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ABSTRACT

For inference operations in deep neural networks on enaeésgyit is desirable to
deploy a single pre-trained neural network model, which @amamically scale
across a computation range without comprising accuracyachieve this goal,
Incomplete Dot Product (IDP) has been proposed to use onlpses of terms in
dot products during forward propagation. However, theessame limitations, in-
cluding noticeable performance degradation in operagggns with low compu-
tational costs, and essential performance limitationsesIDP uses hand-crafted
profile coefficients. In this paper, we extend IDP by propgsiew training al-
gorithms involving a single profile, which may be trainablepoe-determined,
to significantly improve the overall performance, espégial operating regions
with low computational costs. Specifically, we propose taskfwise Early Stop-
ping and Loss Aggregation (TESLA) algorithm, which is shadvire our 3-layer
multilayer perceptron on MNIST that outperforms the ora@itDP by 32% when
only 10% of dot products terms are used and achieves 94.706aaycon aver-
age. By introducing trainable profile coefficients, TESLAther improves the
accuracy to 95.5% without specifying coefficients in adwanBesides, TESLA
is applied to the VGG-16 model, which achieves 80% accuraayguonly 20%
of dot product terms on CIFAR-10 and also keeps 60% accursiogwnly 30%
of dot product terms on CIFAR-100, but the original IDP penis like a random
guess in these two datasets at such low computation costallyi-iwe visualize
the learned representations at different dot product péages by class activation
map and show that, by applying TESLA, the learned repreentacan adapt
over a wide range of operation regions.

1 INTRODUCTION

Inference operations in deep neural networks on end deviceh as mobile phones, embedded
sensors, 10T devices, etc., have recently received iniogadtention including McMahan etlal.
(2016), Howard et all (2017), and_Teerapittayanon et all {20n such applications, it is desirable
to deploy a single pre-trained CNN model on end devices ardiibwing multiple operating regions
to meet different power consumption, latency, and accuraquirements. To achieve this goal,
McDanel et al.|(2017a) proposed the incomplete dot prodd) operation, where only a subset
of terms is used in dot products of forward propagation. Fnom on,z% dot product (DP), where 0
< x < 100, means the% of terms used in dot products. As illustrated in Figure 2690P means
half of filters are used during forward propagation, and tholy half of the output channels are
retained. To reduce the deviation induced by IDP, filterspai@ritized from most important to the
least important by pre-determined monotonically nonasing profile coefficients (say,, ..., 7n)
during training. Therefore, IDP can be applied at infereivoe with dynamically-adjusted degrees
of completeness (specified by the percentage of terms beiad) uo trade off accuracy slightly
for lowered power consumption and reduced latency. SpalificvGG-16 model with 50% DP
achieves 70% in accuracy on the CIFAR-10 dataset compatkd giandard network achieves only
35% accuracy when using the reduced channel set.

While the original IDP design seems promising, there arelim@ations. First, since the training
process aims at optimizing the loss function computed uaihgeights of the model (100% DP),
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Figure 1: Comparison between complete dot product (CDP) and incdmpla product (IDP) where
x% DP implies only x% of filters are used to compute the cowasding output channel. Since only
x% filters are unused, the resulting output is an approxonadf the output under CDP.

there will be a mismatch between training and testing. Itisuarprise that inference performance
significantly decreases in low DP percentages and thuswanedynamic computation range. To
mitigate this problem, the original IDP design utilizes thaltiple-profile training strategy, where
different profiles can be specified to focus on different datdpict ranges. In such a multiple-
profile training process, however, certain subset of wsighll be freezed in each training stage
corresponding to the profile being focused, and hence thealbyarformance may not be fully
optimized. Besides, each profile needs to maintain a sepfrsttand last layer for adjusting to its
own dot product range, resulting in additional memory oeadh The second limitation relates to
the pre-determined nature of profile coefficients. Whileeh&re multiple ways to set the profile
based on different dynamic range requirements, the oti¢fidfa design did not focus on finding
a single "best” profile that leads to the best performancstebd, they use multiple hand-crafted
profile coefficients, which make the system design less g¢menong different applications, and
hence may limit the overall performance of the system.

To reduce the mismatch between training and testing peences, we propose the Task-wise Early
Stopping and Loss Aggregation (TESLA) algorithm, in whichltiple loss functions are computed
in different DP percentages. By gradually aggregatingahess functions in decreasing order of DP
percentages as the objective function to be optimized, FESgnificantly improves testing perfor-
mances in low DP percentages without compromising accunatyedium to high DP percentages.
The loss functions can also be aggregated in random ordePofddcentages to make a variant
of TESLA, called Randomized TESLA (R-TESLA), which enablbester performances under pre-
specified operating regions of end devices. Moreover, waxrele constraint of pre-determined
profile coefficients and propose the alternate trainingguace (ATP) to alternately train the profile
coefficients along with weights of the model. By introducinginable profile coefficients, cus-
tomization among different applications can be achieveadnimore generalized way, and the overall
performance can also be further improved. This paper ha® vea major contributions: (1) We
propose the Task-wise Early Stopping and Loss Aggregali&$[A) algorithm and Randomized
TESLA that can achieve dynamic scaling over a computatiogean neural network inference
without compromising accuracy. (2) We also propose therAdtee Training Procedure (ATP) that
can learn the profile coefficients and the model weights sanebusly without the need of manual
configuration of the profile coefficients.

2 INCOMPLETENEURAL NETWORKS

Incomplete dot product (IDP) is a novel mechanism proposed/izDanel et al.|[(2017a) that can
be applied to a hidden layer of MLPs or deep CNN models to dyceliy lower the inference costs
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by computing only a subset of terms in dot products duringvémd propagation. By introducing
a set of non-increasing coefficienis referred to as a profile, to the channels during training, th
channels will be ordered implicitly in non-increasing ardeom the most important to the least
important. By simply dropping out less important channelgéerence time, it suffices to train
and deploy a single network, while still supporting diffieréevels of computation scaling without
compromising accuracy significantly. In this section, wiety introduce the main concepts of IDP.

2.1 INCOMPLETEDOT PRODUCT OPERATION

Mathematically, for an IDP fully-connected layer with inlimensionV and output dimension/,
the j-th output componeny; is computed as

N
Yi = Y viwjit, 1)
i=1

for j € {1,2,..., M}, wherez; is thei-th input componenty;; is the weight corresponding to the
j-th output component and theh input component, ang; is thei-th profile coefficient.

Similar expression can be derived for the IDP operationiadb a convolutional layer of CNN, as
illustrated in Figur€IlL. For an IDP convolutional layer withmber of input channels and number
of output channeld/, the j-th output channey; is computed as

N
Y, =" Z fji % Xi, (2
=1

forj € {1,2,..., M}, wheref;; x x; denotes the convolution operation of thth input channek;

and thei-th channel of thg-th filter f;;, and~; is the profile coefficient for thg-th filter. Note that,
instead of applying profile coefficients depthwise on eattrfbefore convolution as is the case in
the original IDP design, we multiply eaeh to each output channel after a complete convolution to
producey.. These two approaches, however, are equivalent with rielgidifference induced by
the first hidden layer. Since the output channgls become input channels’s to the next layer,
applyingy,’'s toy,’s is equivalent to applying them into the convolution ogiierain the next layer.

To compute IDP with a target dot product percentage, a trtedozersion of Ed.]1 or E§] 2 replaces
the original computation to keep only a subset of the begimtérms. As for the case with all terms
are kept, we refer to such operations as complete dot pr¢@n#?) or 100% DP, interchangeably.
Note that in the training process in the original IDP desagny CDP is used.

2.2 MULTIPLE-PROFILE INCOMPLETENEURAL NETWORKS

In the work of |l McDanel et al.l (2017a), several profile coedfits are proposed and applied in a
pre-determined manner. When only a single profile is appbetie model, the trade-off between
computation range and performance in high DP percentagen®is also demonstrated. Generally,
the faster the profile coefficients decrease, the larger otetipn range can be achieved, at the ex-
pense of a performance degradation in high DP percentagmeedlo cover a larger computation
range while maintaining the performance in high DP peraggntagions, McDanel et al. (2017a)
further introduced the multiple-profile incomplete neuratworks (MP-IDP), where different pro-
files can be specified to focus on different DP ranges. Duriigihg, all the specified profiles are
applied in increasing order of their operating DP ranges.ekVa profile is applied, only weights
corresponding to its operating DP range will be updatedjmgaveights corresponding to lower DP
percentages freezed since they have been trained in psestages, and weights corresponding to
higher IDP percentages set to zeros since they will be tldimkater stages. In such a stage-by-stage
training process, the overall performance may not be fuiynoized.

3 TASK-WISE EARLY STOPPING ANDLOSSAGGREGATION

As discussed in Sectidn 2, in the original IDP design, CDRBeduduring training but IDP is applied
at inference time. This mismatch leads to a noticeable diegian in inference performance, espe-
cially in low DP percentages. To mitigate this problem, wepwse the Task-wise Early Stopping
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and Loss Aggregation (TESLA) algorithm. In this papetask is defined as the learning process
that uses only a subset of weights determined by a DP pegmiidearn the optimal representa-
tions. For example, a task of 50% DP implies that the first bfaifetwork weights are used for dot
product computations and thus only these 50% of weightsheilupdated while conducting back-
propagation. With TESLA, we can optimize a network by taskthwifferent DP percentages to
support various levels of computation scaling and mearavkiiuce the mismatch between training
and inference. The design of TESLA is described as follows.

3.1 TASK-WISE EARLY STOPPING

Since tasks with different DP percentages may have diffdeamning difficulties and convergence
rates, we apply an early stopping mechanism to automatiadjust the learning processes of tasks.
Specifically, we keep all hyper-parameters unchanged é&tbemumbers of epoches, which are
controlled by the early stopping mechanism that halts #hieitrg process as long as the task perfor-
mance has not been improved for a certain number of iteratieor example, considering two tasks,
one using 70% DP (task 1) and the other using 40% DP (task 2fiyst@ptimize task 1 and then
switch to optimize task 2 until the optimization processasit 1 reaches the early stopping criterion.
With this task-wise early stopping, we are able to optimit¢he tasks sequentially, and each task
initializes its model using the weights that have been ojgtich for all previous tasks. However,
the weights used in task 2 is exactly a subset of weights ustabsk 1 such that the optimization
process of task 2 may contaminate the well-trained weigitsask 1. To reduce this unexpected
disturbance while learning multiple tasks, some kinds e§laggregation are needed to learn a new
task without sacrificing the performance of all the pastsask much.

Algorithm 1 Task-wise Early Stopping and Loss Aggregation, TESLA
1: Input:; a task set in decreasing ordEr= L;; aggregation coefficient
2: Initialization: L% «+ L, andi « 1
3: while i < size(T) do

4: optimizeLfbj until meeting early stopping criteria

5

6

7

Lfijl —ax L+ (1 —a)x L
11+ 1
: end while

Algorithm 2 Randomized TESLA, R-TESLA

1: Input: a task set in any ordef, = L;; allowable epochinaz_epoch; aggregation coefficient
2: Initialization: L% «+ Ly, i + 0, andn « 0

3: while n < max_epoch do

4: optimizeLbe until meeting early stopping criteria, which takespochs

5.  Sample atask calletl;,

6 LY« axLi+(1—a)x L
7. i+ i+1
8

9:

: n <+ n-+n_epcohs
end while

3.2 TASK-WISE LOSSAGGREGATION

Task-wise loss aggregation is therefore proposed to jolatrn the shared representation for all
tasks. By considering one new task at a time, we add the lofiseofiew task into the current
objective function and optimize the aggregated objectiwecfion such that tasks are optimized
incrementally andjointly. The aggregated objective function can be expressed as

LP¥ =Ly and LY, =ax Ly +(1—a)x LY | Vi=1,--- N -1 A3)
whereq« is the aggregation coefficient shared by all subsequens tas#él greatexx implies that
we care more about the optimization of the new task. As a cuesece, the objective function in
the whole learning process is an affine combination of thede®f currently considered tasks. By
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[ cop [ iop Table 1: Hyper-parameters in Experiments

:

Experiment MLP on MNIST VGG-16 on CIFAR-10 | VGG-16 on CIFAR-100
= = Tasks at DP % 100, 70, 40, 10 100, 50, 20 100, 70, 50, 30

[__FC, f0neurons ] [[2xConv, 128fiters, 3x3 | Learning rate 0.001 0.004 0.004
‘ FC, 100 neurons. ‘ ‘ 2xConv, 64 filters, 3x3 ‘ Optimizer ‘Adam SGD momentum =0.9] SGD momentum = 0.9
Batch size 28 32 64

[ FC,100neurons | [ Conv, 64 filters, 3x3

Aggregation coefficient 05 0.5 0.5

(a) MLP (b) VGG16 TESLA stopping criteria_|| notimprove in 4 epochs not improve in 4 epochg not improve in 4 epoch:
R-TESLA stopping criterig # epochs over 50 # epochs over 35 # epochs over 35
Initial weights random pre-trained on ImageN€t pre-trained on ImageNet

Figure 2: Network structures in study

task-wise loss aggregation, these losses are aggregatedientally and can be jointly optimized
to learn a shared representation to be relevant to all tasks.

3.3 TESLAAND RANDOMIZED TESLA

Task-wise Early Stopping and Loss Aggregation, TESLAWe integrate task-wise early stopping
and task-wise loss aggregation as TESLA to learn dynamieseptations in neural networks. The
entire training process optimizes all tasks in an arbitder. It is obvious that we have several
options to order tasks in (i) increasing, (ii) decreasindiiy) random DP percentages. Recall that we
add a non-increasing coefficients to prioritize terms in patimg dot product, and thus the beginning
terms, e.g. at 10% DP, are more important than the termstdtl&sterms. Therefore, discarding the
terms from the end is less harmful to the optimized pararagser TESLA is designed to optimize

tasks in decreasing order of DP percentages. The TESLAi#igois shown in Algorithnfi 1.

Randomized Task-wise Early Stopping and Loss AggregationR-TESLA. Here Randomized
means that tasks are optimized in random order. The benéfRsT&SLA is two fold. First, R-
TESLA provides an opportunity to turn attention back to oytie a task which had been halted
before, and allows to finetune the weights, which may have beataminated by other tasks. Sec-
ond, unlike TESLA that optimizes each task only once, R-TE&llows each task to be optimized
for multiple times, which can be specified by a customizek thstribution derived from the behav-
ioral statistics of users or the specification of hardwamggie The detailed procedures of R-TESLA
are in Algorithn{2.

3.4 TRAINABLE PROFILE COEFFICIENTS

In this section we propose to learn profile coefficients alaity weights of the model alternately.
We initialize all coefficients as one and as long as any upafgieofile coefficients, we manually clip
the coefficients to keep the non-increasing property. Ttegrate training procedure (ATP) relaxes
the constraint of fixed coefficients and we demonstrate thsilbdity of ATP in the experiment of
the MLP model on MNIST dataset in Sectidn 4.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of usEB§LA and R-TESLA to learn dynamic
representations in MLP and CNN models, with the widely-udathsets MNIST, CIFAR-10, and
CIFAR-100. Figurd R shows the network architectures inystiibte that while working on CIFAR-
100, the last fully connected layer of Figliule 2(b) is repthiog a single 100-class classifier. Here we
compare TESLA and R-TESLA with the original IDP design pregd by| McDanel et al. (2017a)
over a range of dynamic scaling during inference. All hyparameters and experiment settings are
summarized in Tablg 1.

4,1 MULTILAYER PERCEPTRONS

First, we consider a 3-layer MLP model, in which the IDP ofierais applied to the first hidden
layer, as shown in Figurg] 2(a), and evaluate on the MNISTsaatdn this experiment, we define
four tasks that optimize the model at 10%, 40%, 70%, and 108%&spectively. It is noteworthy
that defining too many tasks in our experiment would not benafch, since there must be a large
amount of shared parameters among tasks which makes the wudirable to overfitting.
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Figure 3: Performance comparisons by a MLP model over the MNIST datase

TESLA versus original IDP. We compare TESLA and the original IDP design under varioos pr
files. Figure 3(a) shows that at 20% DP, the original IDP aage80%, 63% and 55% accuracy
for the harmonic, all-one, and linear profiles respectinely TESLA keeps at least 88% accuracy
for all profiles at 20% DP and reaches average accuracy of®4sing the linear profile. Most
importantly, compared to the original IDP, TESLA performdyoabout 1% worse in accuracy at
100% DP but gains a significant improvement from 50% to 90%cueacy at 10% DP, which is
an acceptable trade-off under practical applications.

R-TESLA versus TESLA and original IDP. Figure 3(b) shows that R-TESLA outperforms the
original IDP by a large margin and R-TESLA has comparablégoerance with TESLA in most
cases. R-TESLA with the harmonic profile leads to the bestamesaccuracy of 95.2% in this
experiment. By observing the optimization progress, we firat TESLA achieves its best result
after completing the last task thanks to its ordinal optatian. On the other hand, we cannot
ensure that R-TESLA can make the ultimate model retainsésedynamic representations due to
its random nature.

Learn profile coefficients by ATP. Here we demonstrate the feasibility of learning profile Gieef
cients along with weights. From Figure 3(c), with the helptrainable profile coefficients, both
TESLA and R-TESLA further boost by 1% in average, and we alseove that the learned profile
coefficients are similar to harmonic ones as shown in Fig®. 3This may support why per-
formance of harmonic coefficients is the best in the origi®. By allowing coefficients to be
trainable, it is no longer to require hand-crafted profilefficients and determine the best profile
coefficients by extensive experiments.

4.2 CONVOLUTIONAL NEURAL NETWORKS

We choose the known VGG-16 model pre-trained on ImageNevatuate over CIFAR-10 and
CIFAR-100 dataset so that the last few dense layers arecegplay a 10-class classifier and a 100-
class classifier respectively. Here we use the linear prodiédficients to compare: (i) the original
IDP design, (ii) multiple-profile IDP design (MP-IDP) as pased inl_McDanel et al. (2017a), (iii)
TESLA, and (iv) R-TESLA. The experimental results are sumirea below.

VGG-16 on CIFAR-10. According to Figure 4(a), the performance of original IDPdfiyone coef-
ficients drops much faster than that by linear coefficientgpliug all-one coefficients is equivalent
to using the original VGG-16 network; however, linear pmitoefficients implicitly encourages
networks to learn channel importance in order, and alsgbrabout that pruning away later chan-
nels at different DP percentages does not hurt the perfaretdiat much. With the use of multiple
profiles, MP-IDP does enlarge the computational range witimerease in accuracy to 75% at 50%
DP. Furthermore, the proposed algorithms, TESLA and R-TA& ®loost the accuracy to reach 85%
at 50% DP, and an even higher accuracy at 100% DP.

Following the previous experiment, here we augment anatber task of 20% DP and observe
whether TESLA can leverage up the performance at low DP ptages by adding a task of a low
DP percentage. Figure 4(b) shows that TESLA and R-TESLAtyreddens the computational
ranges by making accuracy reaching 75% at 20% DP. We coteribis effect to applying TESLA
and R-TESLA in decreasing order of dot product percentagethat the representation learned
at 100% DP drives the training of representation at 50% DR;lwalso makes the representation
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2 tasks of 50/100% DP, CIFAR-10 3 tasks of 20/50/100% DP, CIFAR-10 4 tasks of 30/50/70/100% DP, CIFAR-100
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(a) CIFAR-10 (2 tasks) (b) CIFAR-10 (3 tasks) (c) CIFAR-100 (4 tasks)

Figure 4: Performance comparisons by the VGG-16 model over the CIEBRnd CIFAR-100 dataset
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Figure 5: CAMs at different DP percentages. Red colored text meansigvpsediction and green
colored text means correct prediction.

CE

original 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 6: CAMs of a testing image that is correctly classified at allcsfied DP percentages.

much easier to be learned at 20% DP. Compared to TESLA andR-ABVIP-IDP trains models
in increasing order of DP percentages and thus MP-IDP dbssa’ much improvement at lower
IDP percentages although adding another task at 20% DP.

VGG-16 on CIFAR-100. To sufficiently illustrate the effectiveness of the prombsg@proaches,
we evaluate over a larger dataset, CIFAR-100. Figure 4@ystthe performance of TESLA and
R-TESLA still keeps around 60% accuracy from 30% to 50% DRe¢twvbutperforms either original
IDP or MP-IDP by a significant margin, which is consistenthwiihe result of CIFAR-10. Specif-
ically, both TESLA and R-TESLA sacrifice about 4% accuracy@®% DP but gain a great im-
provements of 60% accuracy in low DP percentages.

CAM visualization. We visualize what the model sees at different DP percentagekeploying
the Class Activation Mapping (CAM) technique introduced Bhou et al. [(2016a). A resulting
CAM indicates how much each location contribute to the finasg prediction. In this stage, we
replace the max-pooling layers with average-pooling layard train the VGG-16 network with
linear coefficients optimized at 20%, 50%, 100% DP. From CAf¥\different DP percentages, we
found that the network is easier to make wrong predictio®& And 30% DP but still makes correct
prediction at 20% DP as shown in Figure 5 since the represensaat 20% DP are optimized.
This finding implies that we can specify any DP percentagéstoptimized for satisfying custom
requirements. Compared to Figlie 6, we also notice that &M<Cat 10% DP are almost the same
no matter the correctness of predictions, which indicatesiited capacity to capture meaningful
patterns, and thus the network at 10% DP behaves like a ragdess.
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5 RELATED WORK

Our work is rooted from IDP proposed by McDanel et al. (201 v&)ich, in addition to MLPs
and regular CNNs, can also be used in conjunction with otagamts of convolutional layers, such
as separable convolution layer Howard etlal. (2017) andrpioanvolutional layer McDanel et al.
(2017b). As discussed throughout this paper, our work estéime original IDP design by proposing
new training algorithms involving a single profile, which ynbe trainable or pre-determined, to
significantly improve the overall performance, especialliow DP percentages.

Network pruning is a widely-studied area that also aims am®ssing the CNN models. Early
works of network pruning construct a threshold for droppireights by information obtained from
Hessian matrix or inverse Hessian matrixlin_LeCun et al. ()9Bassibi & Stork (1993), which
adds memory and computation costs. In most of the recentsyanlgnitude-based pruning and
recovering are incorporated to compensate the potensalitecurred by inadequate pruning. For
example, | _Guo et all (2016) introduces the splicing opemnatiioenable connection recovery, and
Han et al.|(2016) directly makes the network dense againt &li €2016) also prune filters in CNNs
based on magnitude, but the number of filters pruned awayadh keger is decided by layer-wise
sensitivity. Besides magnitude-based pruning, a Taylpaagion-based criterion is introduced in
Molchanov et al.|(2016) to approximate the change in the ftwsttion induced by pruning. In ad-
dition to network pruning, some works focus on low-rank daposition for network compression.
For example,_Denton etlal. (2014) and Jaderberg €t al. (28dg¥pximate the weight matrix into
low-rank components by minimizing the reconstruction erpgu et al. (20117) further decomposes
the weight matrix into its low-rank and sparse componenhe®tvorks focus on grouping similar
weights, such as quantization by Han etlal. (2015), Gong ¢2@14), and_Zhou et al. (2017) and
weight sharing by Ullrich et all (2017), aiming at reducihg tevel of redundancy and the required
storage. Yet another approach introduces group sparsgjtyaezer to constrain the structure of the
model in|Wen et al! (2016), Zhou etlal. (2016b), and Alvarezatz81ann|(2016).

While all the above techniques are promising in reducingibe of the networks, none of them sup-
ports dynamic adjustment during inference as IDP doeshEurtore, most of the above techniques
involve retraining the model iteratively, resulting in cpatational overhead. In our proposed work,
the goal of efficient inference with dynamic adjustment candnadily fulfilled by training a single
model at once, and the effectiveness is expected to be funtipeoved by incorporating with other
techniques listed above.

6 CONCLUSION

In this paper, we extend the idea of incomplete dot prodi®)Iby proposing the Task-wise Early
Stopping and Loss Aggregation (TESLA) algorithm to sigmifity improve the performance of
neural networks with dynamically computation regions &iience time without significantly com-
promising accuracy. A task is defined as the learning protegsuses only a subset of weights
specified by a DP percentage to learn the optimal represemgadf the network. By introducing
non-increasing profile coefficients to prioritize weightsfitters during training, TESLA can be
used to optimize multiple tasks in decreasing order of DIegraages by aggregating the their loss
functions. Additionally, we propose Randomized TESLA (BRSLA) which optimizes tasks in ran-
dom order, and show that both TESLA and R-TESLA outperforigioal IDP and multiple-profile
IDP significantly. The visualization of the class activatimaps (CAMSs) provide a strong evidence
that the representations learned by TESLA allow dynanmjicalhling across a computation range to
meet various power consumption, latency and accuracynegents on end devices.
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