
Under review as a conference paper at ICLR 2018

TESLA: TASK-WISE EARLY STOPPING ANDLOSSAG-
GREGATION FOR DYNAMIC NEURAL NETWORK IN-
FERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

For inference operations in deep neural networks on end devices, it is desirable to
deploy a single pre-trained neural network model, which candynamically scale
across a computation range without comprising accuracy. Toachieve this goal,
Incomplete Dot Product (IDP) has been proposed to use only a subset of terms in
dot products during forward propagation. However, there are some limitations, in-
cluding noticeable performance degradation in operating regions with low compu-
tational costs, and essential performance limitations since IDP uses hand-crafted
profile coefficients. In this paper, we extend IDP by proposing new training al-
gorithms involving a single profile, which may be trainable or pre-determined,
to significantly improve the overall performance, especially in operating regions
with low computational costs. Specifically, we propose the Task-wise Early Stop-
ping and Loss Aggregation (TESLA) algorithm, which is showed in our 3-layer
multilayer perceptron on MNIST that outperforms the original IDP by 32% when
only 10% of dot products terms are used and achieves 94.7% accuracy on aver-
age. By introducing trainable profile coefficients, TESLA further improves the
accuracy to 95.5% without specifying coefficients in advance. Besides, TESLA
is applied to the VGG-16 model, which achieves 80% accuracy using only 20%
of dot product terms on CIFAR-10 and also keeps 60% accuracy using only 30%
of dot product terms on CIFAR-100, but the original IDP performs like a random
guess in these two datasets at such low computation costs. Finally, we visualize
the learned representations at different dot product percentages by class activation
map and show that, by applying TESLA, the learned representations can adapt
over a wide range of operation regions.

1 INTRODUCTION

Inference operations in deep neural networks on end devices, such as mobile phones, embedded
sensors, IoT devices, etc., have recently received increasing attention including McMahan et al.
(2016), Howard et al. (2017), and Teerapittayanon et al. (2017). In such applications, it is desirable
to deploy a single pre-trained CNN model on end devices, while allowing multiple operating regions
to meet different power consumption, latency, and accuracyrequirements. To achieve this goal,
McDanel et al. (2017a) proposed the incomplete dot product (IDP) operation, where only a subset
of terms is used in dot products of forward propagation. Fromnow on,x% dot product (DP), where 0
≤ x ≤ 100, means thex% of terms used in dot products. As illustrated in Figure 1, 50% DP means
half of filters are used during forward propagation, and thusonly half of the output channels are
retained. To reduce the deviation induced by IDP, filters areprioritized from most important to the
least important by pre-determined monotonically non-increasing profile coefficients (say,γ1, ..., γN)
during training. Therefore, IDP can be applied at inferencetime with dynamically-adjusted degrees
of completeness (specified by the percentage of terms being used) to trade off accuracy slightly
for lowered power consumption and reduced latency. Specifically, VGG-16 model with 50% DP
achieves 70% in accuracy on the CIFAR-10 dataset compared tothe standard network achieves only
35% accuracy when using the reduced channel set.

While the original IDP design seems promising, there are twolimitations. First, since the training
process aims at optimizing the loss function computed usingall weights of the model (100% DP),

1

Under review as a conference paper at ICLR 2018

Used filters Unused filters

Approximation

Complete Dot Product (CDP)

1

Y

1

Z

100% DP

1

k

N

x% DP

Incomplete Dot Product (x% DP)

X input
channels

Y filters with
X channels Y output

channels

Z filters with
Y channels Z output

channels
1

Y

1

Z

1

k

N

X input
channels

Y filters with
X channels Y output

channels

Z filters with
Y channels Z output

channels

Figure 1: Comparison between complete dot product (CDP) and incomplete dot product (IDP) where
x% DP implies only x% of filters are used to compute the corresponding output channel. Since only
x% filters are unused, the resulting output is an approximation of the output under CDP.

there will be a mismatch between training and testing. It is no surprise that inference performance
significantly decreases in low DP percentages and thus narrow the dynamic computation range. To
mitigate this problem, the original IDP design utilizes themultiple-profile training strategy, where
different profiles can be specified to focus on different dot product ranges. In such a multiple-
profile training process, however, certain subset of weights will be freezed in each training stage
corresponding to the profile being focused, and hence the overall performance may not be fully
optimized. Besides, each profile needs to maintain a separate first and last layer for adjusting to its
own dot product range, resulting in additional memory overhead. The second limitation relates to
the pre-determined nature of profile coefficients. While there are multiple ways to set the profile
based on different dynamic range requirements, the original IDP design did not focus on finding
a single ”best” profile that leads to the best performance. Instead, they use multiple hand-crafted
profile coefficients, which make the system design less general among different applications, and
hence may limit the overall performance of the system.

To reduce the mismatch between training and testing performances, we propose the Task-wise Early
Stopping and Loss Aggregation (TESLA) algorithm, in which multiple loss functions are computed
in different DP percentages. By gradually aggregating these loss functions in decreasing order of DP
percentages as the objective function to be optimized, TESLA significantly improves testing perfor-
mances in low DP percentages without compromising accuracyin medium to high DP percentages.
The loss functions can also be aggregated in random order of DP percentages to make a variant
of TESLA, called Randomized TESLA (R-TESLA), which enablesbetter performances under pre-
specified operating regions of end devices. Moreover, we relax the constraint of pre-determined
profile coefficients and propose the alternate training procedure (ATP) to alternately train the profile
coefficients along with weights of the model. By introducingtrainable profile coefficients, cus-
tomization among different applications can be achieved ina more generalized way, and the overall
performance can also be further improved. This paper has made two major contributions: (1) We
propose the Task-wise Early Stopping and Loss Aggregation (TESLA) algorithm and Randomized
TESLA that can achieve dynamic scaling over a computation range in neural network inference
without compromising accuracy. (2) We also propose the Alternate Training Procedure (ATP) that
can learn the profile coefficients and the model weights simultaneously without the need of manual
configuration of the profile coefficients.

2 INCOMPLETE NEURAL NETWORKS

Incomplete dot product (IDP) is a novel mechanism proposed by McDanel et al. (2017a) that can
be applied to a hidden layer of MLPs or deep CNN models to dynamically lower the inference costs

2

Under review as a conference paper at ICLR 2018

by computing only a subset of terms in dot products during forward propagation. By introducing
a set of non-increasing coefficientsγi, referred to as a profile, to the channels during training, the
channels will be ordered implicitly in non-increasing order from the most important to the least
important. By simply dropping out less important channels at inference time, it suffices to train
and deploy a single network, while still supporting different levels of computation scaling without
compromising accuracy significantly. In this section, we briefly introduce the main concepts of IDP.

2.1 INCOMPLETEDOT PRODUCT OPERATION

Mathematically, for an IDP fully-connected layer with input dimensionN and output dimensionM ,
thej-th output componentyj is computed as

yj =

N∑

i=1

γiwjixi, (1)

for j ∈ {1, 2, ...,M}, wherexi is thei-th input component,wji is the weight corresponding to the
j-th output component and thei-th input component, andγi is thei-th profile coefficient.

Similar expression can be derived for the IDP operation applied to a convolutional layer of CNN, as
illustrated in Figure 1. For an IDP convolutional layer withnumber of input channelsN and number
of output channelsM , thej-th output channelyj is computed as

yj = γj

N∑

i=1

fji ∗ xi, (2)

for j ∈ {1, 2, ...,M}, wherefji ∗ xi denotes the convolution operation of thei-th input channelxi
and thei-th channel of thej-th filter fji, andγj is the profile coefficient for thej-th filter. Note that,
instead of applying profile coefficients depthwise on each filter before convolution as is the case in
the original IDP design, we multiply eachγj to each output channel after a complete convolution to
produceyj . These two approaches, however, are equivalent with negligible difference induced by
the first hidden layer. Since the output channelsyj ’s become input channelsxi’s to the next layer,
applyingγj ’s to yj ’s is equivalent to applying them into the convolution operation in the next layer.

To compute IDP with a target dot product percentage, a truncated version of Eq. 1 or Eq. 2 replaces
the original computation to keep only a subset of the beginning terms. As for the case with all terms
are kept, we refer to such operations as complete dot product(CDP) or 100% DP, interchangeably.
Note that in the training process in the original IDP design,only CDP is used.

2.2 MULTIPLE-PROFILE INCOMPLETENEURAL NETWORKS

In the work of McDanel et al. (2017a), several profile coefficients are proposed and applied in a
pre-determined manner. When only a single profile is appliedto the model, the trade-off between
computation range and performance in high DP percentage regions is also demonstrated. Generally,
the faster the profile coefficients decrease, the larger computation range can be achieved, at the ex-
pense of a performance degradation in high DP percentage regions. To cover a larger computation
range while maintaining the performance in high DP percentage regions, McDanel et al. (2017a)
further introduced the multiple-profile incomplete neuralnetworks (MP-IDP), where different pro-
files can be specified to focus on different DP ranges. During training, all the specified profiles are
applied in increasing order of their operating DP ranges. When a profile is applied, only weights
corresponding to its operating DP range will be updated, leaving weights corresponding to lower DP
percentages freezed since they have been trained in previous stages, and weights corresponding to
higher IDP percentages set to zeros since they will be trained in later stages. In such a stage-by-stage
training process, the overall performance may not be fully optimized.

3 TASK-WISE EARLY STOPPING AND LOSSAGGREGATION

As discussed in Section 2, in the original IDP design, CDP is used during training but IDP is applied
at inference time. This mismatch leads to a noticeable degradation in inference performance, espe-
cially in low DP percentages. To mitigate this problem, we propose the Task-wise Early Stopping

3

Under review as a conference paper at ICLR 2018

and Loss Aggregation (TESLA) algorithm. In this paper, atask is defined as the learning process
that uses only a subset of weights determined by a DP percentage to learn the optimal representa-
tions. For example, a task of 50% DP implies that the first halfof network weights are used for dot
product computations and thus only these 50% of weights willbe updated while conducting back-
propagation. With TESLA, we can optimize a network by tasks with different DP percentages to
support various levels of computation scaling and meanwhile reduce the mismatch between training
and inference. The design of TESLA is described as follows.

3.1 TASK-WISE EARLY STOPPING

Since tasks with different DP percentages may have different learning difficulties and convergence
rates, we apply an early stopping mechanism to automatically adjust the learning processes of tasks.
Specifically, we keep all hyper-parameters unchanged except the numbers of epoches, which are
controlled by the early stopping mechanism that halts the training process as long as the task perfor-
mance has not been improved for a certain number of iterations. For example, considering two tasks,
one using 70% DP (task 1) and the other using 40% DP (task 2), wefirst optimize task 1 and then
switch to optimize task 2 until the optimization process of task 1 reaches the early stopping criterion.
With this task-wise early stopping, we are able to optimize all the tasks sequentially, and each task
initializes its model using the weights that have been optimized for all previous tasks. However,
the weights used in task 2 is exactly a subset of weights used in task 1 such that the optimization
process of task 2 may contaminate the well-trained weights for task 1. To reduce this unexpected
disturbance while learning multiple tasks, some kinds of loss aggregation are needed to learn a new
task without sacrificing the performance of all the past tasks too much.

Algorithm 1 Task-wise Early Stopping and Loss Aggregation, TESLA

1: Input: a task set in decreasing order,T = Li; aggregation coefficientα
2: Initialization:Lobj

1
← L1 andi← 1

3: while i ≤ size(T) do
4: optimizeLobj

i until meeting early stopping criteria
5: L

obj
i+1
← α× Li+1 + (1− α)× L

obj
i

6: i← i+ 1
7: end while

Algorithm 2 Randomized TESLA, R-TESLA

1: Input: a task set in any order,T = Li; allowable epoch,max epoch; aggregation coefficientα
2: Initialization:Lobj

1
← L1, i← 0, andn← 0

3: while n ≤ max epoch do
4: optimizeLobj

i until meeting early stopping criteria, which takesn epochs
5: Sample a task calledLk

6: L
obj
i+1
← α× Lk + (1− α) × L

obj
i

7: i← i+ 1
8: n← n+ n epcohs
9: end while

3.2 TASK-WISE LOSSAGGREGATION

Task-wise loss aggregation is therefore proposed to jointly learn the shared representation for all
tasks. By considering one new task at a time, we add the loss ofthe new task into the current
objective function and optimize the aggregated objective function such that tasks are optimized
incrementally andjointly. The aggregated objective function can be expressed as

L
obj
1 = L1 and L

obj
i+1

= α× Li+1 + (1− α)× L
obj
i , ∀i = 1, · · · , N − 1 (3)

whereα is the aggregation coefficient shared by all subsequent tasks and greaterα implies that
we care more about the optimization of the new task. As a consequence, the objective function in
the whole learning process is an affine combination of the losses of currently considered tasks. By

4

Under review as a conference paper at ICLR 2018

CDP IDP

(a) MLP (b) VGG16

Conv, 64 filters, 3x3

2 x Conv, 64 filters, 3x3

2 x Conv, 128 filters, 3x3

3 x Conv, 256 filters, 3x3

5 x Conv, 512 filters, 3x3

FC, 512 neurons

FC, 10 neurons

FC, 100 neurons

FC, 100 neurons

FC, 10 neurons

Figure 2: Network structures in study

Table 1: Hyper-parameters in Experiments

Experiment MLP on MNIST VGG-16 on CIFAR-10 VGG-16 on CIFAR-100
Tasks at DP % 100, 70, 40, 10 100, 50, 20 100, 70, 50, 30
Learning rate 0.001 0.004 0.004
Optimizer Adam SGD momentum = 0.9 SGD momentum = 0.9
Batch size 28 32 64
Aggregation coefficient 0.5 0.5 0.5
TESLA stopping criteria not improve in 4 epochs not improve in 4 epochs not improve in 4 epochs
R-TESLA stopping criteria # epochs over 50 # epochs over 35 # epochs over 35
Initial weights random pre-trained on ImageNet pre-trained on ImageNet

task-wise loss aggregation, these losses are aggregated incrementally and can be jointly optimized
to learn a shared representation to be relevant to all tasks.

3.3 TESLAAND RANDOMIZED TESLA

Task-wise Early Stopping and Loss Aggregation, TESLA.We integrate task-wise early stopping
and task-wise loss aggregation as TESLA to learn dynamic representations in neural networks. The
entire training process optimizes all tasks in an arbitraryorder. It is obvious that we have several
options to order tasks in (i) increasing, (ii) decreasing, or (iii) random DP percentages. Recall that we
add a non-increasing coefficients to prioritize terms in computing dot product, and thus the beginning
terms, e.g. at 10% DP, are more important than the terms at last 10% terms. Therefore, discarding the
terms from the end is less harmful to the optimized parameters, so TESLA is designed to optimize
tasks in decreasing order of DP percentages. The TESLA algorithm is shown in Algorithm 1.

Randomized Task-wise Early Stopping and Loss Aggregation,R-TESLA. Here Randomized
means that tasks are optimized in random order. The benefits of R-TESLA is two fold. First, R-
TESLA provides an opportunity to turn attention back to optimize a task which had been halted
before, and allows to finetune the weights, which may have been contaminated by other tasks. Sec-
ond, unlike TESLA that optimizes each task only once, R-TESLA allows each task to be optimized
for multiple times, which can be specified by a customized task distribution derived from the behav-
ioral statistics of users or the specification of hardware design. The detailed procedures of R-TESLA
are in Algorithm 2.

3.4 TRAINABLE PROFILE COEFFICIENTS

In this section we propose to learn profile coefficients alongwith weights of the model alternately.
We initialize all coefficients as one and as long as any updateof profile coefficients, we manually clip
the coefficients to keep the non-increasing property. The alternate training procedure (ATP) relaxes
the constraint of fixed coefficients and we demonstrate the feasibility of ATP in the experiment of
the MLP model on MNIST dataset in Section 4.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of using TESLA and R-TESLA to learn dynamic
representations in MLP and CNN models, with the widely-useddatasets MNIST, CIFAR-10, and
CIFAR-100. Figure 2 shows the network architectures in study. Note that while working on CIFAR-
100, the last fully connected layer of Figure 2(b) is replaced by a single 100-class classifier. Here we
compare TESLA and R-TESLA with the original IDP design proposed by McDanel et al. (2017a)
over a range of dynamic scaling during inference. All hyper-parameters and experiment settings are
summarized in Table 1.

4.1 MULTILAYER PERCEPTRONS

First, we consider a 3-layer MLP model, in which the IDP operation is applied to the first hidden
layer, as shown in Figure 2(a), and evaluate on the MNIST dataset. In this experiment, we define
four tasks that optimize the model at 10%, 40%, 70%, and 100% DP, respectively. It is noteworthy
that defining too many tasks in our experiment would not benefit much, since there must be a large
amount of shared parameters among tasks which makes the model vulnerable to overfitting.

5

Under review as a conference paper at ICLR 2018

50

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

Incomplete Dot Product (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Coef. Function
all−one
harmonic
linear

Algorithm
TESLA
Original IDP

TESLA on MLP (MNIST)

(a) TESLA

50

55

60

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

Incomplete Dot Product (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Coef. Function
all−one
harmonic
linear

Algorithm
R−TESLA
Original IDP

R−TESLA on MLP (MNIST)

(b) R-TESLA

65

70

75

80

85

90

95

100

10 20 30 40 50 60 70 80 90 100

Incomplete Dot Product (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Algorithm
Original IDP
R−TESLA
R−TESLA with ATP
TESLA
TESLA with ATP

ATP on MLP (MNIST)

(c) With ATP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

Index

V
al

ue

Algorithm
Harmonic
TESLA with ATP
R−TESLA with ATP

Trained Coefficients using ATP

(d) Trainable coefficients

Figure 3: Performance comparisons by a MLP model over the MNIST dataset

TESLA versus original IDP. We compare TESLA and the original IDP design under various pro-
files. Figure 3(a) shows that at 20% DP, the original IDP achieves 80%, 63% and 55% accuracy
for the harmonic, all-one, and linear profiles respectivelybut TESLA keeps at least 88% accuracy
for all profiles at 20% DP and reaches average accuracy of 94.7% using the linear profile. Most
importantly, compared to the original IDP, TESLA performs only about 1% worse in accuracy at
100% DP but gains a significant improvement from 50% to 90% in accuracy at 10% DP, which is
an acceptable trade-off under practical applications.

R-TESLA versus TESLA and original IDP. Figure 3(b) shows that R-TESLA outperforms the
original IDP by a large margin and R-TESLA has comparable performance with TESLA in most
cases. R-TESLA with the harmonic profile leads to the best average accuracy of 95.2% in this
experiment. By observing the optimization progress, we findthat TESLA achieves its best result
after completing the last task thanks to its ordinal optimization. On the other hand, we cannot
ensure that R-TESLA can make the ultimate model retains the best dynamic representations due to
its random nature.

Learn profile coefficients by ATP. Here we demonstrate the feasibility of learning profile coeffi-
cients along with weights. From Figure 3(c), with the help oftrainable profile coefficients, both
TESLA and R-TESLA further boost by 1% in average, and we also observe that the learned profile
coefficients are similar to harmonic ones as shown in Figure 3(d). This may support why per-
formance of harmonic coefficients is the best in the originalIDP. By allowing coefficients to be
trainable, it is no longer to require hand-crafted profile coefficients and determine the best profile
coefficients by extensive experiments.

4.2 CONVOLUTIONAL NEURAL NETWORKS

We choose the known VGG-16 model pre-trained on ImageNet to evaluate over CIFAR-10 and
CIFAR-100 dataset so that the last few dense layers are replaced by a 10-class classifier and a 100-
class classifier respectively. Here we use the linear profilecoefficients to compare: (i) the original
IDP design, (ii) multiple-profile IDP design (MP-IDP) as proposed in McDanel et al. (2017a), (iii)
TESLA, and (iv) R-TESLA. The experimental results are summarized below.

VGG-16 on CIFAR-10. According to Figure 4(a), the performance of original IDP byall-one coef-
ficients drops much faster than that by linear coefficients. Appling all-one coefficients is equivalent
to using the original VGG-16 network; however, linear profile coefficients implicitly encourages
networks to learn channel importance in order, and also brings about that pruning away later chan-
nels at different DP percentages does not hurt the performance that much. With the use of multiple
profiles, MP-IDP does enlarge the computational range with an increase in accuracy to 75% at 50%
DP. Furthermore, the proposed algorithms, TESLA and R-TESLA, boost the accuracy to reach 85%
at 50% DP, and an even higher accuracy at 100% DP.

Following the previous experiment, here we augment anothernew task of 20% DP and observe
whether TESLA can leverage up the performance at low DP percentages by adding a task of a low
DP percentage. Figure 4(b) shows that TESLA and R-TESLA greatly widens the computational
ranges by making accuracy reaching 75% at 20% DP. We contribute this effect to applying TESLA
and R-TESLA in decreasing order of dot product percentages so that the representation learned
at 100% DP drives the training of representation at 50% DP, which also makes the representation

6

Under review as a conference paper at ICLR 2018

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100
Incomplete Dot Product (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
) Algorithm

Original IDP(all−one)
Original IDP(linear)
Multiple Profile IDP
TESLA
R−TESLA

2 tasks of 50/100% DP, CIFAR−10

(a) CIFAR-10 (2 tasks)

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100
Incomplete Dot Product (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

3 tasks of 20/50/100% DP, CIFAR−10

(b) CIFAR-10 (3 tasks)

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 90 100
Incomplete Dot Product (%)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Algorithm
Original IDP (all−one)
Original IDP (linear)
Multiple Profile IDP
TESLA
R−TESLA

4 tasks of 30/50/70/100% DP, CIFAR−100

(c) CIFAR-100 (4 tasks)

Figure 4: Performance comparisons by the VGG-16 model over the CIFAR-10 and CIFAR-100 dataset

Figure 5: CAMs at different DP percentages. Red colored text means wrong prediction and green
colored text means correct prediction.

Figure 6: CAMs of a testing image that is correctly classified at all specified DP percentages.

much easier to be learned at 20% DP. Compared to TESLA and R-TESLA, MP-IDP trains models
in increasing order of DP percentages and thus MP-IDP doesn’t see much improvement at lower
IDP percentages although adding another task at 20% DP.

VGG-16 on CIFAR-100. To sufficiently illustrate the effectiveness of the proposed approaches,
we evaluate over a larger dataset, CIFAR-100. Figure 4(c) shows the performance of TESLA and
R-TESLA still keeps around 60% accuracy from 30% to 50% DP, which outperforms either original
IDP or MP-IDP by a significant margin, which is consistent with the result of CIFAR-10. Specif-
ically, both TESLA and R-TESLA sacrifice about 4% accuracy at100% DP but gain a great im-
provements of 60% accuracy in low DP percentages.

CAM visualization. We visualize what the model sees at different DP percentagesby deploying
the Class Activation Mapping (CAM) technique introduced byZhou et al. (2016a). A resulting
CAM indicates how much each location contribute to the final class prediction. In this stage, we
replace the max-pooling layers with average-pooling layers and train the VGG-16 network with
linear coefficients optimized at 20%, 50%, 100% DP. From CAMsat different DP percentages, we
found that the network is easier to make wrong prediction at 10% and 30% DP but still makes correct
prediction at 20% DP as shown in Figure 5 since the representations at 20% DP are optimized.
This finding implies that we can specify any DP percentages tobe optimized for satisfying custom
requirements. Compared to Figure 6, we also notice that the CAMs at 10% DP are almost the same
no matter the correctness of predictions, which indicates too limited capacity to capture meaningful
patterns, and thus the network at 10% DP behaves like a randomguess.

7

Under review as a conference paper at ICLR 2018

5 RELATED WORK

Our work is rooted from IDP proposed by McDanel et al. (2017a), which, in addition to MLPs
and regular CNNs, can also be used in conjunction with other variants of convolutional layers, such
as separable convolution layer Howard et al. (2017) and binary convolutional layer McDanel et al.
(2017b). As discussed throughout this paper, our work extends the original IDP design by proposing
new training algorithms involving a single profile, which may be trainable or pre-determined, to
significantly improve the overall performance, especiallyin low DP percentages.

Network pruning is a widely-studied area that also aims at compressing the CNN models. Early
works of network pruning construct a threshold for droppingweights by information obtained from
Hessian matrix or inverse Hessian matrix in LeCun et al. (1990); Hassibi & Stork (1993), which
adds memory and computation costs. In most of the recent works, magnitude-based pruning and
recovering are incorporated to compensate the potential loss incurred by inadequate pruning. For
example, Guo et al. (2016) introduces the splicing operation to enable connection recovery, and
Han et al. (2016) directly makes the network dense again. Li et al. (2016) also prune filters in CNNs
based on magnitude, but the number of filters pruned away in each layer is decided by layer-wise
sensitivity. Besides magnitude-based pruning, a Taylor expansion-based criterion is introduced in
Molchanov et al. (2016) to approximate the change in the costfunction induced by pruning. In ad-
dition to network pruning, some works focus on low-rank decomposition for network compression.
For example, Denton et al. (2014) and Jaderberg et al. (2014)approximate the weight matrix into
low-rank components by minimizing the reconstruction error. Yu et al. (2017) further decomposes
the weight matrix into its low-rank and sparse component. Other works focus on grouping similar
weights, such as quantization by Han et al. (2015), Gong et al. (2014), and Zhou et al. (2017) and
weight sharing by Ullrich et al. (2017), aiming at reducing the level of redundancy and the required
storage. Yet another approach introduces group sparsity regularizer to constrain the structure of the
model in Wen et al. (2016), Zhou et al. (2016b), and Alvarez & Salzmann (2016).

While all the above techniques are promising in reducing thesize of the networks, none of them sup-
ports dynamic adjustment during inference as IDP does. Furthermore, most of the above techniques
involve retraining the model iteratively, resulting in computational overhead. In our proposed work,
the goal of efficient inference with dynamic adjustment can be readily fulfilled by training a single
model at once, and the effectiveness is expected to be further improved by incorporating with other
techniques listed above.

6 CONCLUSION

In this paper, we extend the idea of incomplete dot product (IDP) by proposing the Task-wise Early
Stopping and Loss Aggregation (TESLA) algorithm to significantly improve the performance of
neural networks with dynamically computation regions at inference time without significantly com-
promising accuracy. A task is defined as the learning processthat uses only a subset of weights
specified by a DP percentage to learn the optimal representations of the network. By introducing
non-increasing profile coefficients to prioritize weights or filters during training, TESLA can be
used to optimize multiple tasks in decreasing order of DP percentages by aggregating the their loss
functions. Additionally, we propose Randomized TESLA (R-TESLA) which optimizes tasks in ran-
dom order, and show that both TESLA and R-TESLA outperform original IDP and multiple-profile
IDP significantly. The visualization of the class activation maps (CAMs) provide a strong evidence
that the representations learned by TESLA allow dynamically scaling across a computation range to
meet various power consumption, latency and accuracy requirements on end devices.

REFERENCES

Jose M Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Advances in Neural Information Processing Systems, pp. 2270–2278, 2016.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. InAdvances in Neural Informa-
tion Processing Systems, pp. 1269–1277, 2014.

8

Under review as a conference paper at ICLR 2018

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization.arXiv preprint arXiv:1412.6115, 2014.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Advances In Neural Information Processing Systems, pp. 1379–1387, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding.arXiv preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Va-
jda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training for deep neural networks.
2016.

Babak Hassibi and David G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. InAdvances in Neural Information Processing Systems 5, pp. 164–171. 1993.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications.arXiv preprint arXiv:1704.04861, 2017.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions.arXiv preprint arXiv:1405.3866, 2014.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. InAdvances in Neural
Information Processing Systems 2, pp. 598–605. 1990.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets.arXiv preprint arXiv:1608.08710, 2016.

Bradley McDanel, Surat Teerapittayanon, and HT Kung. Incomplete dot products for dynamic
computation scaling in neural network inference. 2017a.

Bradley McDanel, Surat Teerapittayanon, and H.T. Kung. Embedded binarized neural networks. In
Proceedings of the 2017 International Conference on Embedded Wireless Systems and Networks,
2017b.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Aguera y Arcas. Federated learning
of deep networks using model averaging. 2016.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, andJan Kautz. Pruning convolutional
neural networks for resource efficient inference. 2016.

Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed deep neural networks over the
cloud, the edge and end devices. InDistributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on, pp. 328–339. IEEE, 2017.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. arXiv preprint arXiv:1702.04008, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. InAdvances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. On compressing deep models by low
rank and sparse decomposition. InProceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7370–7379, 2017.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights.arXiv preprint arXiv:1702.03044, 2017.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, andAntonio Torralba. Learning deep
features for discriminative localization. InProceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2921–2929, 2016a.

Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. InEuropean
Conference on Computer Vision, pp. 662–677. Springer, 2016b.

9

	Introduction
	Incomplete Neural Networks
	Incomplete Dot Product Operation
	Multiple-Profile Incomplete Neural Networks

	Task-wise Early Stopping and Loss Aggregation
	Task-wise Early Stopping
	Task-wise Loss Aggregation
	TESLA and Randomized TESLA
	Trainable Profile Coefficients

	Experiments
	Multilayer Perceptrons
	Convolutional Neural Networks

	Related work
	Conclusion

