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Abstract: We present an object-centric approach to empower robots to learn1

vision-based manipulation skills from human videos. We investigate the prob-2

lem of imitating robot manipulation from a single human video in the open-world3

setting, where a robot must learn to manipulate novel objects from one video4

demonstration. We introduce ORION, an algorithm that tackles the problem by5

extracting an object-centric manipulation plan from a single RGB-D video and de-6

riving a policy that conditions on the extracted plan. ORION enables the robot to7

learn from videos captured by daily mobile devices such as an iPad and generalize8

the policies to deployment environments with varying visual backgrounds, cam-9

era angles, spatial layouts, and novel object instances. We systematically evaluate10

ORION on both short-horizon and long-horizon tasks, demonstrating the efficacy11

of ORION in learning from a single human video in the open world.12

Keywords: Robot Manipulation, Imitation From Human Videos13

1 Introduction14

A critical step toward building robot autonomy is developing sensorimotor skills for perceiving and15

interacting with unstructured environments. Conventional methods for acquiring skills necessitate16

manual engineering and/or costly data collection [1–5]. A promising alternative is teaching robots17

through human videos of manipulation behaviors situated in everyday scenarios. These methods18

have great potential to tap into the readily available source of Internet videos that encompass a wide19

distribution of human activities, paving the ground for scaling up skill learning.20

Prior work on learning from human videos has focused on pre-training representations and value21

functions [6–10]. However, they do not explicitly capture object states and their interactions in 3D22

space where robot motions are defined. Consequently, they require separate teleoperation data for23

each set of objects in each location and even for each possible change in visual background, e.g.,24

the scene background or lighting conditions [11]. In contrast, our goal is for a robot to imitate a task25

robustly in the “open world”, i.e., under varying visual and spatial conditions from a single human26

video, without prior knowledge of the object models or the behaviors shown. Since we consider27

actionless videos that are equivalent to state-only demonstrations in the problem of “Imitation from28

Observation”[12], we refer to our problem setting as open-world imitation from observation.29

Developing a method in this setting is only possible due to the recent advances in vision foundation30

models [13, 14]. These models, pre-trained on Internet-scale visual data, excel at understanding31

open-vocabulary visual concepts and enable robots to recognize and localize objects in videos with-32

out known object categories or access to physical states. This work marks the first step toward33

achieving our vision of open-world imitation from observation, where a robot imitates how to in-34

teract with objects given a single video while deployed in environments with different visual back-35

grounds and unseen spatial configurations. In this work, we consider using RGB-D video demon-36

strations where a person manipulates a small set of task-relevant objects with their single hand,37
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Figure 1: Overview. ORION tackles the problem of imitating manipulation from single human video demon-
strations. ORION first extracts a sequence of Open-World Object Graphs (OOGs), where each OOG models
a keyframe state with task-relevant objects and hand information. Then ORION leverages the OOG sequence
to construct a manipulation policy that generalizes across varied initial conditions, specifically in four aspects:
visual background, camera shifts, spatial layouts, and novel instances from the same object categories.

recorded with a stationary camera. These videos are actionless or state-only, as they do not come38

with any ground-truth action labels for the robot.39

We introduce our method ORION, short for Open-woRld video ImitatiON. Figure 1 visualizes a40

high-level overview of ORION. The core innovation lies in creating an object-centric spatiotemporal41

abstraction that effectively bridges the observational gap between human demonstration and robot42

execution. The design of ORION stems from our insight that manipulation tasks center around43

object interaction, and task completion depends on whether specific intermediate states, so-called44

subgoals, are reached. To capture the object-centric information in the video, we design a graph-45

based, object-centric representation, called Open-world Object Graphs (OOGs), to model the states46

of task-relevant objects and their relationships. An OOG has a two-level hierarchy. The high level47

consists of the object nodes and a hand node, where object nodes identify and localize the relevant48

objects by leveraging outputs from vision foundation models, while the hand node encodes the49

interaction information between the hand and objects, such as where to grasp. The low level consists50

of point nodes, which correspond to object keypoints, and the node features detail the motions of51

object keypoints in the 3D space.52

ORION extracts a manipulation plan from the video as a sequence of OOGs and uses the plan to53

construct a generalizable policy. In experiments, ORION constructs a policy robust to conditions54

vastly different from the one in the video. Using only an iPhone or an iPad to record a human per-55

forming tasks in everyday environments (e.g., an office or a kitchen), ORION policies are deployed56

in workspaces with drastically different visual backgrounds, camera angles, and spatial arrange-57

ments, and even generalize to manipulating unseen object instances of the same categories.58

In summary, our contribution is three-fold: 1) We pose the problem of learning vision-based robot59

manipulation from a single human video in the open-world setting; 2) We introduce Open-world60

Object Graphs (OOGs), a graph-based, object-centric representation for modeling the states and61

relations of task-relevant objects; and 3) We present ORION, an algorithm that uses a single video62

to construct a manipulation policy, which generalizes to conditions that differ in four key ways:63

visual backgrounds, camera perspectives, spatial configurations, and new object instances.64

2 Problem Formulation65

In this paper, we consider a vision-based, tabletop manipulation task, formulated as a finite-horizon66

Markov Decision Process (MDP) described by a tuple ⟨S,A,P, H,R, µ⟩, where S is the state space67

of raw sensory data including RGB-D images and robot proprioception, A is the action space of low-68

level robot commands, P : S × A 7→ S is the transition dynamics, H is the maximal task horizon,69

R is the sparse reward function, and µ is the initial state distributions of a task. In this work, we70

consider the case where task reward functions are defined based on the contact relations between71

a small set of task-relevant objects. For example, a mug is placed on top of a coaster, or a spoon72
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is put inside a bowl. A reward function returns 1 if all object relations of a task are satisfied and 073

otherwise. The primary objective of solving a manipulation task is to find a visuomotor policy π that74

maximizes the expected task success rate from a wide range of initial configurations, characterized75

by µ, where the states vary across the following four dimensions: 1) changing visual backgrounds,76

2) different camera angles, 3) different object instances from the same categories, and 4) varied77

spatial layouts of the task-relevant objects.78

We assume a robot does not have direct access to the ground-truth task reward or the physical79

states of task-relevant objects. We consider a setting where a single actionless video [15, 16] V is80

provided as a state-only demonstration. We assume V to be a video stream of a person manipulating81

the task-relevant objects with their single hand, captured as a sequence of RGB-D images using82

a stationary camera. V is an arbitrarily long video that involves a manipulation sequence where83

the contact relations among task-relevant objects and the hand change (e.g., an object is grasped84

or an object is placed on top of another). The assumption about V refers to tasks that involve85

diverse manipulation behaviors such as pick-and-place, assembly, object insertion. To avoid the86

inherent ambiguities of videos due to the distraction of irrelevant objects or ambiguities of what a87

user wants to specify (whether the color of a task-relevant mug matters to the task or not), each88

V is accompanied by a complete list of English descriptions of the task-relevant objects with their89

complete feature descriptions such as their color that a user wants, uniquely defining the object90

instances in V . Such a list is represented as a comma-separated list; an example is “[‘small red91

block’, ‘boat body’]” for the task shown in Figure 2. In this scenario, however, the robot is not92

pre-programmed to have access to ground-truth categories and locations of the task-relevant objects93

in V . We refer to this challenging setting as “open-world” [17], as the robot must imitate from V94

while not pre-programmed or trained to interact with the objects in V . To allow a robot to operate95

in this “open-world” setting, we assume access to common sense knowledge through large models96

pre-trained on internet-scale data, i.e., foundation models. For evaluation, we adopt the following97

procedure. Given a single video V that accomplishes a task instance drawn from µ, the performance98

of an approach is quantified by the average rewards received when evaluating new task instances99

drawn from the same µ.100

3 Method101

We introduce ORION (Open-woRld video ImitatiON), an algorithm that allows a robot to mimic102

how to perform a manipulation task given a single human video, V . To effectively construct a103

policy π from V , ORION employs a learning objective based on an object-centric prior. The goal104

is to create a policy π that directs the robot to move objects along 3D trajectories that mimic the105

directional and curvature patterns observed in V , relative to the objects’ initial and final positions.106

This objective is based on the observation that objects are likely to achieve target configurations107

by moving along trajectories similar to those in V . Key to ORION is generating a manipulation108

plan from V , which serves as the spatiotemporal abstraction of the video that guides the robot to109

perform a task. A plan is a sequence of object-centric keyframes that each specifies an initial or a110

subgoal state captured in V . We first introduce our formulation of the object-centric representation111

of a state, Open-world Object Graph (OOG), used in ORION, and then describe the algorithm that112

constructs a robot policy given a human video.113

3.1 Open-world Object Graph114

At the core of our approach is a graph-based, object-centric representation, Open-world Object115

Graphs (OOGs). OOGs use open-world vision models that model the visual scenes with task-116

relevant objects and the hand such that they naturally exclude the distracting factors in visual data117

and localize the task-relevant objects regardless of their spatial locations (see Section 3.2).118

We denote an OOG as G. At the high level, each object node corresponds to a task-relevant object119

from the result of open-world vision models. Every object node comes with node features, consisting120

of colored 3D point clouds derived from RGB-D observations. This node feature indicates both what121
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Figure 2: [Figure updated] Overview of plan generation in ORION. ORION generates a manipulation plan
from a given video V in order for subsequent policies to synthesize actions. ORION first tracks the objects and
keypoints across the video frames. Then keyframes are identified based on the velocity statistics of the keypoint
trajectories. Then ORION generates an Open-world Object Graph (OOG) for every keyframe, resulting in a
sequence of OOGs that serves as the spatiotemporal abstraction of the video. The figure is viewed best in color.

and where objects are and also represents their geometry information. Additionally, to inform the122

robot where to interact with objects (e.g. where to grasp), we introduce the specialized “hand node”,123

which stores the interaction cues such as contact points and the grip status (open or closed) that can124

be directly mapped to the robot end-effector during execution. At the low level, each point node125

corresponds to a keypoint that belongs to a task-relevant object. Every point node comes with the126

feature, namely the 3D motion trajectories. The feature explicitly models how an object should be127

moved during a manipulation task. In the rest of the paper, by motion features of a point node in Gl,128

we mean 3D trajectory between keyframe l and l + 1.129

In an OOG, all the object nodes and the hand node are fully connected, reflecting real-world spatial130

relationships. Each edge is augmented with a binary attribute that indicates if two objects or objects131

and the hand are in contact. This attribute allows our algorithm to check the set of satisfied contact132

relations, retrieving the matched OOG from the generated plan (see Section 3.2). The low-level point133

nodes are connected to their respective object node, indicating a belonging relationship. We denote134

node entities from human videos with a superscript V , and denote the ones from the robot rollout135

with a superscript Ro. Table 1 in the appendix also summarizes the variables needed in an OOG.136

3.2 Manipulation Plan Generation From V137

We describe the first part of ORION (see Figure 2), which automatically annotates the video and138

generates a manipulation plan from V . Here, a manipulation plan is a spatiotemporal abstraction139

of V that centers around the object states and their motions over time. Our core insight is that a140

task can be cost-effectively modeled with object locations at some keyframe states where the set of141

satisfied contact relations are changed, and abstract the rest of the states into 3D motions of objects.142

Concretely, a plan is represented as a sequence of OOGs, {Gl}Ll=0 which corresponds to L + 1143

keyframes in V , with G0 representing the initial state.144

Tracking task-relevant objects. ORION first localizes task-relevant objects in the video V . Given145

V and the list of object descriptions mentioned in Section 2, ORION uses an open-world vision146
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model, Grounded-SAM [18], to annotate video frames with segmentation masks of the task-relevant147

objects. In practice, due to the demanding computation of using open-world vision models, we148

reduce the computation by exploiting object permanence to track the objects. Specifically, ORION149

annotates the first video frame with Grounded-SAM, and then propagates the segmentation to the150

rest of the video using a Video Object Segmentation Model, Cutie [19].151

Discovering keyframes. After annotating the locations of task-relevant objects, we track their mo-152

tions across the video to discover the keyframes based on the velocity statistics of object motions.153

This design is based on the observation that changes in object contact relations due to manipu-154

lation are often accompanied by sudden changes in object motions (e.g., transitioning from free155

space motion to grasping an object). However, keeping full track of object point motion using tech-156

niques like optical flow estimation requires heavy computation and the tracking quality is suscepti-157

ble to noisy observations, largely due to occlusions during manipulation. We use a Track-Any-Point158

(TAP) model, namely CoTracker [20], to track a subset of points in a long-term video with explicit159

occlusion modeling, which has been successfully applied to track object motions in robot manipula-160

tion [21, 22]. Specifically, we first sample keypoints within the object segmentation of the first frame161

and track the trajectories across the video. The changes in velocity statistics are straightforward to162

detect based on the TAP trajectories, where we discover the keyframes using a standard unsuper-163

vised changepoint detection algorithm [23], a common technique that has been used in robotics164

applications [24, 25].165

Generating OOGs from V . Once ORION discovers the keyframes, it generates an OOG at166

each keyframe to model the state of task-relevant objects and the human hand in V . The creation167

of OOG nodes reuses the results from the annotation process: for object nodes, the point clouds168

for node features are back-projected from the object segmentation using depth data; for the point169

nodes, each node corresponds to the sampled keypoints, and their motion features, 3D trajectories,170

are back-projected from the TAP trajectories using depth. Additionally, hand information is required171

to specify the interaction points with task-relevant objects and the grip status to be mapped to the172

robot gripper. We use a hand-reconstruction model, HaMeR [26], which gives a reconstructed hand173

mesh that pinpoints the hand locations at each keyframe. The distances between the fingertips of the174

mesh help determine the grip status, i.e., whether it is open or closed.175

With all the node information, ORION establishes the edge connections between nodes in OOGs,176

representing contact relations. Since all object and hand locations are computed in the camera frame177

while the camera extrinsic of V is unknown, there is ambiguity when deciding the spatial rela-178

tions between objects. We exploit the assumption of tabletop manipulation, where a table is always179

present with its normal direction aligned with the z-axis of the world coordinate system. So ORION180

estimates the transformation matrix of the table plane and transforms all the point cloud features in181

OOGs to align with the xy plane of the world coordinate (Full details appear in Appendix C.2).182

Then, the contact relations in each state can be determined based on the spatial relations and the183

computed distances between point clouds. The relations allow ORION to match the test-time ob-184

servations with a keyframe state from the plan and subsequently decide which object to manipulate185

(see Section 3.3). In the end, ORION generates a complete OOG for each discovered keyframe.186

3.3 Robot Policy To Synthesize Actions187

Given a manipulation plan, ORION derives a manipulation policy that synthesizes actions based on188

the aforementioned objective to achieve object motion similarities (detailed in Figure 3). The action189

synthesis comprises three major steps: identify a keyframe from the plan that matches the current190

observation, predict object motions, and use the predictions to optimize the robot actions. These191

three steps are repeated until a task is completed or fails, detailed in Appendix E. The resulting192

ORION policy is robust to visual variations due to the use of open-world vision models. It also193

generalizes to different spatial locations due to our choice of representing object locations in object-194

centric frames and the optimization process that is not constrained to specific positions.195
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Figure 3: Overview of the ORION Policy. (1) ORION first localizes task-relevant objects at test time. (2)
Next, ORION retrieves the matched OOGs from the generated manipulation plan. (3) ORION obtains the
point clouds of the target object from the observation and the OOGs, namely otarget and ôtarget, and those of the
reference object, oref and ôref. Global registration is then performed to compute two transformations, one from
ôtarget to otarget, and the other from ôref to oref. (4) ORION then uses the computed transformations to warp
τV

target, keypoint trajectories of the target object from the OOGs, into the workspace (details in the main text).
The trajectory warping results in a predicted trajectory τRo

target. (5) ORION then uses τRo
target to optimize the SE(3)

action sequence of the robot end effector, which is subsequently used to command the robot.
Retrieving OOGs from the plan. ORION identifies the keyframe and retrieves OOGs to help196

decide what next actions to take. At test-time, ORION localizes objects in the new observations197

and estimates contact relations using the same vision pipeline as described in Section 3.2. Then198

ORION retrieves the OOG that has the same set of relations as the current state, allowing us to199

identify a pair (Gl,Gl+1), where Gl is the retrieved graph and Gl+1 the graph of the next keyframe.200

This pair of graphs provides sufficient information to decide which object to manipulate next, termed201

the target object, and we denote its point cloud at keyframe l as ôtarget, and its keypoint trajectories202

as τVtarget. A target object is the one in motion due to manipulation between two keyframes, and it203

is determined by computing the average velocity per-object using motion features in Gl. At the204

same time, another object, called the reference object, serves as a spatial reference for the target205

object’s movement when contact state relations change from Gl to Gl+1. We use the point cloud of206

the reference object at next keyframe l + 1, as object interactions might cause state changes of the207

reference object, and the information from the next keyframe gives us an accurate prediction of the208

trajectories. Once the target and reference objects are determined, we localize the corresponding209

objects in the new observations and denote their point clouds as otarget and oref, respectively.210

Predicting object motions. Given the target and reference objects from keyframes l, and l + 1, we211

predict the motion of the target object in the current state by warping the keypoint trajectories esti-212

mated from V . To warp the trajectories, we first identify the initial and goal locations of keypoints in213

the new configuration by leveraging information given by the OOG pair. We use global registration214

of point clouds [27] to align ôtarget with otarget and ôref with oref, giving us two transformations to215

compute the new starting and goal positions of target object keypoints conditioned on where the ref-216

erence object is. Then we normalize τVtarget with its starting and goal locations, obtaining τ̂target. τ̂target217

only contains the directional and curvature patterns that are independent of the absolute location of218

the initial and the goal keypoints. Then we scale it back to the workspace coordinate frame using219

the new starting and goal locations, resulting in new keypoint trajectories of the target object τRo
target.220

Optimizing robot actions. Once we obtain τRo
target, we optimize for a sequence of SE(3) transforma-221

tions that guide the robot end-effector to move. The SE(3) transformations are optimized to align222

the keypoint locations from previous frames to the next frames along the predicted trajectories:223

min
T0,T1,...,Ttl+1−tl

tl+1−tl∑
i=0

(τRo
target(i+ 1)− Tiτ

Ro
target(i)) (1)

where τRo
target(i) (0 ≤ i ≤ tl+1 − tl) represents the keypoint locations at timestep i along the trajec-224

tory. This optimization process naturally allows generalizations over spatial variations, as the action225

sequence always conditions on a new location instead of overfitting to fixed locations. To further226

specify where the gripper should interact with the object and whether it should be open or closed,227
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Figure 4: [Figure updated] This figure includes the following: task names, the initial and final frames of
human videos, the list of word descriptions provided along with videos, snapshots of robot evaluation, and
overall policy evaluation over all seven tasks, including the success rates and the quantification of failed trials,
separated by failure mode. “Missed tracking” is the perception failure due to the vision foundation models,
specifically the case of test-time object localization using Grounded-SAM.

we augment the resulting SE(3) sequence with the interaction information stored in the hand node228

h. To determine the initial pose of the end-effector in the sequence, ORION maps the two contact229

points using the computed transformation between ôtarget and otarget. The mapped points correspond230

to the two finger tips of the robot gripper, and the robot’s gripper pose is determined by solving231

a simple inverse kinematics problem using the robot URDF file. We implement a combination of232

inverse kinematics (IK) and joint impedance control to achieve precise and compliant execution.233

4 Experiments234

In this section, we report on experiments to answer the following questions regarding the effec-235

tiveness of ORION and the important design choices. 1) Is ORION effective at constructing ma-236

nipulation policies given a single human video in the open-world setting? 2) To what extent does237

the object-centric abstraction improve the policy performance? 3) How critical is it to model the238

object motions with keypoints and the TAP formulation? 4) How consistent is the performance of239

ORION’s policy given videos taken in different conditions? 5) How effectively does ORION scale240

to long-horizon manipulation tasks?241

4.1 Experiment Setup242

Task descriptions. We design seven tasks to evaluate ORION poliies: 1) Mug-on-coaster:243

placing a mug on the coaster; 2) Simple-boat-assembly: putting a small red244

block on a toy boat; 3) Chips-on-plate: placing a bag of chips on the plate;245

4) Succulents-in-llama-vase: inserting succulents into the llama vase; 5)246

Rearrange-mug-box: placing a mug on a coaster and placing a cream cheese box on a247

plate consecutively; 6) Complex-boat-assembly: placing both a small red block and a248

chimney-like part on top of a boat. 7) Prepare-breakfast: placing a mug on a coaster and249

putting a food box and can on the plate. The first four are “short-horizon” tasks that only require one250

contact relation between two objects, and the last three are “long-horizon” tasks that require more251

than one contact relation. Detailed success conditions of all tasks are described in Appendix E.252

Details about video recording, robot setup and evaluation can be found in Appendix B.253

Baselines. To understand the model capacity and validate our design choices, we compare ORION254

with baselines. Since no prior work exists that matches the exact setting of our approach, we adopt255

the most important components from prior works and treat them as baselines to our model. Specifi-256

cally, we implement the following two baselines: 1) HAND-MOTION-IMITATION [9, 28] is a baseline257
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Figure 5: (a) Comparison experiments between ORION and the two baselines, namely HAND-MOTION-
IMITATION and DENSE-CORRESPONDENCE. (b) Ablation study on using different videos of the task
Mug-on-coaster. We show the number of successful trials out of 15 total trials on the bar plots for each
setting. Figure 6 in Appendix F visualizes the different settings in this experiment.

that predicts robot actions by learning from the hand trajectories. The rest of the parts remain the258

same as ORION. We use this baseline to show whether it is critical to compute actions centering259

around objects. 2) DENSE-CORRESPONDENCE [15, 29] is a baseline that replace the TAP model260

in ORION with a dense correspondence model, optical flows. This baseline is used to evaluate261

whether our choice of TAP model is a better design. For this ablative study, we conduct experiments262

on Mug-on-coaster and Simple-boat-assembly to validate our model design, covering263

the distribution of common daily objects and assembly manipulation that requires precise control.264

4.2 Experimental Results265

Our evaluations are presented in Figures 4 and 5. We answer question (1) by showing the successful266

deployment of the ORION policies, while no other methods are designed to be able to operate in267

our setting. Furthermore, ORION yields an average of 66.7% success rates, which validates our268

model design in imitating from a single human video in the open-world setting.269

We then answer question (2), showing the comparison results in Figure 5(a) against the baseline,270

HAND-MOTION-IMITATION, which yields low success rates in both tasks. Concretely, HAND-271

MOTION-IMITATION typically succeeds in trials where the initial spatial layouts are similar to the272

one in V . Its major failure mode is not being able to reach the target object configuration, e.g.,273

misplacing the mug on the table while not achieving contact with the coaster. These results imply274

that learning from human hand motion from V results in poor generalization abilities of policies,275

supporting the design choice of ORION which focuses on the object-centric information.276

We further answer question (3) by comparing the performance between ORION and the op-277

tical flow baseline, DENSE-CORRESPONDENCE. The baseline performs drastically worse on278

Simple-boat-assembly than on Mug-on-coaster. Our further investigation shows that279

the baseline discovers keyframes in the middle of smooth transitions as opposed to changes in280

object contact relations, resulting in a manipulation plan that computes completely wrong actions.281

To answer question (4), we conduct controlled experiments using the task Mug-on-coaster. We282

record two additional videos of the task in very different visual conditions and spatial layouts (see283

pictures in Appendix F) and construct a policy from each video. Then, we compare the two policies284

against the original one using the same set of evaluation conditions. The result in Figure 5(b) shows285

that there is no statistically significant difference in the performance, demonstrating that ORION is286

robust to videos taken under different visual conditions. Finally, we show that ORION is effective287

in scaling to long-horizon tasks. This conclusion is supported by the performance among the pairs288

of Mug-on-coaster versus Rearrange-mug-box, and Simple-boat-assembly versus289

Complex-boat-assembly. Both the short-horizon tasks are subgoals of their long-horizon290

counterparts, yet we do not see any performance drop between the two. Such result shows that291

ORION excels at scaling to long-horizon tasks without a significant drop in performance.292
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A Related Work466

Learning Manipulation From Human Videos. Human videos offer a rich repertoire of object in-467

teraction behaviors, making them an invaluable data source for manipulation. A large body of work468

has explored how to leverage human video data for learning robot manipulation [9, 10, 30–35], either469

through pre-training a single latent representation [7, 9, 35], learning representations of perception470

or action priors [36, 37], learning an implicit reward function [6, 8], learning 6D representations of471

actions [38], or learning generative models that in-paint human morphologies [15, 28, 30, 39]. How-472

ever, they either require additional robot data from the target tasks or paired data between humans473

and robots. Our approach takes a novel direction by tackling how a robot can imitate or learn from474

a single human video only: the robot does not rely on pre-existing data, models, or ground-truth an-475

notations in scenes where video recording and robot evaluation take place. We refer to such a setting476

as open-world imitation from observation, where the robot is not programmed or trained to inter-477

act with the objects in the video a priori and the video data does not come with any robot actions.478

Our setting is closely related to the problem of “Imitation Learning from Observation” [12], where479

state-only demonstrations are used to construct policies for physical interaction. However, this line480

of prior work assumes simulators of demonstrated tasks exist and physical states of the agents or481

objects are known [40–44]. In contrast, our setting does not assume the digital replica of real-world482

tasks, and all the object information is only perceived through RGB-D videos.483

Learning Manipulation From a Single Demonstration. Studies have delved into learning manip-484

ulation policies from one demonstration. A notable one is one-shot imitation learning within meta-485

learning framework proposed by Duan et al. [45]. While prior works on one-shot imitation learning486

have shown a robot performing new tasks from one demonstration, they require extensive in-domain487

data and a well-curated set of meta-training tasks beforehand, leading to significant data collection488

costs and restricted policy generalization at test time due to the tailored nature of the training.489

An alternative approach involves using a single demonstration for initial guidance, refining the pol-490

icy through real-world self-play [22, 46–51]. However, this approach mainly applies to reset-free491

tasks and struggles with scaling to multi-stage tasks where resetting to the task initial conditions492

does not come free. Recently, foundation models are used to enable learning manipulation from493

a single demonstration, but existing works require ground-truth access to the robot action through494

kinesthetic teaching [52].495

Our work aligns with these studies in using a single demonstration for learning manipulation, but496

stands out by not needing prior data or self-play. Recent or concurrent works have also explored497

using a single video demonstration only [29, 53], but they either assume known object instances498

or lack in formulating systematic generalization in an open-world setting described in Section 2.499

With just one single human video, our method constructs a policy that successfully completes the500

task, while adapting to a wide range of visual and spatial differences from the task instance of video501

demonstration.502

Object-Centric Representation for Learning Robot Manipulation. The concept of object-503

centric representation has long been recognized for its potential to enhance robotic perception and504

manipulation by focusing on the objects within a scene. Prior works have shown effectiveness of505

such representation in downstream manipulation tasks by factorizing visual scenes into disentangled506

object concepts [54–58], but these works are typically confined to known object categories or507

instances. Recent developments in foundation models allow robots to access the open-world508

object concepts through pre-trained vision models [13, 14], enabling a wide range of abilities509

such as imitation of long-horizon tabletop manipulation [5, 59], in-context learning of tabletop510

manipulation [60], or mobile manipulation in the wild [61]. Building upon these advances, our work511

focuses on leveraging open-world, object-centric concepts in imitating manipulation behaviors512

from actionless human videos. We propose a graph-based representation called Open-world Object513

Graph (OOG), which allows a robot to imitate from a human video by leveraging the object-centric514

concepts. This proposed representation shares a similar vein with prior works that factorize scene or515

task-relevant visual concepts into scene graphs [31, 62–66]. However, our representation is tailored516
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to integrate open-world object concepts and enable generalization across different embodiments,517

specifically a human and a robot.518

B Additional Details of Experimental Setup519

Experimental setup. We design experiments to fully test the efficacy of our method by providing520

the robot with videos captured in everyday scenarios, which naturally encompass visual back-521

grounds and camera setups that are different from the one for the robot. Specifically, we record522

an RGB-D video of a person performing each of the seven tasks in everyday scenarios, such as an523

office or a kitchen. We use an iPad for recording, which comes with a TrueDepth Camera, and we524

fix it on a camera stand. The videos can be found in the supplementary materials. During test time,525

the robot receives visual data through a single RGB-D camera, Intel Realsense435, and performs526

manipulation in its workstation to evaluate policies. We use the 7DoF Franka Emika Panda robot527

for all the experiments.528

Evaluation protocol. As we describe in the experimental setup, the videos naturally include529

various visual backgrounds and camera perspectives that are significantly different from the robot530

workspace. Therefore, we only intentionally vary two dimensions before evaluating each trial of531

robot execution, namely the spatial layouts and the new object instances. Furthermore, the new532

object generalizations are included in the tasks Mug-on-coaster and Chips-on-plate as533

mugs and chip bags have many similar instances. As for the other three tasks, there are no novel534

objects involved, but we extensively vary the spatial layouts of task-relevant objects for evaluation.535

The policy performance of a task is the averaged success rates over 15 real-world trials. Aside from536

the success rates, we also group the failed executions into three types: Missed tracking of objects537

due to failure of the vision models, Missed grasping of objects during execution, and Unsatisifed538

contacts where the target object configurations are not achieved for reasons other than the previous539

two failure types.540

C Additional Technical Details541

C.1 Data Structure of an OOG.542

For easy reproducibility of the proposed method, we present a table that explains the data structure543

of an OOG.544

Node/Edge Type Attributes
G.voi Object Node 3D point cloud of an object.

G.vh Hand Node Hand mesh and locations of the thumb and index
finger.

G.vpij Point Node A trajectory of a TAP keypoint between two
keyframes, recorded in xyz positions.

G.eoik Object-Object Edge A binary value of contact or not.
G.ehi Object-Hand Edge A binary value of contact or not.

G.epij Object-Point Edge The presence of an edge represents the belonging
relation, and no specific feature is attached.

Table 1: Data Structure of an OOG. For a given OOG G = (V, E), it has V = {G.voi} ∪ {G.vh} ∪ {G.vpij},
and E = {G.eoik} ∪ {G.ehi} ∪ {G.epij}.

C.2 Implementation Details545

Changepoint detections. We use changepoint detection to identify changes in velocity statistics of546

TAP keypoints. Specifically, we use a kernel-based changepoint detection method and choose radial547
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basis function [23]. The implementation of this function is directly based on an existing library548

Ruptures [67].549

Plane estimation. In Section 3.2, we mentioned using the prior knowledge of tabletop manipula-550

tion scenarios and transforming the point clouds by estimating the table plane. Here, we explain551

how the plane estimation is computed. Concretely, we rely on the plane estimation function from552

Open3D [68], which gives an equation in the form of ax + by + cz = d. From this estimated553

plane equation, we can infer a normal vector of the estimated table plane, (a, b, c), in the camera554

coordinate frame. Then, we align this plane with xy plane in the world coordinate frame, where we555

compute a transformation matrix that displaces the normal vector (a, b, c) to the normalized vector556

(0, 0, 1) along the z-axis of the world coordinate frame. This transformation matrix is used to trans-557

form point clouds in every frame so that the plane of the table always aligns with the xy plane of the558

world coordinate.559

Object localization at test time. When we localize objects at test time, there could be some false560

positive segmentation of distracting objects. Such vision failures will prevent the robot policy from561

successfully executing actions. To exclude such false positive object segmentaiton, we use Segmen-562

tation Correspondence Model (SCM) from GROOT [11], where SCM filters out the false positive563

segmentation of the objects by computing the affinity scores between masks using DINOv2 features.564

Global registration. In this paper, we use global registration to compute the transformation between565

observed object point clouds from videos and those from rollout settings. We implement this part566

using a RANSAC-based registration function from Open3D [68]. Specifically, given two object567

point clouds, we first compute their features using Fast-Point Feature Histograms (FPFH) [69], and568

then perform a global RANSAC registration on the FPFH features of the point clouds [27].569

Implementation of SE(3) optimization. We parameterize each homogeneous matrix Ti into a570

translation variable and a rotation variable and randomly initialize each variable using the normal571

distribution. We choose quaternions as the representation for rotation variables, and we normalize572

the randomly initialized vectors for rotation so that they remain unit quaternions. With such param-573

eterization, we optimize the SE(3) end-effector trajectories T0, T1, . . . , Ttl+1−tl over the Objective574

(1). However, jointly optimizing both translation and rotation from scratch typically results in trivial575

solutions, where the rotation variables do not change much from the initialization due to the vanish-576

ing gradients. To avoid trivial solutions, we implement a two-stage process. In the first stage, we577

only optimize the rotation variables with 200 gradient steps. Then, the optimization proceeds to the578

second stage, where we optimize both the rotation and translation variables for another 200 gradient579

steps. In this case, we prevent the optimization process from getting stuck in trivial solutions for580

rotation variables. We implement the optimization process using Lietorch [70].581

D System Setup582

Details of camera observations. As mentioned in Section 4, we use an iPad with a TrueDepth583

camera for collecting human video demonstrations. We use an iOS app, Record3D, that allows us584

to access the depth images from the TrueDepth camera. We record RGB and depth image frames585

in sizes 1920 × 1080 and 640 × 480, respectively. To align the RGB images with the depth data,586

we resize the RGB frames to the size 640 × 480. The app also automatically records the camera587

intrinsics of the iPhone camera so that the back-projection of point clouds is made possible.588

To stream images at test time, we use an Intel Realsense D435i. In our robot experiments, we use589

RGB and depth images in the size 640 × 480 or 1280 × 720 in varied scenarios, all covered in our590

evaluations. Evaluating on different image sizes showcases that our method is not tailored to specific591

camera configurations, supporting the wide applicability of constructed policy.592

Implementation of real robot control. In our evaluation, we reset the robot to a default joint593

position before object interaction every time. Then we use a reaching primitive for the robot to reach594

the interaction points. Resetting to the default joint position enables an unoccluded observation of595

task-relevant objects at the start of each decision-making step. Note that the execution of object596
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interaction does not necessarily require resetting. To command the robot to interact with objects,597

we convert the optimized SE(3) action sequence to a sequence of joint configurations using inverse598

kinematics and control the robot using joint impedance control. We use the implementation of599

Deoxys [5] for the joint impedance controller that operates at 500 Hz. To avoid abrupt motion and600

make sure the actions are smooth, we further interpolate the joint sequence from the result of inverse601

kinematics. Specifically, we choose the interpolation so that the maximal displacement for each joint602

does not exceed 0.5 radian between two adjacent waypoints.603

E Success conditions of tasks604

We describe the success conditions for each of the tasks in detail:605

• Mug-on-coaster: A mug is placed upright on the coaster.606

• Simple-boat-assembly: A red block is placed in the slot closest to the back of the607

boat. The block needs to be upright in the slot.608

• Chips-on-plate: A bag of chips is placed on the plate, and the bag does not touch the609

table.610

• Succulents-in-llama-vase: A pot of succulents is inserted into a white vase in the611

shape of a llama.612

• Rearrange-mug-box: The mug is placed upright on the coaster, and the cream cheese613

box is placed on the plate.614

• Complex-boat-assembly: The chimney-like part is placed in the slot closest to the615

front of the boat. The red block is placed in the slot closest to the back of the boat. Both616

blocks need to be upright in the slots.617

• Prepare-breakfast: The mug is placed on top of a coaster, the cream cheese box is618

placed in the large area of the plate, and the food can is placed on the small area as shown619

in the video demonstration.620

In practice, we record the success and failure of a rollout as follows: If the program in ORION621

policy returns true when matching the observed state with the final OOG from a plan, we mark a622

trial as success as long as we observe that the object state indeed satisfies the success condition of623

a task as described above. Otherwise, if the robot generates dangerous actions (bumping into the624

table) or does not achieve the desired subgoal after executing the computed trajectory, we consider625

the rollout as a failure and we manually record the failure.626

F Additional Details on Experiments627

Diverse video recordings used in the ablation study. Figure 6 shows the three videos taken in very628

different scenarios: kitchen, office, and outdoor. The video taken in kitchen scenario is used in the629

major quantitative evaluation, termed “Original setting”. The other two settings are termed “Diverse630

setting 1” and “Diverse setting 2.” We conduct an ablation study where we compare policies imitated631

from these three videos, which inherently involve varied visual scenes, camera perspectives. The632

result of the ablation study is shown in Figure 5.633
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Kitchen
(Original setting)

Office
(Diverse setting 1)

Outdoor
(Diverse setting 2)

Figure 6: This figure visualizes the initial and final frames of the three videos of the same
task Mug-on-coaster.
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