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Abstract
This work advocates Eulerian motion representation learn-
ing over the current standard Lagrangian optical flow
model. Eulerian motion is well captured by using phase,
as obtained by decomposing the image through a complex-
steerable pyramid. We discuss the gain of Eulerian motion
in a set of practical use cases: (i) action recognition, (ii)
motion prediction in static images, (iii) motion transfer in
static images and, (iv) motion transfer in video. For each
task we motivate the phase-based direction and provide a
possible approach.

1 Introduction

We propose an Eulerian approach towards motion represen-
tation learning. The main difference between Lagrangian
and Eulerian motion is that Lagrangian motion (optical
flow) focuses on individual points and analyzes their change
in location over time. Therefore, Lagrangian motion per-
forms tracking of points over time and for this it requires
a unique matching method between point or patches. On
the other hand, Eulerian motion considers a set of locations
in the image and analyzes the changes at these locations
over time. Thus, Eulerian motion does not estimate where
a given point moves to, instead, it measures flux proper-
ties. Figure 1 depicts this difference between Eulerian and
Lagrangian motion. As a specific instance of the Eulerian
model, we consider phase-based motion. The phase varia-
tions over time of the coefficients of the complex-steerable
pyramid are indicatives of motion [9] and form the basis for
learning motion representations.

The gain of an Eulerian motion approach is that it avoids
the need for hand-crafted optical flow constructions. Phase
is an innate property of the image, it does not need to be es-
timated from explicit patch correspondences. We propose
a general-purpose phase-based motion description learning
setup that can be used in any task relying on motion. Here
we explore four use cases: (i) action recognition, (ii) mo-
tion prediction in static images, (iii) motion transfer in static
images and, (iv) motion transfer in video. Note that phase-
based motion representations are readily applicably to other
motion-related task as well, including: human gait analysis,
object tracking, action localization, etc.
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Figure 1: While Lagrangian motion (optical flow) estimates the
changes in position over time, it can miss correspondences or find
mistaken correspondences. However, in the Eulerian approach
(phase variations over time) the number of motion measurements
stays constant between frames, as for each input image we analyze
the phase variations over time at each image location over multiple
orientations and scales.

2 Related Work
2.1 Eulerian Motion

Eulerian motion modeling has shown remarkable results for
motion magnification [31] where a phase-based approach
significantly improves the quality [28] and broadens its ap-
plication [1, 16]. A phase-based video interpolation is pro-
posed in [18] and a phase-based optical flow estimation is
proposed in [13]. Inspired by the these work, we advocate
the use of the Eulerian model as exemplified by phase for
learning motion representations.

2.2 Action Recognition

Optical flow-based motion features have been extensively
employed for action recognition in works such as [14, 26,
19, 30]. These works, use hand crafted features extracted
from the optical flow. Instead, we propose to input phase-
based motion measurements to a CNN to reap the benefits
of deep feature representation learning methods.

A natural extension of going beyond a single frame in
a deep net is by using 3D space-time convolutions [15,
25]. 3D convolutions learn appearance and motion jointly.
While elegant, it makes it difficult to add the wealth of
information that is available for appearance-only datasets
through pre-training. In our method, we keep the benefit
of pre-training by separating the appearance and the phase-
based motion streams.
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Using pre-trained networks is possible in the two-stream
network approaches proposed in [5, 7, 23]. This combines
a multi-frame optical flow network stream with an appear-
ance stream and obtains competitive results in practice. The
appearance stream can employ a pretrained network. Sim-
ilarly, we also consider the combination of appearance and
motion in a two-stream fashion, but with innate phase infor-
mation rather than using a hand-crafted optical flow.

The temporal frame ordering is exploited in [8], where
the parameters of a ranking machine are used for video de-
scription. While in [6, 17, 24] recurrent neural networks are
proposed for improving action recognition. In this paper we
also model the temporal aspect, although we add the bene-
fit of a two-stream approach by separating appearance and
phase variation over time.

2.3 Motion Prediction

In [20], optical flow motion is learned from videos and pre-
dicted in static images in a structured regression formula-
tion. In [29] the authors propose predicting optical flow in
a CNN from input static images. Where these works pre-
dict optical flow, we propose to predict the motion through
phase changes, which does not depend on pixel tracking.

Predicting the future RGB frame from the current RGB
frame is proposed in [27] in the context of action prediction.
Similar to this work, we also start from an input appearance
and obtain an output appearance image, however in our case
the learning part learns the mapping from input phase infor-
mation to future phase.

2.4 Motion Transfer

Animating a static image by transferring the motion from an
input video is related to the notion of artistic style transfer
[11, 12, 21]. The style transfer aims at changing an input
image or video such that the artistic style matches the one
of a provided target image. Here, instead, we consider the
motion transfer — given an input image, transfer the phase-
based motion from the video to the image.

Additionally, we also consider video-to-video transfer
where the style of performing a certain action is transferred
from a target video to the input video. In [2] the authors
allow the users to change the video by adding plausible ob-
ject manipulations in the video. Similar to this work, we
also want to change the video motion after the recording is
done, by adjusting the style of the action being performed.

3 Learning Motion with Phase
The local phase and amplitude of an image are measured by
complex oriented filters of the form: Gθσ + iHθ

σ , where θ is
the filter orientation and σ the filter scale [10],

(Gθσ + iHθ
σ)⊗ I(x, y) = Aθσ(x, y)e

iφθσ(x,y), (1)
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Figure 2: Phase-based representation learning: from an input
RGB image we extract phase information over multiple orienta-
tions and scales by employing complex steerable filters. For each
scale, additional to the RGB input, we add the orientated phases
as input to a network stream that optimizes a task-specific loss.

where φθσ(x, y) is the local phase at scale σ and orienta-
tion θ, and Aθσ(x, y, t0) the amplitude, I(x, y) is the image
brightness/input channel, and ⊗ the convolution operator,
and x, y are image coordinates. The filters have multiple
scales and orientations, forming a complex steerable pyra-
mid [22] which captures various levels of image resolution.

There is a direct relation between motion and the change
measured in phase over time. The Fourier shift theorem
makes the connection between the variation in phase of the
subbands over time and the global image motion. Rather
than estimating global motion, using a steerable pyramid
we can decompose the image into localized subbands and
thus, recover the local motion in the phase variations over
time. From the above decomposition only the phase, not
the amplitude, corresponds to motion. In [9] the authors
show that the temporal gradient of phase computed from a
spatially bandpassed video over time, directly relates to the
motion field. Therefore, here, we focus on local phase at
multiple scales and orientations to represent motion.

We propose using phase to learn motion representations
for solving general motion-related tasks in a deep net. We
add phase as an additional motion input channel to a stan-
dard appearance (RGB) convolutional deep neural network.
Figure 2 shows our proposed general-purpose phase-based
pipeline. The input video frame is decomposed using the
complex steerable pyramid into amplitude and phase. Both
phase and amplitude have multiple corresponding orienta-
tions and scales. Since the phase is an indicative of motion,
we ignore the amplitude and we use the input phase for the
motion representation learning. We treat the orientations as
input channels while the scales represent different streams
of the network, similar to [4] who use this setup for a dif-
ferent image pyramid.

4 Four Use Cases in Motion Learning
We explore phase-based motion representation learning in
four practical use cases. While a thorough in-depth experi-
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(a) Phase-motion prediction. (b) Long term phase-based motion prediction.
Figure 3: (a) Phase prediction in a Phase Network: from an input RGB image, we estimate the phase along multiple scales and orientations.
For each scale we train a Fully Convolutional Network that predicts oriented phase at a future time-step. From this we recover the predicted
future RGB image. (b) Long-term motion prediction in static images: given the one step convolutional mapping from the input RGB image
to the future RGB image, defined in the ‘Phase Network’, combine multiple of these networks in an Recurrent Neural Network to obtain
plausible long-term phase predictions.
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Figure 4: Action recognition approach: two-stream CNN where
the first stream receives input RGB frames, while the second
stream receives input oriented phases of the video frame over mul-
tiple scales that are subsequently combined.

mental investigation is out of scope, we detail the setup of
motion representation learning for each use case.

4.1 Phase-based Action Recognition
Separating appearance and motion in two-streams is effec-
tive for action recognition [23]. For the appearance stream
we follow [23] and use the input RGB frame, which of-
fers the advantage of pre-training features on static images.
However, where [23] uses hand-crafted optical flow fea-
tures, we propose to use Eulerian motion for the second
stream with oriented phase over multiple scales, as depicted
in figure 4.

For evaluating action recognition, a comparison of
our two-stream phase-based motion with the two-stream
optical-flow approach of [23] on the two datasets used in
their paper — HMDB51 and UCF101 is needed. We expect
benefits from a phase-based motion representation because
it does not depend on a specific hand-crafted optical flow
implementation and does not rely on pixel tracking.

4.2 Phase-based Motion Prediction in Static
The benefit of Eulerian motion for motion prediction is that
the prediction locations are fixed over time. This contrasts

sharply with Lagrangian motion, as pixels tracked by opti-
cal flow may be lost as they move in or out of the frame,
or move to the same spatial location. Such lost pixels make
it hard to recover long-term relations beyond just the next
frame. The fixed prediction locations of a Eulerian motion
representation do not suffer from this and offer long-term
relation predictions of several frames.

We propose to learn from a given input RGB the out-
put future RGB, by recovering from the RGB the phase
scales and orientations, then predicting the multi-scale fu-
ture phase-orientations and transforming them back into fu-
ture RGB frames as in figure 3.(a). For long-term motion
prediction we propose an RNN (Recurrent Neural Network)
version of this phase-based frame prediction, as depicted
in figure 3.(b). Thus, predicting motion N timesteps away
from the input.

For evaluating motion prediction we use the same
datasets as in [29] — HMDB51 and UCF101, where the au-
thors aim at predicting optical-flow based motion in single
images. To evaluate the difference between the predicted
motion and the actual video motion, we use pixel accuracy,
as in our method we recover the appearance of the future
frame. For comparison with [29] which reports EPE (End
Point Errors), we use their chosen optical flow estimation
algorithm to recover optical flow from our predicted RGB.

4.3 Phase-based Motion Transfer in Images

Similar to [12, 21], where the style of a given target painting
is transferred to another image, we propose to transfer the
short motion of a given video sequence to an input static im-
age. In [12] a combination of two losses is optimized: con-
tent loss which ensures that the objects present in the newly
generated image remain recognizable and correspond to the
ones in the input image, and a style loss which imposes that
the artistic style of the new image is similar to the one of
the provided target painting. For motion transfer we have
an additional requirement, namely that parts of the image
that are similar — e.g. horses, people, should move sim-
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ilar. For this we use two pretrained network streams, an
RGB stream and a phase stream and consider certain con-
volutional layers along these streams for estimation RGB/
phase responses. Therefore, we first estimate an element-
wise correlation between the responses at a given convolu-
tional network layer of the input RGB values of the static
image and the target video frame:

Klj =
∑Nl
i ClijD

l
ij√∑Nl

i Clij
2
√∑Nl

i Dl
ij

2
, (2)

where Nl is the number of channels in the layer l, Cl and
Dl the responses at layer l for the input image and video
frame, respectively. Following [12], we subsequently de-
fine our motion-style loss by weighting the feature maps
in the Gram matrix computation by the appearance corre-
lation. The motion transfer is obtained by enforcing that
the phase of objects over time in the input image, should be
similar to the phase over time of the same objects present
in the target video. The motion-style loss optimization is
performed per phase-scale.

Glσ[ij] =

Ml∑
k

KlkF lσ[ik]F lσ[kj], i, j ∈ {1, ..Nl}, (3)

Alσ[ij] =

Ml∑
k

KlkP lσ[ik]P lσ[kj], i, j ∈ {1, ..Nl}, (4)

Ll =
∑
σ

1

N2
l M

2
l

Nl∑
i,j

Klj(Glσ[ij]−Alσ[ij])2, (5)

where Ml is the number of elements in one channel of layer
l, σ indicates the phase-scale, and Gl is the weighted Gram
matrix of the phase-image to be generated, while Al is the
weighted Gram matrix of the current video frame and, F l

and P l are the responses of the phase-image to be generated
and the phase-image of the input video frame, respectively.

Because we want the find similar looking objects by us-
ing the element-wise correlations, we expect that the higher
convolutional levels of the network will perform better. We
additionally also add the content loss term of [12] to avoid
large distortions of the image appearance. Due to the in-
put being a static image, only short video motions can be
transferred in this case.

For evaluating motion transfer, we perform a two-step
evaluation. In the first step, we select an existing video
frame and transfer the video motion to the selected frame
and compare the transferred motion with the actual video
motion. For this we use videos from HMDB51 and
UCF101. The second evaluation is transferring the motion
to actual static images. For this we select images from the
static Willow dataset [3] and transfer the motion of corre-
sponding videos from the HMDB51 and UCF101 datasets

containing the same objects. For this we provide the static
images animated with the transferred video motion.

4.4 Phase-based Motion Transfer in Videos

We use as a starting point the work of [21], where artis-
tic style is transferred to video. However in our case, the
motion of one given video is transferred to another input
video. The gain in so doing, is that we can transfer the style
of performing a certain action. For example an amateur per-
forming the moonwalk can be lifted to the expert level by
transferring the motion of Michael Jackson himself.

The idea of transferring motion in videos is similar to the
idea of transferring motion in static images, with the addi-
tional constraint that the motion must be temporally coher-
ent. For this, similar to [21], we add a temporal loss term to
the motion transfer loss discussed in section 4.3.

For performing motion transfer between videos, we use a
set of target videos: the walk of Charlie Chaplin, the moon-
walk of Michael Jackson, and the walk of a runway model.
We transfer these walking styles to a set of input videos of
people walking, and provide the results as a qualitative form
of evaluation.

4.5 Preliminary Proof of Concept

Here1, we show a very simple proof of concept for phase-
based motion transfer. We animate a static image by
transfering the motion of another semantic related video.
Correctly aligning the moving entities between the video
frames and the static image is essential for this task. For this
proof of concept the alignment was not very good and no
learning was used whatsoever. Misalignment errors show
up as artifacts in the results and we expect that adding
(deep) learning will improve results.

5 Conclusions

We propose an Eulerian –phase-based– approach to motion
representation learning. We argue for the intrinsic stability
offered by the phase-based motion description. A phase-
based approach does not require pixel tracking and directly
encodes flux. Phase is an innate property of an image and
does not rely on hand-crafted optical-flow algorithms. We
explore a set of motion learning tasks in an Eulerian setting:
(a) action recognition, (b) motion prediction in static im-
ages, (c) motion transfer from a video to a static image and
(d) motion transfer in videos. For each one of these tasks we
propose a phase-based approach and provide a small proof
of concept. We do not offer in-depth experimental results
but instead make a case for a brave new motion representa-
tion with phase.

1Demo: http://silvialaurapintea.github.io/motion transfer/index.html .
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