and the center of the
bounding box of the detected object, divided by the length of the bounding box’s diagonal. For
better vision, we take the logarithm of distance.

%N = 10647 in the case of YOLOV3

11



Under review as a conference paper at ICLR 2019

Original Image Gradient Map

sports ball(1.0)(conf=0.92)

person(1.0)(conf =1.0) "l '
|-
J person(1.0)(conf=|

kite(( .99)(conf=0.63)

person(0.99)(conf=0.73)"
chair(0.97) conf:0.9Z) -

sink(1.0)(conf=0.75
sink(1.0)(conf=0.79) 2

Figure 5: Left: detection results for original image; Red BBox: the target object from which we
back-prop gradients; Right: the gradient flowing from the object bounded by red bounding box.
Pixel values are normalized using the min-max rule.
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Figure 7: Sample 2: images attacked by different methods with different level of distortion.
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Figure 9: Sample 4: images attacked by different methods with different level of distortion.
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Figure 10: Overall performance of adversarial patch of different sizes and distances from target
objects. We use two baselines: black-hole that replaces all pixels in a sub-region with 0; white-noise
that replaces all pixels in a sub-region with random Gaussian noise.

We evaluate the performance with the using held-out test set. Quantitative results are shown in
Fig.10. One important conclusion is that, although baseline methods similarly change the image
significantly by replacing a sub-region completely, they can barely affect the detection results. We
also include some samples from the test set in Fig.11. The trained object can indeed conceal other
objects in a contactless way.

When we look can the effect of size, we notice that the trained object, of a reasonable size (0.28),
can conceal more than 50% of the existence of other objects when simply placed around them. We
did not consider patches of size larger than 0.30, as we consider it impractical under the real world
setting.

Distance also plays an important role. As we randomly place the object for training, where the actual
size ranges from 0.10 to 0.25, we notice that for neighboring objects, more than half the objects can
be concealed. As the distance to the target objects grows, success rate drops.
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Figure 11: Demonstration of successful attack. Top: original image and its detection result; Bottom:
attacked image and its detection result.
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