
Workshop track - ICLR 2017

PERCEPTION UPDATING NETWORKS: ON ARCHITEC-
TURAL CONSTRAINTS FOR INTERPRETABLE VIDEO
GENERATIVE MODELS

Eder Santana & Jose C Principe ∗
Department of Electrical and Computer Engineering
University of Florida
Gainesvillle, FL 32611, USA
edersantana@ufl.edu, principe@cnel.ufl.edu

ABSTRACT

We investigate a neural network architecture and statistical framework that mod-
els frames in videos using principles inspired by computer graphics pipelines. The
proposed model explicitly represents “sprites” or its percepts inferred from maxi-
mum likelihood of the scene and infers its movement independently of its content.
We impose architectural constraints that forces resulting architecture to behave as
a recurrent what-where prediction network.

1 INTRODUCTION

The current computer graphics pipelines are the result of efficient implementations required by lim-
ited hardware and high frequency output requirements. These requirements were also achieved with
the use of explicit physics and optic constraints and modeling with constantly improving data struc-
tures (Shirley et al., 2015).

In machine learning on the other hand, for a long time image (Olshausen et al., 1996) and video
(Hurri & Hyvärinen, 2003) generative models had been investigated with statistical approaches that
model images down to the pixel level (Simoncelli & Olshausen, 2001), sometimes assuming neigh-
borhood statistical dependencies (Osindero & Hinton, 2008). In video prediction, the current state
of the art uses variations of deep convolutional recurrent neural networks (Kalchbrenner et al., 2016)
(Lotter et al., 2016) (Finn et al., 2016).

Parallel to the classic machine learning approach to image and video interpretation and predic-
tion, there is a growing trend in the deep learning literature for modeling vision as inverse graphics
(Kulkarni et al., 2015)(Rezende et al., 2016)(Eslami et al., 2016). These approaches can be inter-
preted into two groups: supervised and unsupervised vision as inverse graphics. The supervised
approach assumes that during training an image is provided with extra information about its rota-
tion, translation, illumination, etc. The goal of the supervised model is to learn an auto-encoder that
explicitly factors out the content of the image and its physical properties. The supervised approach
is illustrated by Kulkarni et al. (2015).

The unsupervised approach requires extra architectural constraints, similar to those assumed in com-
puter graphics. For example, Reed et al. (2016) modeled the content of a scene with a Generative
Adversarial Network (Goodfellow et al., 2014) and its location with Spatial Transformer Networks
(STN) (Jaderberg et al., 2015). The full model is adapted end-to-end to generate images whose
appearance can be changed by independently modifying the ”what” and/or ”where” variables. A
similar approach was applied to video generation with volumetric convolutional neural networks
(Vondrick et al., 2016).In two papers by Google DeepMind (Rezende et al., 2016) (Eslami et al.,
2016) they improved the ”where” representations of the unsupervised approach and modeled the
3D geometry of the scene. This way they explicitly represented object rotation, translation, camera
pose, etc. Their approaches were also trained end-to-end with REINFORCE-like stochastic gra-
dients to backpropagate through non-differentiable parts of the graphics pipeline (Rezende et al.,

∗Code repository: https://github.com/cnel/PUN

1

Workshop track - ICLR 2017

convolution result

spatial transformer result

δXY

convolution

spatial transformer

Figure 1: How to get similar results using convolutions with delta-functions and spatial transformers.
Input sprite is 8× 8 pixels and the outputs are 64× 64 pixels. Note that in the convolution the result
shape is rotated 180 degrees and its center is where the delta equals to one at pixel (x = 16, y = 16).
Note also that the edges of the spatial transformer results are blurred due to bilinear interpolation. A
matrix can be read as “zoom-out” 8 times and translate up and left in a quarter of the resulting size.

2016) or to count the number of objects in the scene (Eslami et al., 2016). Those papers also used
STNs to model the position of the objects in the scene, but they extended STN to 3D geometry so it
could also model rotation and translation in a volumetric space.

Other approaches inspired by the graphics pipeline and computer vision geometry in machine learn-
ing uses the physics constraints to estimate the depth of each pixel in the scene and camera pose
movements to predict frames in video (Mahjourian et al., 2016) (Godard et al., 2016).

The present paper is closer to the unsupervised approach of vision as inverse graphics. More pre-
cisely, here we investigate frame prediction in video. Contrary to the work by Reed et al. (2016) here
we first limit ourselves to simple synthetic 2D datasets and learning models whose representations
can be visually interpreted. This way we can investigate exactly what the neural network is learning
and validate our statistical assumptions. Also, we investigate the behavior of Spatial Transformer
Networks and question it as the default choice when limited compute resources are available and no
scale invariance is required.

First in the next Section we will pose a statistical model that is appropriate for machine learning but
inspired by the graphics pipeline.

2 A 2D STATISTICAL GRAPHICS PIPELINE

This section starts with a high level description of the 2D graphics pipeline, followed by a discussion
of how to implement it with neural network modules, and finally we define a formal statistical model.

The 2D graphics pipeline starts from geometric primitives and follows with modeling transforma-
tions, clipping, viewing transformations and finally scan conversion for generating an image. Here,
we will deal with previously rasterized bitmaps, i.e. sprites, and will model the translation transfor-
mations, rotation and clipping with differential operations. This way, the steps in the pipeline can
be defined as layers of a neural network and the free parameters can be optimized with backpropa-
gation.

2

Workshop track - ICLR 2017

For our neural network implementation, we assume a finite set of sprites (later we generalize it to
infinite sprites) that will be part of the frames in the video. The image generation network selects a
sprite, s, from a memorized sprite database Si∈{1,...,K} using an addressing signal c:

s =
∑
j

cjSj , where

∑
j

cj = 1.
(1)

For interpretable results it would be optimal to do one-hot memory addressing where cj = 1 for
Sj = S and cj = 0 otherwise. Note that (1) is differentiable w.r.t to both cj and Sj so we can learn
the individual sprites from data. We can guarantee cj adds up to 1 using the softmax nonlinearity.
This approach was inspired by the recent deep learning literature on attention modules (Bahdanau
et al., 2014) (Graves et al., 2014).

When the number of possible sprites is too large it is more efficient to do a compressed represen-
tation. Instead of using an address value c we use a content addressable memory where the image
generator estimates a code z that is then decoded to the desired sprite with a (possibly nonlinear)
function d(z). If we interpret the addressing value z as a latent representation and the content
addressable memory d(z) as a decoder, we can use the recent advances in neural networks for gen-
erative models to setup our statistical model. We will revisit this later in this section.

The translation transformation can be modeled with a convolution with a Delta function or using
spatial transformers. Note that the translation of an image I(x, y) can be defined as

I(x− τx, y − τy) = I(x, y) ? δ(x− τx, y − τy), (2)

where ? denotes the image convolution operation. Clipping is naturally handled in such a case. If the
output images have finite dimensions and δ(x−τx, y−τy) is non-zero near its border, the translated
image I(x − τx, y − τy) will be clipped. Another way to implement the translation operation is
using Spatial Transformer Networks (STN) (Jaderberg et al., 2015). STN can be defined in two
steps: resampling and bilinear interpolation. Resampling is defined by moving the position of the
pixels (x, y) in the original image to new positions (x̃, ỹ) using a linear transform:

[
x̃
ỹ

]
= A

[
x
y
1

]
, where

A =

[
A11 A12 A13

A21 A22 A23

]
.

(3)

We assume the coordinates in the original image are integers 0 ≤ x < M and 0 ≤ y < N , where
M ×N is the size of the image I . Once the new coordinates are defined, we can calculate the values
of the pixels in the new image Ĩ using bilinear interpolation:

Ĩ(x̃, ỹ) = wx1,y1I(x1, y1) + wx1,y2I(x1, y2)+

wx2,y1I(x2, y1) + wx2,y2I(x2, y2)
(4)

where (x1, x2, y1, y2) are integers, x1 ≤ x̃ < x2, y1 ≤ ỹ < y2 and

wx1,y1 = (bx̃c − x̃)(bỹc − x̃)
wx1,y2 = (bx̃c − x̃)(bỹc+ 1− ỹ)
wx2,y1 = (bx̃c+ 1− x̃)(bỹc − ỹ)
wx2,y2 = (bx̃c − x̃)(bỹc+ 1− ỹ)

(5)

3

Workshop track - ICLR 2017

To avoid sampling from outside the image we clip the values bx̃c and bx̃c + 1 between 0 and M
and the values bỹc and bỹc+ 1 between 0 and N . We did not write the clipping operation in (5) for
conciseness. Note that (4) is piecewise differentiable w.r.t I .

We can define translation through operations with

A =

[
1 0 τx
0 1 τy

]
. (6)

Also, we can rotate the image ρ radians counter clockwise with

A =

[
cos ρ sin ρ 0
− sin ρ cosρ 0

]
. (7)

Image rescaling is achieved by rescaling in the right square submatrix A1:2,1:2. We illustrate in Fig.
1 how to get similar results using convolutions with a delta-function and spatial transformers.

We can now define a statistical model of 2D images that explicitly represents sprites and their posi-
tions in the scene. We can use the free energy of this statistical model to optimize a neural network.
Let us start with the statistical model of a single static frame and later generalize it to video.

Let an image I ∼ pθ(I) be composed of a sprite s ∼ pθ(s) centered in the (x, y) coordinates in
the larger image I . Denote the coordinates as a random variable δxy ∼ pθ, where θ represent the
model parameters. pθ(δxy) can be factored in two marginal categorical distributions Cat(δx) and
Cat(δy) that model the probability of each coordinate of the sprite independently. For the finite
sprite dataset, pθ(s) is also a categorical distribution conditioned on the true sprites. For this finite
case the generative model can be factored as

pθ(I, s, δ) = pθ(s)pθ(δxy)p(I|s, δxy), (8)

assuming that “what”, s, and “where”, δxy , are statistically independent. Also, in such case the
posterior

pθ(s, δ|I) = pθ(s|I)p(δxy|I) (9)

is tractable. One could use for instance Expectation-Maximization or greedy approaches like Match-
ing Pursuit to alternate between the search for the position and fitting the best matching shape. For
the infinite number of sprites case, we assume that there is a hidden variable z from which the sprites
are generated as p(s, z) = pθ(z)pθ(s|z). In such case our full posterior becomes

pθ(z, s, δ|I) = pθ(z, s|I)p(δxy|I) =
pθ(z|I)pθ(s|I, z)p(δxy|I).

(10)

We can simplify (10) assuming pθ(z|s) = pθ(z|I) for simple images without ambiguity and no
sprite occlusion. For a scalable inference in the case of unknown θ and z and intractable pθ(z|s)
we can use the auto-encoding variational Bayes (VAE) approach proposed by Kingma & Welling
(2013). Using VAE we define an approximate recognition model qφ(z|s). In such case, the log-
likelihood of the i.i.d images I is log pθ(I1, . . . , IT) =

∑T
i log pθ(Ii) and

log pθ(Ii) = DKL(qφ(z|si)||pθ(z|si))+
DKL(pθ(z|si)||pθ(z|Ii))+

L(θ, φ, δxy, Ii).
(11)

Again, assume that the approximation pθ(z|s) = pθ(z|I) we have DKL(pθ(z|si)||pθ(z|Ii)) = 0
and the free energy (or variational lower bound) term equal to

L(θ, φ, δ, I) = −DKL(qφ(z|si)||pθ(z))+
Eqφ(z|s,δ)pθ(δ|I)[log pθ(I|z, δ)],

(12)

4

Workshop track - ICLR 2017

sprites
translate

rotate

Add

 Background

It It+1

c

δXY

ρ

Figure 2: A schematic block diagram for a Perception Updating Network. This configuration uses
both convolutions with delta functions for translation and spatial transformers for rotation. It also
shows the optional background underlay.

where we dropped the subindices xy and i to avoid clutter. Here we would like to train our model by
maximizing the lower bound (12) in the VAE way. We can do so using the reparametrization trick
assuming qφ(z|s) and the prior pθ(z) to be Gaussian and sampling

z = mφ(I) + vφ(I) · ξ, (13)

where ξ ∼ N (0, σI), I is the identity matrix, the functions m(I) and v(I) are deep neural networks
learned from data.

One can argue that given z and a good approximation to the posterior qφ, estimating δ is still
tractable. Nevertheless, we preemptively avoid Expectation-Maximization or other search ap-
proaches and use instead neural network layers lx and ly:

δxy = softmax(lx(I))⊗ softmax(ly(I)), (14)

with ⊗ denoting the outer product of marginals. We also experiment using STNs. Such amortized
inference is also faster in training and test time than EM and will also cover the case where I is
itself a learned low dimensional or latent representation instead of an observable image. Bear this in
mind while we use this approach even in simple experiments such as those with moving shapes in
the Experiments section. This will help us to understand what can be learned from this model.

We extend the model above to videos, i.e. sequences of images I(t) = {I(0), I(1), . . .}, assuming
that the conditional log-likelihood log pθ(It|HIt) = logpθ(It|Hδt , Hzt) follows (11), where HIt
is the history of video frames prior to time point t. Also Hδt and Hzt are the history of position
coordinates and the history of latent variables of the sprites respectively. We should observe that one
can make the assumption that the sprites don’t change for a given video I(t) and only estimate one
sprite st=0 or hidden variable zt=0. This assumption can be useful for long term predictions, but
requires that the main object moving in the scene doesn’t change.

In the next section, we propose a neural network architecture for maximizing our approximate vari-
ational lower bound 2D videos.

3 PERCEPTION UPDATING NETWORKS

This section proposes a family of neural architectures for optimizing the lower bound (12). A
schematic diagram is represented in Fig. (2). The core of our method is a Recurrent Neural Network
(RNN) augmented with task specific modules, namely a sprite addressable memory and modeling
transformations layers. RNNs augmented with task specific units were popularized by Graves et al.
(2014) in the context of learning simple differentiable algorithms and served as inspiration for us as
well. Here since we explicitly model the perceived sprites as s or z and update it and its location
and/or rotation though time we decided to call our method simply Perception Updating Networks.

An input frame at time t, It, is fed to the RNN that emits 2 signals: a memory address that selects a
relevant sprite and transformation parameters. If we are doing the translation transformation using
convolutions and delta functions this output is equal to (14). If using STN, the translation operation
returns the matrix A used in (3). Note that we could use both, letting convolutions with δ to the
translation is constraining A as in (7) to do rotation transformations only. We describe the general
case where both δxy and STNs are used in Algorithm 1.

5

Workshop track - ICLR 2017

Beyond deciding between STNs vs δxy , a few other free parameters of our method are the type of
RNN (e.g. vanilla RNN, LSTM, GRU, ConvRNN, etc), the number of neurons in the hidden state of
the RNN and neural network architectures that infer the correct sprite and modeling transformation
parameters. Our hyperparameter choices are investigated separately in each experiment in the next
Section.

Data: input videos It, t ∈ {0, 1, 2, . . .}, initial RNN state h0, neural network layers mφ, vφ, d, l, f
Result: video predictions It, t ∈ {1, 2, 3, . . .}
for t ∈ {0, 1, . . .} do

ht ← RNN(It, ht−1)
δxy = softmax(lx(ht))⊗ softmax(ly(ht))
ρ = f(ht)

A =

[
cos ρ sin ρ 0
− sin ρ cos ρ 0

]
ξ ∼ pθ(z)
zt = mφ(ht) + vφ(ht) · ξ
st = d(zt)
at = STN(st, A)

Ĩt+1 = at ? δxy
It+1 = µĨt+1 + (1− µ)B

end
Algorithm 1: Perception Updating Networks. STN denotes spatial transformer operator (3)-(4) and
? denotes convolution. We experimented with several variations of this algorithm, mainly changing
if and how the “where” modules δxy and STN are used. Also changing how the sprite st is calculated
and not using a background B when not necessary.

In the next section we present experiments with the proposed architecture on synthetic datasets.

4 EXPERIMENTS

In this section we experiment with several implementations of the proposed Perception Updating
Networks. We start with a simple synthetic dataset made of videos where one of 3 moving shapes
moves with constant speed bouncing in the edges of an image. This illustrates the working of the
finite memory and the addressing scheme in (1). Afterwards we show results on the moving MNIST
dataset (Srivastava et al., 2015) commonly used in the literature of generative neural network models
of videos.

4.1 BOUNCING SHAPES

In this first experiment we generate videos of one of three shapes moving on a non-zero background.
The shapes are a square, triangle and cross. The image size is 20 × 20 pixels and the shapes are
8 × 8 pixels. The pixel values are between 0 and 1. The shapes are picked with equal probability
and they move at constant speed of 1 pixel per frame. The shapes start from random initial positions
and move following a random direction vector.

We tested two implementations of the proposed architecture: one using only convolutions, referred
to as convolutional PUN in the figures, and another using using spatial transformers, called spatial
transformer PUN. For the parameters of the convolutional PUN the RNN used was a Long Short
Term Memory (LSTM) with 100 cells. The RNN in the Spatial Transformer PUN had 256 cells. We
used the finite addressable memory described in (1). The background is also learned from data with
backpropagation. This background served to make the task more difficult and force the network to
avoid just exploiting any non-zero value. After the convolutional composition It = st ? δxy , we
added the background to form a new image using Ĩt = µ · It+(1−µ)B, where µ is a differentiable
mask that accounts for the “transparency” of the image It. B is the learned 20×20 pixels background
image. For complex shapes this mask shape could be calculated as another module in the network,
similarly to the approach in Vondrick et al. (2016). Here we used Ĩt itself as the mask.

6

Workshop track - ICLR 2017

ground truth

convolutional PUN

LSTM

spatial transformer PUN

b) convolutional PUN learned sprites

a) one step ahead prediction

10x10 sprites

sample δxy when sprites 10x10

6x6 sprites

sample δxy when sprites are 6x6

Figure 3: Results on the Bouncing Shapes dataset. Three 8x8 sprites (a square, a cross and a triangle)
were used to generate videos. The shapes move in a 20x20 pixels canvas with a Toeplitz background
and bounce on the corners. a) We show one step ahead predictions with the compared methods. b)
We also show the learned sprites for the convolutional implementation of the proposed Perception
Updating Networks when we over- and under-estimate the size of the desired sprites.

In the following experiments, the training videos were 10 frames long. At test time the network is
fed the first 10 frames of a video and asked to predict the next 10. Results for the compared methods
are shown in Fig. 4. For the baseline method, we did a hyperparameter search on conventional
LSTMs with a single linear output layer until we found one that had comparable results at test time.
That network had 256 hidden cells. Also, note that although the scale of the mean square error is
the same, the results from our proposed architecture look smoother than those learned by the LSTM
as shown in Fig. 3.

Given such a simple experiment, it is elucidating to visualize values learned by each piece of the
network. As expected the sprite memory learned the 3 investigated shapes in transposed order since
they are reverted by the convolution operation to compose the frame, similar to 3.b-left. We also
experimented with choosing the size of the learned sprites st smaller and larger than the true shapes.
We observed that for larger shapes such as 10×10 the sprites converge to the correct shapes but just
using part of the pixels. For smaller shapes such as 6 × 6 pixels, instead of learning a part of the
correct shape, the convolutional Perception Updating Network learned to compensate for the lack
of enough pixels with more than one non-zero value in the location operation δxy (see Fig. 3). This
allow us to suggest to the interested practitioner that in order to get interpretable results it is better
to use sprites larger than the expected true size than smaller.

For the spatial transformer PUN the image is calculated as (see Algorithm 1 for context):

A = f(ht),

It+1 = STN(st, A).
(15)

We noticed that the spatial transformer PUN was not able to learn the training videos using an
equivalent architecture to the convolutional PUN one. We had to use multiple layers to define the
function f(ht). In other words, in the convolution based method δxy can be estimated by a single
affine transformation of the state ht, but A cannot. We also had to use smaller learning rates to

7

Workshop track - ICLR 2017

Figure 4: Learning curves in the test task of two implementations of the proposed architecture (conv
PUN and STN PUN) and an equivalent LSTM baseline. Note that the spatial transformer based
PUN was not able to generalize to the test set, i.e. they did not work well for generating videos
when getting its own previous outputs as next step inputs.

Figure 5: Sample rollouts of a 2 layer LSTM convolutional Perception Updating Network with .

guarantee convergence: 0.0001 for STN while the δxy-based model worked with a value 10 times
larger.

It is interesting to observe that under this framework the “what” and “where” are both elements of
commutative operation and can only be distinguished if we impose architectural constraints. As a
note on rotation, we ran experiments where the sprite are rotated by a random angle before being
placed in the image. This new type of videos cannot be learned using only convolutional based Per-
ception Updating Networks unless we increase the number of sprites proportionally to the number
of possible angles. Spatial transformer based Perception Updating Networks can handle this new
type of video naturally. Nevertheless, if the number of rotation angles is finite or can be discretized
we found that we could learn to generate the videos faster if we combined the convolutional ap-
proach with a mechanism to select the appropriate angle from a set of possibilities. Results on this
experiment are not shown in this paper due to space constraints but they can be reproduced with the
companion code.

4.2 MOVING MNIST

The Moving MNIST benchmark uses videos generated by moving 28×28 pixel images of hand writ-
ten digits in a 64× 64 pixels canvas. Just like in the Bouncing Shapes dataset, the digits move with
different different speeds in different directions and can bounce in the walls. Unlike the Bouncing
Shapes dataset, there are 60000 different sprites for training and 10000 for test, making it impracti-
cal to use a discrete memory module. Instead, we use the memory representation denoted by (13)
followed by st = d(zt) as written in Algorithm 1.

We trained a convolutional Perception Updating Network using 2 layer LSTMs each one with 1024
cells for 200 epochs, with 10000 gradient updates per epoch. The latent variable z had 100 dimen-
sions and the decoder d(·) was a single hidden layer MLP with 1000 hidden neurons and softplus
activation function. The output layer of this MLP has 784 neurons, which is the size of an MNIST
image, and sigmoid activation function. In the test set we obtained a negative log-likelihood of 239
nats with the proposed architecture, while a 2 layer LSTM baseline had 250 nats. Note that the our

8

Workshop track - ICLR 2017

method was optimized to minimize the lower bound (12), not only the negative likelihood. These
results are not as good as those obtained by the Video Pixel Networks (Kalchbrenner et al., 2016)
that obtained 87 nats on the test set. Nevertheless, both approaches are not mutually exclusive and
instead of a fully connected decoder we could use a similar PixelCNN decoder to generate sprites
with higher likelihood. In this first paper we decided instead to focus in defining the statistical
framework and interpretable “what” and “where” decoupling.

When running the proposed method in rollout mode, feeding the outputs back as next time step
inputs, we were able to generate high likelihood frames for more time steps than with a baseline
LSTM. Also, since the sprite to be generated and its position in the frame are decoupled, in rollout
mode we can fix the sprite and only use the δxy coming from the network. This way we can generate
realistic looking frames for even longer. On the other hand, after a few frames we observed the digits
stopped moving or moved in wrong directions for some videos. This means that the LSTM RNN
was not able to maintain its internal dynamics for too long, thus, there is still room for improvement
in the proposed architecture.

In Fig. 5 we show sample rollout videos. The network was fed with 10 frames and asked to generate
10 more getting its own outputs back as inputs.

This experiment also suggests several improvements in the proposed architecture. For example, we
assumed that the internal RNN has to calculate a sprite at every time step, which is inefficient when
the sprites don’t change in the video. We should improve the architecture with an extra memory
unity that snapshots the sprites and avoid the burden of recalculating the sprites at every step. We
believe this would be a possible way to free representation power that the internal RNN could use to
model the video movement for more time steps.

5 CONCLUSIONS

This paper introduced a statistical framework for modeling video of 2D scenes inspired by graphics
pipelines and variational auto-encoding Bayes. From this statistical framework we derived a vari-
ational lower bound that decouples sprites and their movement in a video. To optimize this lower
bound, we suggested a family of architectures called Perception Updating Networks that can take
advantage of this decoupled representation by independently memorizing sprites or their percepts,
and updating its location in a scene. We showed that this architecture could generate videos that are
interpretable and are better suited than baseline RNNs for long video generation.

ACKNOWLEDGMENTS

We thank Ryan Burt for several suggestions to the first draft. This work was partially funded by the
University of Florida Graduate Student Fellowship and ONR N00014-14-1-0542.

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, Koray Kavukcuoglu, and Geoffrey E
Hinton. Attend, infer, repeat: Fast scene understanding with generative models. arXiv preprint
arXiv:1603.08575, 2016.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. arXiv preprint arXiv:1605.07157, 2016.

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estima-
tion with left-right consistency. arXiv preprint arXiv:1609.03677, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems, pp. 2672–2680, 2014.

9

Workshop track - ICLR 2017

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Jarmo Hurri and Aapo Hyvärinen. Simple-cell-like receptive fields maximize temporal coherence
in natural video. Neural Computation, 15(3):663–691, 2003.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Ad-
vances in Neural Information Processing Systems, pp. 2017–2025, 2015.

Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. arXiv preprint arXiv:1610.00527, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional
inverse graphics network. In Advances in Neural Information Processing Systems, pp. 2539–2547,
2015.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks for video pre-
diction and unsupervised learning. arXiv preprint arXiv:1605.08104, 2016.

Reza Mahjourian, Martin Wicke, and Anelia Angelova. Geometry-based next frame prediction from
monocular video. arXiv preprint arXiv:1609.06377, 2016.

Bruno A Olshausen et al. Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature, 381(6583):607–609, 1996.

Simon Osindero and Geoffrey E Hinton. Modeling image patches with a directed hierarchy of
markov random fields. In Advances in neural information processing systems, pp. 1121–1128,
2008.

Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, and Honglak Lee. Learn-
ing what and where to draw. arXiv preprint arXiv:1610.02454, 2016.

Danilo Jimenez Rezende, SM Eslami, Shakir Mohamed, Peter Battaglia, Max Jaderberg, and Nico-
las Heess. Unsupervised learning of 3d structure from images. arXiv preprint arXiv:1607.00662,
2016.

Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals of computer graphics. CRC
Press, 2015.

Eero P Simoncelli and Bruno A Olshausen. Natural image statistics and neural representation.
Annual review of neuroscience, 24(1):1193–1216, 2001.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of video
representations using lstms. CoRR, abs/1502.04681, 2, 2015.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics.
arXiv preprint arXiv:1609.02612, 2016.

10

	Introduction
	A 2D statistical graphics pipeline
	Perception Updating Networks
	Experiments
	Bouncing Shapes
	Moving MNIST

	Conclusions

