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ABSTRACT

A central objective of manipulation policy design is to enable robots to comprehend
human instructions and predict generalized actions in unstructured environments.
Recent autoregressive vision-language-action (VLA) approaches discretize actions
into bins to exploit the pretrained reasoning and generation paradigms of vision-
language models (VLMs). While these models achieve efficient and scalable
training, the discretization undermines the continuity required for precise control.
In contrast, diffusion-based VLA methods incorporate an additional diffusion
head to predict continuous actions, but they rely solely on feature representations
extracted from the VLM, without leveraging the pretrained large language model
(LLM) as an expert for iterative action generation. To integrate the complementary
strengths of autoregressive and diffusion generation, we introduce HybridVLA,
which innovatively leverages a shared LLM backbone to perform iterative action
prediction through both paradigms. Specifically, a collaborative training recipe is
proposed, incorporating diffusion denoising into the next-token prediction process
and mitigating interference between the two generation paradigms. With this
recipe, we find these two action prediction methods not only reinforce each other
but also exhibit varying strengths across different scenarios. Therefore, we design
a collaborative action ensemble mechanism that adaptively fuses both predictions,
leading to more robust control. HybridVLA outperforms previous state-of-the-art
VLA methods by 17% and 19% in mean success rate on simulation and real-world
tasks, respectively, while demonstrating generalization to unseen configurations.

1 INTRODUCTION

Developing intelligent robots capable of performing manipulation tasks demands robust poli-
cies (Driess et al., 2023; Huang et al., 2023). In dynamic and unstructured real-world environments,
such policies need to interpret human instructions and generalize across a wide range of complex
tasks. Recently, vision-language models (VLMs) (Alayrac et al., 2022; Li et al., 2023a) have achieved
significant breakthroughs in common-sense reasoning, primarily driven by advances in model ar-
chitecture, large-scale pretraining, and the iterative generation paradigm. Building on this success,
several studies have extended VLMs into vision-language-action (VLA) models, enabling them to
predict low-level action poses for robotic manipulation (Brohan et al., 2023; Kim et al., 2024). This
paradigm outlines a promising roadmap for building foundation models to facilitate generalist robots.

On the one hand, autoregressive VLA methods (Li et al., 2024b; Kim et al., 2024) emulate the
pretrained reasoning and generation paradigms of VLMs for next action-token prediction, enabling
efficient and scalable training (Pertsch et al., 2025). These methods enable generalized action
prediction by quantizing continuous actions into discrete bins that occupy part of the LLM’s original
vocabulary. However, this discretization disrupts the continuity of action poses and hinders precise
control (Wen et al., 2024a). On the other hand, building on the success of diffusion models in content
generation (Ho et al., 2022; Peebles & Xie, 2023), diffusion policies have been introduced in robotic
imitation learning (Chi et al., 2023b; Reuss et al., 2023; Xian et al., 2023). Recent diffusion-based
VLA methods (Black et al., 2024; Li et al., 2024a; Wen et al., 2024a; Bjorck et al., 2025) incorporate
a diffusion head after the VLM, leveraging probabilistic denoising for action prediction. While these
methods enable precise manipulation, the diffusion head lacks internet-scale pretraining and depends
solely on feature representations extracted from the VLM, without fully leveraging the powerful
LLM backbone as an action expert for iterative generation. Given these advantages and limitations, a
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Figure 1: (a) Unlike recent diffusion-based VLA methods that attach a separate diffusion head after
VLMs, (b) HybridVLA innovatively integrates diffusion and autoregressive action prediction within
a single LLM, embedding the denoising process of diffusion into the next-token prediction. Under
our proposed methods, HybridVLA achieves remarkable performance across a wide range of tasks
involving both single-arm and dual-arm robots.

question arises: “How can we elegantly construct a unified VLA model that integrates the strengths of
both autoregressive and diffusion policies?”

To this end, we propose HybridVLA, which leverages a unified LLM backbone to perform both
autoregressive and diffusion action generation, harnessing the complementary strengths of both
paradigms for robust robot control. Unlike prior diffusion-based VLA methods (Black et al., 2024; Li
et al., 2024a) that append an independent diffusion head after the LLM (Figure 1 (a)), we introduce
a collaborative training recipe that embeds the Markovian denoising steps of diffusion into the
next-token prediction process (Figure 1 (b)), enabling each step to be interpreted as a reasoning
iteration within the pretrained LLM. To stabilize the joint optimization of the autoregressive and
diffusion components, we design a robotics-specific token sequence formulation that organizes
multimodal inputs, diffusion tokens, and autoregressive tokens through specialized markers. Under
this recipe, HybridVLA captures continuous action representations from diffusion modeling while
inheriting the pretrained reasoning paradigm of autoregression, enabling the two paradigms to jointly
approximate the same conditional action distribution. Empirically, these action prediction methods
not only reinforce each other but also exhibit varying strengths across different tasks. Therefore, a
collaborative action ensemble mechanism is proposed, where the two predictions are adaptively fused
based on autoregressive action token confidence, improving robustness in manipulation.

To enhance generalization capability, we initialize HybridVLA with a pretrained VLM (Karamcheti
et al., 2024) and adopt a step-by-step training strategy. As shown in the right of Figure 1, HybridVLA
is first pretrained on large-scale, diverse, cross-embodiment robotic datasets, including Open X-
Embodiment (O’Neill et al., 2023), DROID (Khazatsky et al., 2024), and ROBOMIND (Wu et al.,
2024b), covering 760K trajectories and over 10K A800 GPU training hours. It is then fine-tuned
on self-collected simulation data (James et al., 2020) and real-world demonstrations, achieving
state-of-the-art (SOTA) manipulation performance across a wide range of tasks with both single-arm
and dual-arm robots. In real-world testing, HybridVLA also exhibits strong generalization to unseen
objects, backgrounds, spatial layouts, and lighting conditions, underscoring the effectiveness of our
collaborative model design and training recipe. Moreover, we demonstrate that the autoregressive
discrete action outputs of HybridVLA can be replaced with language-based task planning without
compromising the stability of diffusion-based action prediction. Our contributions are as follows:

• We propose HybridVLA, which innovatively leverages a single LLM backbone for iterative
action prediction through both autoregressive and diffusion generation within a unified token
sequence, harnessing the complementary strengths of both paradigms.

• We introduce a collaborative training recipe that embeds the denoising process of diffusion
into next-token prediction, enabling mutual reinforcement of both generation paradigms.
Additionally, we propose a collaborative action ensemble mechanism that adaptively fuses
autoregressive and diffusion-based actions, enhancing manipulation robustness.

• Our proposed HybridVLA achieves SOTA performance across diverse tasks while demon-
strating strong generalization to several unseen configurations.
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2 RELATED WORK

Vision-language-action (VLA) models. Some studies (Ahn et al., 2022; Driess et al., 2023; Huang
et al., 2023; 2024b) enable robots to interpret both language and visual observations, automatically
generating task plans. Meanwhile, vision-language-action (VLA) models leverage the inherent
reasoning abilities of VLMs to predict low-level SE(3) poses. Specifically, RT2 (Brohan et al.,
2023) quantizes 7-DoF actions into discrete bins for autoregressive pose prediction. Building on this,
ManipLLM (Li et al., 2024b) incorporates affordance priors through chain-of-thought reasoning,
while OpenVLA (Kim et al., 2024) performs large-scale pretraining on the Open X-Embodiment
dataset (O’Neill et al., 2023). FAST (Pertsch et al., 2025) applies the discrete cosine transform to
enable fast and scalable training of autoregressive-based VLA models. To support continuous action
prediction, some VLA approaches (Liu et al., 2024a; Huang et al., 2024a; Li et al., 2023b; Wu et al.,
2023a) incorporate a policy head, such as an MLP or LSTM (Graves & Graves, 2012), and use
regression loss for imitation learning. However, quantization in autoregressive methods disrupts
action continuity, while regressive methods fail to incorporate probabilistic action representations.

Diffusion-based VLA models. Building on the success of diffusion models in content generation (Ho
et al., 2020; 2022; Peebles & Xie, 2023), diffusion policies have been applied in robotics (Chi et al.,
2023a), including reinforcement learning (Ajay et al., 2022; Wang et al., 2022), imitation learn-
ing (Pearce et al., 2023; Prasad et al., 2024; Reuss et al., 2023; Xian et al., 2023), grasping (Simeonov
et al., 2023; Urain et al., 2023; Wu et al., 2023b), and motion planning (Janner et al., 2022; Saha
et al., 2024). Following this, 3D Diffusion Actor (Ke et al., 2024) and DP3 (Chi et al., 2023b)
employ diffusion models to interpret point cloud data. Octo (Team et al., 2024) and RDT-1B (Liu
et al., 2024b) augment a transformer for diffusion modeling to predict flexible actions. To integrate
diffusion with VLMs, π0 (Black et al., 2024) and π0.5 (Intelligence et al., 2025) add an expert head
that generates actions through flow matching, while TinyVLA (Wen et al., 2024b) incorporates a
simple diffusion head after the lightweight VLM. CogACT (Li et al., 2024a) and DiVLA (Wen
et al., 2024a) decouple reasoning and action prediction into the VLM and an injected diffusion
head, respectively. Following this architecture, some works (Bjorck et al., 2025; Bu et al., 2025;
figureai) introduce a dual-system design to enable control at different frequencies. However, in these
methods, the diffusion head operates as a separate module and treats the VLM as a multimodal
feature extractor, limiting its ability to fully exploit the pretrained knowledge of VLM. Unlike prior
methods focused on image and language generation quality (Ge et al., 2024; Wu et al., 2024a;c; Xie
et al., 2024), HybridVLA introduces a robotics-specific collaborative training strategy that integrates
diffusion action generation into next-token prediction within a single LLM. There are also related
Transformer-based approaches. CDP (Ma et al., 2025) provides long-horizon conditioning for future
action prediction, and ARP (Zhang et al., 2025) predicts task-specific action chunks to balance action
accuracy with generation efficiency. In contrast, HybridVLA focuses on unifying diffusion-based and
autoregressive action-generation paradigms within the unified model and token sequence, enabling
the two paradigms to mutually enhance each other.

3 HYBRIDVLA METHOD

Problem Statement. At time t, each demonstration consists of image observations ot, language
description lt, and the current robot state rt. Our model π aims to predict action a to control the
robot arms, which can be formulated as: π : (ot, lt, rt) → at+1:t+H , H is the action horizon.
Following Kim et al. (2024), the action a represents the end-effector pose, which uses 7-DOF and
14-DOF for single-arm and dual-arm control, respectively. Each 7-DOF action includes 3-DOF for
relative translation offsets ([∆x,∆y,∆z] ∈ R3), 3-DOF for rotation (Euler angles ∈ R3), and 1-DOF
for the gripper state (open/closed ∈ R1). The ground truth (GT) and the model-predicted action are
in SE(3), formulated as: a = [∆x,∆y,∆z,Roll, P itch, Y aw, 0/1].

Motivation. First, existing diffusion-based VLA methods (Black et al., 2024; Li et al., 2024a) append
a separate diffusion head after the VLM and further train it to predict continuous actions. However,
such diffusion heads lack internet-scale pretraining and rely solely on features extracted from the
VLM as conditions, without leveraging the LLM backbone as an action expert for iterative genera-
tion. Second, the autoregressive and diffusion paradigms offer distinct strengths in VLA modeling.
Diffusion-based predictions excel at precise manipulation, particularly in fine-grained control and
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Figure 2: HybridVLA Framework. All multimodal inputs are encoded into tokens and subsequently
organized into our designed token sequence formulation within the LLM’s embedding space. For
diffusion tokens, HybridVLA simultaneously projects the denoising timestep and noise into con-
tinuous vector representations. During inference, we adopt DDIM (Song et al., 2020) with four
sampling steps, where the corresponding noisy samples are iteratively fed into the LLM to predict
the noise at each step. The marker tokens, <BOD> (Beginning of Diffusion) and <EOD> (End
of Diffusion), are introduced to bridge the two generation paradigms. Subsequently, autoregressive
actions are generated via next action-token prediction, explicitly conditioned on the preceding tokens.
HybridVLA integrates the strengths of both generation paradigms into the unified LLM, enabling
them to reinforce each other and be adaptively ensembled for robot arm control.

tasks involving dynamic objects. Autoregressive predictions, by inheriting the VLM generation
paradigm, learn more efficiently from demonstrations (Pertsch et al., 2025; Intelligence et al., 2025)
and show superior ability to understand flexible instructions and unseen objects. Empirical evidence
supporting these insights is presented in Section A.1. Therefore, we propose HybridVLA, which
leverages a unified LLM backbone to perform iterative action prediction through both autoregressive
and diffusion generation, integrating the complementary strengths of both paradigms.

3.1 HYBRIDVLA ARCHITECTURE

This section presents the architecture and workflow of HybridVLA, which is available in two model
sizes based on 7B and 2.7B large language models (LLMs). Following Kim et al. (2024), both Hybrid-
VLA (7B) and HybridVLA (2.7B) inherit the base architecture from Prismatic VLMs (Karamcheti
et al., 2024), initializing with the corresponding pretrained VLM parameters. We then present the
two basic components, the vision encoders and the LLM backbone, as shown in Figure 2.

Vision encoders. HybridVLA leverages powerful vision encoder combinations, such as DI-
NOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023), to capture semantic features fd ∈
RB×Nv×1024 and fs ∈ RB×Nv×1152. B and N represent batch size and token sequence length, re-
spectively. These features are concatenated along the channel dimension to form fv ∈ RB×Nv×2176,
which is subsequently projected into the LLM’s embedding space via a projection layer. Hybrid-
VLA(2.7B) uses only the CLIP (Radford et al., 2021) model as its vision encoder. When processing
multi-view images, we use the shared vision encoders to extract features from each view, which are
then concatenated along the token dimension.

LLM backbone. HybridVLA adopts the 7B LLaMA-2 (Touvron et al., 2023a) as its LLM, which
is responsible for multimodal understanding and action generation. Language prompts are encoded
into the embedding space fl ∈ RB×Nl×4096 using the pretrained tokenizer, then concatenated with
visual tokens and fed into the LLM. For HybridVLA (2.7B), the workflow remains identical to that
of HybridVLA (7B) but employs the 2.7B Phi-2 (Javaheripi et al., 2023) as the LLM.
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Table 1: Exploration of token sequence formulations. All models are trained using hybrid objectives.
Dif and AR refer to using only autoregressive or diffusion-based generation on 10 RLBench tasks.

Large Language Model Large Language Model

Large Language Model Large Language Model

Type
1

Type
3

Type
2

Type
4

: Vision/Language : Discrete robot state : <BOD>/<EOD> : Diffusion : Autoregressive : Continuous robot state

Type 1 Type2 Type3 Type4 (ours)

Dif 0.67 0.56 0.65 0.72

Type 1 Type2 Type3 Type4 (ours)

AR 0.59 0.54 0.60 0.65

3.2 COLLABORATIVE TRAINING RECIPE

To better integrate both diffusion and autoregressive generation capabilities within the LLM’s next-
token prediction process, we propose a collaborative training strategy that includes a unified token
sequence formulation, hybrid objectives, and structured training stages.

Token sequence formulation design. As shown in Figure 2, this design aims to organize multimodal
tokens within the LLM’s embedding space into a unified and ordered token sequence, enabling
coordination between the two generation paradigms during the next-token prediction process. In
addition to the acquired vision and language tokens, our framework also integrates the robot state,
diffusion timestep, noisy actions, and the autoregressive tokens. For the robot state, we integrate
it into the LLM to enhance temporal consistency in action generation. Instead of discretizing the
robot state and merging it with the language query (Li et al., 2024b) (Type 1 of Table 1), we employ
a learnable MLP to map the robot state directly into the embedding space, fr ∈ RB×1×4096. For
diffusion-based actions, we predict them through a diffusion denoising process. During training, the
diffusion timestep and noisy actions are projected into the LLM’s embedding space through MLPs,
represented as continuous vectors. To seamlessly connect diffusion-related tokens within this token
sequence, we introduce special beginning-of-diffusion (<BOD>) and end-of-diffusion (<EOD>)
tokens to encapsulate them. This design not only clarifies the boundaries between diffusion and
autoregressive generation but also prevents confusion in the next-token prediction process, such
as avoiding diffusion tokens directly predicting masked discrete tokens (Type 2 of Table 1). For
autoregressive actions, we quantize the end-effector pose into discrete bins and replace part of
the vocabulary in the LLM (Kim et al., 2024), which is then tokenized into a sequence of discrete
tokens. Due to the autoregressive nature of LLMs (Touvron et al., 2023b), both the question and the
answer, including the discrete action ground truth (GT), are provided during training, whereas only
the question is available at inference time. Therefore, placing autoregression before the diffusion
tokens may cause action GT leakage (Type 3 in Table 1), as all preceding tokens serve as conditions
in diffusion modeling. To avoid this, we position diffusion tokens before autoregression to explicitly
provide continuous latent conditions for subsequent token prediction (Type 4 in Table 1). Moreover,
since diffusion operates on noise, it naturally circumvents the risk of information leakage.

Hybrid objectives. To equip HybridVLA with both autoregressive and diffusion generative capabili-
ties, we combine two training losses under our designed token sequence. For the diffusion part, we
adopt the standard objective used in diffusion policies (Chi et al., 2023b), which minimizes the mean
squared error between the predicted noise ϵπ and the sampled Gaussian noise ϵ. The corresponding
loss function is defined as: Ldif = Ea,i,c||ϵ− ϵπ(a

i
t, i, c)||2, where ϵ ∼ N (0, 1) and c represents the

conditioning context. For the autoregressive part, we minimize the cross-entropy loss Lar to train
the model on predicting the discrete actions. Under our proposed token sequence formulation, both
loss functions are jointly optimized in a unified training objective, defined as: Lhybrid = Ldif +Lar.
For action generation, the autoregressive and diffusion branches aim to approximate the same action
distribution space, as the action data are normalized in the same way (range [-1, 1]). Note that the
discrete action is simply a quantized representation of this distribution. Moreover, we validate that
the hybrid objectives, coupled with our proposed token formulation, foster mutual reinforcement
between the two generation paradigms, as evidenced by both quantitative experiments (Section 4.2)
and Principal Component Analysis (Appendix A.2).
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Structured training stage. After loading the pretrained VLM parameters, HybridVLA undergoes
two training stages with hybrid objectives: large-scale pretraining on open-source robotic data and
fine-tuning on self-collected data. During pretraining, we train HybridVLA for 10 epochs on 35
datasets. These datasets contain 760K robot trajectories, comprising 33M frames. Due to dataset
differences, pretraining relies solely on single 2D observations, whereas fine-tuning relies on either
single or multi-view observations, depending on the downstream task. The details of the pretraining
dataset are provided in Appendix B.1.

3.3 COLLABORATIVE ACTION ENSEMBLE

During inference, either autoregressive or diffusion-based actions can be used for robot control.
However, we observe that the two prediction methods not only reinforce each other but also exhibit
varying strengths across different tasks. This motivates a collaborative action ensemble mechanism
that adaptively fuses both predictions.

Diffusion actions. When generating diffusion actions, we append the special token <BOD> after
the preceding condition tokens to signal the start of the denoising process. We employ DDIM (Song
et al., 2020) with n sampling steps, and find empirically that n can be reduced to as low as 4 while
maintaining an optimal balance between performance and inference speed. As shown in the right
part of Figure 2, at each denoising step, only the current noisy sample is input to the LLM to predict
the noise for the next step, and the token sequence does not retain any previous noise samples.
Each denoising step is treated as a reasoning iteration, allowing HybridVLA to progressively refine
diffusion-based action predictions by leveraging the LLM’s pretrained knowledge. In this way, we
enable a multi-step Markovian denoising process that aligns with the LLM’s next-token prediction
mechanism. After obtaining the denoised tokens, we use an MLP to map them to the action space.
To accelerate sampling, we introduce a KV cache design for the diffusion process. During the initial
step, the model processes the vision and language tokens, the denoising timestep, and the initial noise.
In subsequent steps, only the updated timestep and noisy actions are forwarded, while the cached
keys and values are reused. This approach reduces redundant computation and significantly enhances
inference efficiency for diffusion-based action generation.

Autoregressive actions. As shown in Figure 2, the autoregressive generation begins after the special
token <EOD>. Unlike previous autoregressive VLA methods (Kim et al., 2024), HybridVLA’s
autoregressive generation additionally conditions on continuous action representations derived from
diffusion tokens. This yields superior manipulation performance over standalone autoregressive
paradigms without explicit continuous latent conditioning, as shown in the ablation study.

Ensembled actions. After obtaining the two types of actions under our collaborative training recipe,
we empirically observe two phenomena. 1) Different action types demonstrate varying performance
across tasks and scenarios. 2) The confidence of autoregressive tokens serves as a reliable indicator
of action quality. In over 80% of successfully completed test samples, the average confidence of
autoregressive action tokens exceeds 0.96 (range [0, 1]). Therefore, as shown in Figure 2, we use
the mean confidence of autoregressive tokens (cart+1) to guide the action ensemble. If the confidence
exceeds θ (θ = 0.96), we consider the autoregressive action (aart+1) sufficiently accurate and perform
an average operation with the diffusion action (adt+1). Otherwise, we rely solely on the diffusion
action to control the robot. Further analysis of the confidence threshold can be found in Appendix C.2.

4 EXPERIMENT

In Section 4.1, we compare the manipulation ability of HybridVLA with previous VLA methods
in simulation environments. The effectiveness of each component is validated in Section 4.2 and
Appendix C.2. In Section 4.3, we present both quantitative and qualitative results of HybridVLA
in real-world scenarios. The generalization capabilities of HybridVLA are examined in Section 4.4,
testing on unseen manipulated instances, background, spatial positions, and lighting conditions.

4.1 SIMULATION EXPERIMENT

Simulation benchmark. To systematically evaluate our method, we select the RLBench (James et al.,
2020) benchmark in the CoppeliaSim simulator, which contains 10 different tabletop tasks. These
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Table 2: Comparison of HybridVLA and baselines on RLBench. We train all methods in the
multi-task setting (Shridhar et al., 2022) and report the success rates (S.R.) and variances (Var.).

Models Close Close Toilet Sweep Close Phone Umbrella Frame Wine at Water Mean Infer.
box laptop lid seat down to dustpan fridge on base out off hanger rack plants S.R. ↑ & Var. ↓ speed ↑

ARP (one view) 0.35 0.60 0.75 0.80 0.70 0.30 0.40 0.25 0.35 0.20 0.47 ±0.03 -
ARP (four views) 0.55 0.95 1.00 0.90 0.95 0.45 0.50 0.40 0.70 0.40 0.68 ±0.02 -

ManipLLM (7B) 0.50 0.80 0.40 0.20 0.80 0.35 0.10 0.25 0.15 0.20 0.38 ±0.05 2.2 Hz
OpenVLA (7B) 0.65 0.40 0.75 0.60 0.80 0.20 0.35 0.15 0.10 0.10 0.41 ±0.02 6.3 Hz
OpenVLA-OFT (7B) 1.00 0.65 0.60 0.30 0.80 0.30 0.30 0.20 0.20 0.15 0.45 ±0.03 13.4 Hz
π0 (2.6B) 0.90 0.60 1.00 0.30 0.90 0.25 0.35 0.75 0.65 0.45 0.61 ±0.03 13.8 Hz
CogACT (7B) 0.80 0.85 0.90 0.65 0.90 0.50 0.60 0.35 0.25 0.25 0.60 ±0.04 9.8 Hz
HybridVLA-ar (7B) 0.90 0.90 0.95 0.85 0.95 0.30 0.30 0.40 0.45 0.50 0.65 ±0.04 6.3 Hz
HybridVLA-dif (7B) 0.95 0.90 1.00 0.55 0.90 0.25 0.55 0.75 0.85 0.45 0.72 ±0.03 9.4 Hz
HybridVLA (7B) 0.95 0.95 1.00 0.90 1.00 0.55 0.60 0.70 0.60 0.55 0.78 ±0.04 6.1 Hz
HybridVLA (2.7B) 1.00 0.90 0.90 0.80 0.90 0.25 0.55 0.45 0.70 0.25 0.67 ±0.03 12.3 Hz

tasks are performed using a Franka Panda robot and a front-view camera. The data are collected using
pre-defined waypoints and the Open Motion Planning Library (Sucan et al., 2012). Following the
frame-sampling method used in previous works (Shridhar et al., 2022; Goyal et al., 2023; Jia et al.,
2024), we construct the training dataset, with each task consisting of 100 trajectories. We further
validate our approach on the SimplerEnv (Li et al., 2024c), with details provided in Appendix C.1.

Training and Evaluation Details. We compare our method with five previous SOTA VLA models,
including ManipLLM (Li et al., 2024b), OpenVLA (Kim et al., 2024), OpenVLA-OFT (Kim et al.,
2025), π0 (Black et al., 2024), CogACT (Li et al., 2024a). Meanwhile, we also compare our method
with the related work ARP (Zhang et al., 2025). Specifically, we report two versions: ARP (four
views), which uses four camera views, and ARP (one view), which uses only the front-view camera,
matching the camera configuration used by other VLA methods. To ensure a fair comparison,
we load the official pretrained parameters provided by each method, adhering to their respective
training settings. Meanwhile, we categorize our method into four modes: HybridVLA-ar (7B),
HybridVLA-dif (7B), HybridVLA (7B), and HybridVLA (2.7B). All modes are jointly trained using
our proposed collaborative training recipe. However, HybridVLA-ar (7B) and HybridVLA-dif (7B)
rely solely on autoregressive or diffusion-based action generation during inference, respectively. For
HybridVLA, the single-view RGB input is resized to 224× 224, and the robot state is consistent with
predicted actions (7-DOF end-effector poses). During training, we use the AdamW optimizer with a
fixed learning rate of 2e-5 to update both the LLM and the injected MLP parameters. Our models
are trained for 300 epochs on downstream tasks using mixed-precision. For evaluation, following
previous VLA method (Kim et al., 2024), we test all methods with 20 rollouts per task from the latest
epoch checkpoint, repeating the process three times to report the mean success rate with variance.

Quantitative Results. As shown in Table 2, HybridVLA (7B) achieves an average success rate of 78%
across 10 distinct tasks, outperforming the previous SOTA autoregressive-based VLA (OpenVLA)
and diffusion-based VLA (π0) by 37% and 17%, respectively. These results demonstrate that
our method effectively integrates the two generation approaches within a shared LLM backbone,
simultaneously capturing the continuous characteristics of diffusion-based actions and inheriting
the LLM’s pretrained generation paradigm for efficient learning from demonstrations. Remarkably,
compared to CogACT and π0, HybridVLA-dif (7B) also achieves performance improvements of
12% and 11%, respectively. These results highlight that, unlike previous approaches which attach the
diffusion head after the VLM, our method more effectively leverages the LLM’s pretrained knowledge
to fully unlock the potential of diffusion action prediction. Note that by manually annotating sub-task
plans and applying GPT (Achiam et al., 2023) for automated augmentation, we train HybridVLA
(7B) to generate language-based plans autoregressively and actions through diffusion. This training
paradigm achieves a task success rate of 74%, not only validating the effectiveness of our proposed
collaborative generation method but also demonstrating that the autoregressive generation branch
of HybridVLA does not compromise the stability of diffusion-based action prediction. Finally,
HybridVLA (2.7B) delivers satisfactory results, confirming our method’s effectiveness in enhancing
VLM manipulation capabilities across different backbone sizes. For inference speed, As shown
in Table 2, when tested on an NVIDIA 4090D GPU, HybridVLA-dif (7B) and HybridVLA (2.7B)
achieve satisfactory model inference speed comparable to CogACT (7B) and π0 (2.6B). Note that all
models are run with bfloat16 precision during inference, without employing action chunking.

4.2 ABLATION STUDY

The impact of each component. We conduct ablation experiments on 10 RLBench tasks, using the
same training and evaluation settings as in the simulation experiments. For collaborative training
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recipe, we begin by comparing different token sequence formulation designs in Table 1, demonstrat-
ing that Type 4 yields the best performance. The corresponding analysis is provided in Section 3.2.

Table 3: Impact of each component. AR and Dif
denote that use solely autoregressive and diffusion-
based action, respectively. CAE indicates the col-
laborative action ensemble method, whereas LSP
refers to large-scale pretraining on robotic datasets.

AR Dif CAE Lar Ldif Lhybrid LSP Mean ↑

Ex1 ✓ - - ✓ - - ✓ 0.57
Ex2 ✓ - - - - ✓ ✓ 0.65
Ex3 - ✓ - - ✓ - ✓ 0.65
Ex4 - ✓ - - - ✓ ✓ 0.72
Ex5 ✓ ✓ ✓ - - ✓ ✓ 0.78
Ex6 ✓ ✓ ✓ - - ✓ - 0.22

To validate the effectiveness of hybrid objec-
tives under our proposed token formulation, we
present a comparative study in Table 3, contrast-
ing Ex1 with Ex2, and Ex3 with Ex4. Specif-
ically, Ex1 and Ex3 are trained using only
the autoregressive loss Lar or diffusion loss
Ldif , respectively, and thus produce only the
corresponding action type. In contrast, Ex2
(HybridVLA-ar) and Ex4 (HybridVLA-dif) are
both trained with the hybrid loss Lhybrid, yet
are constrained to output only autoregressive
or diffusion actions, respectively. These results
validate that our proposed hybrid training not
only avoids negative interference between the
two generation paradigms but also enables mutual reinforcement. Finally, the comparison between
Ex5 and Ex6 highlights the importance of the structured training stage. Although Ex6 is initialized
with pretrained VLM parameters, it suffers from a significant drop in accuracy, highlighting the
essential role of large-scale pretraining on robot datasets in ensuring stable control. For collaborative
action ensemble, as evidenced by the results of Ex2, Ex4, and Ex5 in Table 3, the performance
of HybridVLA (Ex5) is further improved, which demonstrates that fusing the two output modes
enhances the robustness of robot control. Moreover, the confidence of the autoregressively generated
action can be used as an indicator to guide the fusion of actions from the two paradigms. The above
ablation studies corroborate our initial motivation that the two action-generation paradigms possess
distinct advantages, and HybridVLA effectively integrates them during both training and inference.
Due to space limitations, Appendix C.2 provides additional ablation studies on: (1) confidence
thresholds in the collaborative action ensemble, (2) the influence of the diffusion-based KV cache on
inference speed, and (3) the impact of DDIM sampling steps on performance.

Table 4: The impact of different confidence threshold. We report success rates for HybridVLA
(7B) and HybridVLA (2.7B) on various tasks with confidence threshold from 0.90 to 0.98.

Threshold Close Close Toilet seat Sweep to Close Phone Umbrella Frame off Wine at Water Mean
box laptop lid down dustpan fridge on base out hanger rack plants S.R. ↑

HybridVLA (7B)

0.90 0.80 0.85 0.95 0.95 0.85 0.50 0.40 0.55 0.55 0.45 0.68
0.92 0.95 0.85 1.00 0.90 0.90 0.40 0.40 0.70 0.60 0.45 0.72
0.94 0.95 0.90 1.00 0.90 0.95 0.55 0.50 0.65 0.55 0.50 0.75
0.96 0.95 0.95 1.00 0.90 1.00 0.55 0.60 0.70 0.60 0.55 0.78
0.98 0.95 0.90 0.95 0.90 0.95 0.55 0.50 0.70 0.55 0.45 0.74

HybridVLA (2.7B)

0.90 0.70 0.75 0.85 0.80 0.90 0.25 0.45 0.40 0.50 0.10 0.58
0.92 0.85 0.90 0.90 0.80 0.85 0.25 0.45 0.35 0.50 0.20 0.61
0.94 1.00 0.85 0.95 0.75 0.85 0.25 0.40 0.40 0.60 0.25 0.63
0.96 1.00 0.90 0.90 0.80 0.90 0.25 0.55 0.45 0.70 0.25 0.67
0.98 0.90 0.90 0.95 0.55 0.90 0.20 0.55 0.35 0.70 0.15 0.62

The impact of confidence threshold in collaborative action ensemble. We evaluated HybridVLA
on ten RLBench tasks, varying the confidence threshold from 0.90 to 0.98. The score of each task
under every confidence threshold and different backbones are shown in Table 4. We find that when
the confidence threshold drops below 0.94, autoregressive predictions become unreliable, leading to a
slight degradation in the performance of the ensemble action. Conversely, when the threshold reaches
0.98, the number of valid autoregressive actions becomes too limited, causing the performance of the
ensemble action to closely match that of the diffusion-predicted action. Empirically, we conclude that
setting the threshold to 0.96 ensures a stable action ensemble. For different backbones, we conduct
the same ablation experiment using the 2.7B Phi-2 model as the LLM backbone and find that setting
the action-token confidence threshold to 0.96 still serves as a robust indicator for determining whether
action ensembling should be applied.
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Table 5: Real-world experiments. The manipulation success is determined by human evaluation.
Since CogACT lacks support for multi-view images, which are crucial for dual-arm tasks (Black
et al., 2024; Fu et al., 2024), we conduct our dual-arm comparison solely with π0.

Models
Franka single-arm robot AgileX dual-arm robot

Pick Unplug Pour Wipe Open drawer Mean. Pick Lift ball Place bottles Wipe Fold Mean.
and place charger water blackboard and place inside S.R. ↑ and place and place at rack blackboard shorts S.R. ↑

π0 (2.6B) 0.50 0.35 0.45 0.35 0.60 0.45 0.75 0.65 0.40 0.30 0.65 0.55
CogACT (7B) 0.80 0.70 0.40 0.65 0.50 0.61 - - - - - -
HybridVLA(7B) 0.90 0.95 0.80 0.85 0.65 0.83 0.90 0.80 0.60 0.55 0.70 0.71

Pour water

Open drawer 
and place inside

Place bottles at 
rack

Wipe blackboard

Task Progress

Dual-arm real-world tasksSingle-arm real-world tasks

Task Progress

Lift ball and 
place inside

Wipe blackboard

4.3 REAL-WORLD EXPERIMENT

Self-collected Data. For single-arm tasks, we use a Franka Research 3 robot with a static front-view
and a wrist-view camera. We perform 5 tasks: 1) Pick and place, 2) Unplug charger, 3) Open
drawer and place object inside, 4) Pour water, 5) Wipe blackboard using eraser. For each task, 100
demonstrations are collected using a SpaceMouse device. For dual-arm tasks, we use an AgileX robot
equipped with a static exterior view, a right-wrist view, and a left-wrist view camera. We conduct 5
coordinated dual-arm tasks: 1) Pick and place, 2) Lift ball and place it in basket, 3) Place two bottles
at rack, 4) Wipe blackboard using eraser, 5) Fold shorts. Similarly, 100 demonstrations are collected
for each task using master-puppet teleoperation. Additional details are provided in Appendix B.2.

Training and Evaluation Details. We evaluate HybridVLA (7B) against previous VLA methods,
π0 (Black et al., 2024) and CogACT (Li et al., 2024a). The implementation details remain consistent
with our simulation experiments, except for using two-view inputs for single-arm tasks and three-view
inputs for dual-arm tasks. For evaluation, we use the checkpoint from the latest epoch to perform 20
rollouts across diverse tabletop positions.

Quantitative and Qualitative Results. In Table 5, HybridVLA achieves outstanding performance
across single-arm tasks. For Pick and place and Unplug charger, HybridVLA achieves success rates
of 90% and 95%, respectively, demonstrating accurate object position prediction. For Pour water,
HybridVLA outperforms the previous SOTA method by 35%, showcasing its ability to comprehend
object relationships and predict precise rotations. The superior performance on Wipe blackboard
and Open drawer and place inside further underscores the robustness of our method in long-horizon
tasks. For dual-arm tasks, we extend the action dimensions of both diffusion and autoregressive
tokens to 14-DOF, representing the 7-DOF end-effector poses for both the right and left arms. Our
method consistently outperforms previous VLA approaches across five distinct tasks, highlighting
HybridVLA’s ability to effectively leverage LLM’s pretrained knowledge for dual-arm coordination
in complex scenarios. Furthermore, in the lower part of Table 5, we present visualizations of the
manipulation processes performed by our method, which accurately predict actions across various task
demands, including precise positioning and rotation, dual-arm coordination, and scene understanding.
Additional qualitative results and failure case analyses are provided in Appendix D and Appendix E,
respectively, and execution videos are available in the supplementary materials.

4.4 GENERALIZATION EXPERIMENT

Since CogACT and π0 excel in single-arm and dual-arm tasks, respectively, we design four common
generalization experiments, comparing our HybridVLA (7B) with CogACT on the single-arm Pick
and place task and with π0 on the dual-arm Pick and Place, Lift ball and place, and Place Bottles on
Rack task. The visualization of four generalization test scenarios is shown in the left part of Table 6.
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Table 6: Generalization. “Object”, “Background”, “Height”, and “Lighting” denote unseen manipu-
lated objects, backgrounds, spatial positions, and lighting conditions, respectively. The image on the
left depicts the unseen test scenarios, with red boxes marking the key differences.

Scenario Pick and place (single arm) Lift ball and place (dual arm) Pick and Place (dual arm) Place Bottles on Rack (dual arm)

HybridVLA CogACT HybridVLA π0 HybridVLA π0 HybridVLA π0

Original 0.90 0.80 0.80 0.65 0.90 0.75 0.60 0.40
Object 0.60(-33%) 0.45(-43%) 0.75(-6%) 0.60(-8%) 0.90(-0%) 0.55(-26%) 0.55(-8%) 0.30(-25%)
Background 0.80(-11%) 0.50(-37%) 0.60(-25%) 0.50(-23%) 0.80(-11%) 0.50(-33%) 0.50(-17%) 0.30(-25%)
Height 0.75(-17%) 0.50(-37%) 0.60(-25%) 0.45(-31%) 0.70(-22%) 0.50(-33%) 0.45(-25%) 0.25(-37%)
Lightning 0.70(-22%) 0.60(-25%) 0.75(-6%) 0.55(-15%) 0.80(-11%) 0.65(-13%) 0.55(-8%) 0.35(12%)
Mean 0.71(-21%) 0.51(-36%) 0.68(-15%) 0.52(-20%) 0.80(-11%) 0.55(-27%) 0.51(-15%) 0.30(-25%)

Object Background Height Lighting Object Background Height Lighting

1) Unseen manipulated objects. In this scenario, we replace the training manipulated objects with
a series of unseen objects, e.g., replacing the red block with a charger. As shown in the “Object”
row of Table 6, our method demonstrates the smallest accuracy drop. These results indicate that
HybridVLA effectively integrates diffusion into the autoregressive next-token prediction process,
not only capturing the continuous characteristics of diffusion-based generation, but also preserving
the object-level semantic reasoning capabilities of the pretrained VLM. 2) Unseen background. In
this scenario, cluttered backgrounds are introduced during testing, such as adding unseen flowers
around the manipulated object. HybridVLA still shows satisfactory results, further demonstrating
that our proposed training recipe effectively inherits the VLM’s scene-level understanding, enhancing
robustness to environmental variations. 3) Unseen Spatial position. Unlike position shifts within
the same plane, we introduce height variations during testing, further challenging the model’s
spatial comprehension. As shown in the “Height” row of Table 6, HybridVLA consistently achieves
precise manipulation even when encountering objects in previously unseen spatial positions. These
results highlight that HybridVLA exhibits strong trajectory generalization through the ensemble of
two action generation methods. 4) Unseen lighting conditions. Finally, we introduce variations
in lighting conditions, a common challenge in real-world environments. All methods maintain
satisfactory performance, demonstrating that large-scale pretraining on robotic datasets enhances
their generalization across diverse data distributions. To provide a clearer overview, in the Table 6
below, we summarize the average score and average accuracy drop percentage across all unseen
configurations. The results show that our method reduces the accuracy drop by approximately
5–16% compared to the baselines under generalization scenarios. These findings demonstrate that
HybridVLA effectively integrates diffusion into the autoregressive next-token prediction, achieving
not only more robust action generation, but also more efficient learning from demonstrations, thereby
enhancing its generalization capability across diverse tasks.

5 CONCLUSION AND LIMITATION

In this paper, we introduce HybridVLA, a unified Vision-Language-Action (VLA) framework that
equips a single LLM with both diffusion-based and autoregressive action generation capabilities. To
integrate the distinct strengths of both paradigms, we propose a collaborative training recipe that
embeds diffusion denoising into the next-token prediction process, enabling mutual reinforcement
and improving manipulation robustness. By effectively inheriting the continuous nature of diffusion-
based action generation and leveraging the pretrained knowledge of LLMs, HybridVLA achieves
outstanding performance and strong generalization across both simulation and real-world tasks. One
limitation of HybridVLA is that its inference speed is constrained by the slower autoregressive
generation, similar to prior autoregressive VLA methods (Kim et al., 2024; Brohan et al., 2023;
Li et al., 2024b). However, our collaborative training enables mutual reinforcement between the
two generation methods, allowing inference using only the diffusion-based action for robot control
(HybridVLA-dif), achieving a 9.4 Hz inference speed.
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Appendix A. To validate our motivation, we first present empirical analyses showing that the
autoregressive and diffusion action generation paradigms exhibit distinct advantages across different
tasks and scenarios. Furthermore, through Principal Component Analysis, we demonstrate that our
collaborative training recipe enables mutual reinforcement between the two paradigms.

Appendix B. We present the details of our large-scale pretraining and self-collected real-world
datasets.

Appendix C. Additional simulation experiments and ablation studies are presented.

Appendix D. We include further visualizations of both single-arm and dual-arm manipulation
processes.

Appendix E. An analysis of failure cases encountered when using HybridVLA to control a robot.

Appendix F. The Use of Large Language Models (LLMs)

A VALIDATION OF THE MOTIVATION

A.1 DISTINCT STRENGTHS OF TWO GENERATION PARADIGMS

In this section, we present a variety of experimental comparisons to highlight the respective advantages
of the autoregressive and diffusion action output paradigms, while also emphasizing the necessity of
integrating the two generation approaches. To this end, we employ two modes of our model: Our-ar
and Our-dif, which use only autoregressive or diffusion-based action generation during inference,
respectively.

Fine-grained task. We evaluate Our-ar and Our-dif on a fine-grained manipulation task (unplug a
charging cable from its docking base) using an AgileX dual-arm robot. Under the same training and
testing setup as Section 4.3, both models were trained on 30 demonstrations. As shown in Figure 3(a),
Our-dif achieves significantly higher action accuracy than Our-ar, which is critical for fine-grained
control. We attribute this superiority to the continual action generation nature of diffusion and our
proposed method, which allows the diffusion process to more effectively exploit the pretrained
knowledge of the LLM through progressively refined action predictions.

Dynamic manipulation task. To evaluate the two action generation paradigms on a dynamic
manipulation task, we conducted a pick-and-place experiment with the AgileX robot under controlled
perturbations. Specifically, the target banana was dynamically shifted left or right within the left arm’s
manipulable range prior to pick-up (see the first row of Figure 10). We compared Our-dif and Our-ar
directly using their trained models in a zero-shot manner. As shown in Figure 3 (b), Our-dif achieves
a higher success rate, underscoring its superior robustness in dynamic manipulation scenarios.

Unseen objects. Following the setup of the generalization experiments (Section 4.4), we evaluate
Our-dif and Our-ar using single-arm robot on a pick-and-place task where the manipulated objects are
replaced with previously unseen instances (e.g., a charger or a strawberry). As shown in the Figure 3
(c), Our-ar undergoes a smaller performance degradation upon object replacement, suggesting that
the autoregressive paradigm is more effective at capturing semantic variations across novel objects.

Unseen language instructions. Since the RLBench benchmark provides multiple language instruc-
tions for each task, we directly conduct simulator experiments using unseen instructions to test Our-ar
and Our-dif. For each task, we employ a variety of semantically equivalent instructions that were
not encountered during training. As shown in Figure 3(d), the performance of Our-ar decreases
by only 9% on average, which is much smaller than that of Our-dif. This demonstrates that the
autoregressive paradigm exhibits relatively robust contextual reasoning ability when handling flexible
natural language instructions.

Consequently, these results highlight a clear pattern: diffusion-based generation excels at producing
fine-grained, temporally consistent actions, particularly in dynamically evolving environments,
whereas autoregressive action generation inherits the large-scale pretrained paradigm of VLMs,
enabling more efficient demonstration learning (Pertsch et al., 2025; Intelligence et al.) and exhibiting
robustness in language comprehension and generalization to novel objects. Building upon this
observation, we propose HybridVLA. Our approach leverages a unified LLM backbone to generate

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 3: Respective strengths of diffusion-based and autoregressive action generation
paradigms. We evaluate the performance of Our-ar and Our-dif across a variety of scenarios.

actions through both autoregressive and diffusion paradigms, thereby harnessing the distinct strengths
of each.

A.2 PRINCIPAL COMPONENT ANALYSIS

In Section 4.2, we validate the effectiveness of our Collaborative Training Recipe through ablation
studies in the simulator, demonstrating that joint training with hybrid objectives enables mutual
reinforcement between the two generation paradigms, compared to training them individually. To
validate that our Collaborative Training Recipe improves the representation capacity of both action
generation paradigms, we follow Xiao et al. (2024) and conduct a Principal Component Analysis
(PCA) study of their feature distributions. In particular, we sample several trajectories from both
Pick and Place actions and feed the corresponding frames into the model. From these inputs, we
extract the diffusion-denoised tokens as well as the autoregressive action tokens, and project them
into a 2D space using PCA. We compare models trained with our collaborative training recipe against
models where each generation paradigm is trained independently, i.e., optimized solely with either
the diffusion loss or the autoregressive loss. As shown in Table 7, jointly trained models yield
diffusion and autoregressive features that form tighter intra-class clusters and exhibit larger inter-class
separation for both Pick and Place actions. This indicates that joint optimization not only improves
the feature representation, but also implicitly regularizes the latent space to preserve dimensions
beneficial to both diffusion- and autoregressive-based generation.

Table 7: PCA feature analysis of HybridVLA. Comparison of intra-class and inter-class distances
under collaborative training versus independent training. Collaborative optimization yields tighter
intra-class clustering and larger inter-class separation.

Metric Our Collaborative Training Independent Training

Diffusion Token AR Token Diffusion Token AR Token

Intra-class Distance 0.49 0.44 0.73 0.91
Inter-class Distance 8.7 10.8 8.6 4.4

B ADDITIONAL DATASET DETAILS

B.1 LARGE-SCALE PRETRAINING DATASET

Our pre-training dataset collection comprises 35 datasets, encompassing a total of 760K trajectories
and 33M frames. Table 8 provides a comprehensive list of our pre-training datasets along with
their respective sampling weights. The number of trajectories and the sampling weights can be
automatically adjusted during dataset assembly. Following the prior data preprocessing approach (Kim
et al., 2024), we reformulate the pre-training datasets to emphasize end-effector sequence control,
ensuring alignment with the specific requirements of our model training. Due to inherent differences
among datasets, only single 2D observations are used during pre-training. However, during fine-
tuning, HybridVLA can accommodate both single- and multi-view observations depending on the

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: The dataset name and sampling weight used in our mixed large-scale pretraining dataset.

Training Dataset Mixture
Fractal (Brohan et al., 2022) 9.1%
Kuka (Kalashnikov et al., 2018) 27.8%
Bridge(Ebert et al., 2021; Walke et al., 2023) 4.1%
Taco Play (Rosete-Beas et al., 2022; Mees et al., 2023) 2.1%
Jaco Play (Dass et al., 2023) 0.3%
Berkeley Cable Routing (Luo et al., 2023) 0.2%
Roboturk (Mandlekar et al., 2018) 1.7%
Viola (Zhu et al., 2023b) 0.7%
Berkeley Autolab UR5 (Chen et al.) 0.9%
Toto (Zhou et al., 2023) 1.5%
Language Table (Lynch et al., 2023) 3.1%
Stanford Hydra Dataset (Belkhale et al., 2023) 3.2%
Austin Buds Dataset (Zhu et al., 2022) 0.2%
NYU Franka Play Dataset (Cui et al., 2022) 0.6%
Furniture Bench Dataset (Heo et al., 2023) 1.8%
UCSD Kitchen Dataset (Yan et al., 2023) <0.1%
Austin Sailor Dataset (Nasiriany et al., 2022) 1.6%
Austin Sirius Dataset (Liu et al., 2023) 1.2%
DLR EDAN Shared Control (Quere et al., 2020) <0.1%
IAMLab CMU Pickup Insert (Saxena et al., 2023) 0.7%
UTAustin Mutex (Shah et al., 2023) 1.6%
Berkeley Fanuc Manipulation (Zhu et al., 2023a) 0.6%
CMU Stretch (Mendonca et al., 2023) 0.1%
BC-Z (Jang et al., 2022) 5.4%
FMB Dataset (Luo et al., 2024) 5.0%
DobbE (Shafiullah et al., 2023) 1.0%
DROID (Khazatsky et al., 2024) 7.2%
Stanford Kuka Dataset (Lee et al., 2019) 0.1%
Stanford Robocook Dataset (Shi et al., 2023) 0.1%
Maniskill (Gu et al., 2023) 6.3%
Berkeley RPT (Radosavovic et al., 2023) 0.1%
QUT Dexterous Manipulation (Ceola et al., 2023) 0.1%
RoboSet (Kumar et al., 2023) 1.8%
BridgeData V2 (Walke et al., 2023) 4.7%
RoboMind (Wu et al., 2024b) 5.2%

task requirements. For instance, AgileX dual-arm robot tasks require three viewpoints, an ego view
and two wrist camera views, to capture a comprehensive observation of the object while mitigating
occlusions caused by the robot arm. HybridVLA processes multi-view images using a shared vision
encoder and then concatenates the visual feature along the token dimension. Notably, the difference
in the number of images used during pre-training and fine-tuning does not impact manipulation
performance in downstream tasks.

B.2 SELF-COLLECTED REAL-WORLD DATASET

The experimental assets and environments for the single-arm and dual-arm setups are shown in
Figure 4 (a) and (b), respectively. For the single-arm setup, a 3D-printed UMI gripper (Chi et al.,
2024) is attached to the Franka robot and is used across all baselines. We utilize RealSense 435 and
RealSense 515 cameras to capture both wrist and front views. For the dual-arm setup, two Orbbec
DABAI cameras are used to capture the left and right wrist views, while a RealSense 515 is mounted
overhead to capture a static third-person view. We provide a detailed explanation of the real-world
tasks and their success conditions. We begin by describing the single-arm tasks:
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(a) (b)

RealSense 515

RealSense 435

UMI Gripper

Franka Arm
RealSense 515

Orbbec DABAI 

Orbbec DABAI 

Agile Dual-arm

Figure 4: Real-World Assets and Experimental Settings. We provide visualizations of the assets
used and the settings for single-arm FR3 robot tasks and dual-arm AgileX robot tasks, respectively.

1. Pick and place. This task requires the robot to pick up a specifically colored block based on a
language description and place it in a specifically colored bowl.

2. Unplug charger. The robot needs to grasp the charger at an optimal position and rotation, and then
lift it to a certain height without slipping.

3. Pour water. The robot needs to first pick the bottle, then rotate it to a position slightly above the
cup, and tilt it to perform the pouring action. The task is deemed successful only if the bottle opening
is correctly aligned with the cup.

4. Wipe blackboard. The robot needs to first grasp an eraser and then use it to remove the red
markings from a blackboard placed on the tabletop. The red markings are drawn on an unfixed region,
and the task is considered successful only if they are completely erased.

5. Open drawer and place inside. The robot needs to open the top drawer, pick up the required
objects based on the language description, place them in the opened drawer, and then close it. This
task consists of four sequential sub-tasks: open drawer, pick object, place object, and close drawer.
The task is considered complete once all sub-tasks have been successfully executed.

We then describe the details of dual-arm tasks:

1. Pick and place. The robot must use both its left and right arms to pick up two objects based on the
language description and place them in the container.

2. Lift ball and place. Both the left and right arms must simultaneously make contact with the ball,
which is secured between the two grippers. The arms coordinate their movements to transport the
ball to the container while ensuring it does not slip. This task highly tests the model’s dual-arm
coordination capabilities.

3. Place bottles at rack. The left and right robot arms need to grasp the bottles placed on their
respective sides and rotate them to position them parallel to the rack.

4. Wipe blackboard. Unlike the single-arm setting, the dual-arm setting requires one arm to hold the
whiteboard while the other picks up the eraser and wipes off the red marker.

5. Fold shorts: This task requires folding a pair of shorts, involving two sequential steps. First, one
pant leg is folded over the other to align them. Then, the pants are folded in half from top to bottom.
Throughout the process, both arms must coordinate their movements. For example, in the first step,
the left arm holds the bottom of the pant leg while the right arm grips the upper part, working together
to complete the folding.

C ADDITIONAL QUANTITATIVE RESULTS

C.1 ADDITIONAL SIMULATION EXPERIMENTS

To further investigate the generalization capability of HybridVLA, we conduct experiments in the
SimplerEnv (Li et al., 2024c) variant aggregation setting using the Google robot, which poses
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Table 9: Evaluation results on SimperEnv. We evaluate our models in the variant aggregation
setting of the Google Robot benchmark, where the number of test trials per scene follows the official
protocol. All models are finetuned on the Fractal dataset. Bold indicates the highest score.

Models Pick Coke Can Move Near Open/Close Drawer Open Top Drawer and Place Mean S.R. ↑
π0 (2.6B) 0.72 0.50 0.34 0.38 0.49

HybridVLA (7B) 0.84 0.64 0.40 0.48 0.59

significant challenges for evaluating a model’s generalization to unseen configurations. Since the
pretraining of π0 does not include the Fractal dataset (Brohan et al., 2022) as a subset, unlike
HybridVLA, we ensure a fair comparison by initializing both models with their respective pretrained
checkpoints and finetuning them for 5 epochs on the same Fractal dataset. As shown in Table 9,
HybridVLA consistently outperforms π0 across 4 tasks. In particular, on tasks that demand strong
scene understanding, such as Open Top Drawer and Place, HybridVLA achieves up to a 10% higher
success rate.

C.2 ADDITIONAL ABLATION STUDY

The impact of confidence threshold in collaborative action ensemble. The proposed collaborative
ensemble strategy determines whether to use the action predicted by diffusion alone or the averaged
output of both diffusion and autoregressive generations, guided by a mean confidence threshold
derived from the autoregressive action token. In this experiment, we investigate the optimal confidence
threshold required to ensure the accuracy of autoregressive actions and enhance the overall precision
of the ensemble-generated action. Specifically, we evaluated HybridVLA on ten RLBench tasks,
varying the confidence threshold from 0.90 to 0.98. The main results are presented in Table 10.
We find that when the confidence threshold drops below 0.94, autoregressive predictions become
unreliable, leading to a slight degradation in the performance of the ensemble action. Conversely,
when the threshold reaches 0.98, the number of valid autoregressive actions becomes too limited,
causing the performance of the ensemble action to closely match that of the diffusion-predicted action.
Empirically, we conclude that setting the threshold to 0.96 ensures a stable action ensemble.

Table 10: Confidence threshold. We explore the impact of different confidence thresholds on the
performance of ensemble actions. The model used for testing is HybridVLA (7B).

Threshold 0.90 0.92 0.94 0.96 0.98

Mean S.R. ↑ 0.68 0.72 0.75 0.78 0.74

The impact of diffusion-based KV cache in inference speed. As described in Section 3.3, we
adopt the diffusion-based KV cache to eliminate redundant computations and improve inference
speed. In this experiment, we examine the extent to which this mechanism accelerates inference.
With the diffusion-based KV cache enabled (Table 2 of the main paper), HybridVLA-dif achieves an
average success rate of 72% across 10 simulation tasks with an inference speed of 9.4 Hz. Removing
it results in a similar average success rate but reduces the inference speed to 5.0 Hz. Although the KV
cache has typically been used in previous autoregressive VLA methods (Kim et al., 2024; Li et al.,
2024b), we are the first to integrate it into an LLM’s diffusion-based action generation.

The impact of denoising steps. Figure 5 illustrates the relationship between manipulation perfor-
mance and the number of denoising steps for HybridVLA-dif across ten RLBench tasks. Consistent
with the findings of previous work (Bjorck et al., 2025; Liu et al., 2024b), we reduced the number
of DDIM denoising steps of inference from 20 to 2 without observing a significant degradation in
manipulation performance. To balance inference speed and accuracy, we set the diffusion denoising
steps to 4 in our final implementation.

The impact of weights between diffusion and AR losses. As shown in Table 11,we conducted a
detailed ablation study to examine how the dynamic weighting between the two losses influences
manipulation success rates across the 10 simulation tasks. Except for adjusting the loss ratios, all
other training settings remain identical to those used in the main paper. Since our model is pretrained
on large-scale robotic datasets, the initial values of the two losses are similar. First, we observe
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Figure 5: The impact of denoising steps, where the x-axis and y-axis represent the denoising steps
and manipulation success rate.

that a ratio between AR and Diff models slightly above 1:1 yields a relatively stable average task
success rate of approximately 0.78 to 0.80. When the ratio falls below 1:1, the performance becomes
comparatively poorer. Additionally, we find that maintaining a ratio slightly above 1:1 leads to a
marginally faster convergence speed during model training.

Table 11: Task success rates under different ratios of AR and diffusion losses.

LAR : LDif 10:1 5:1 2:1 1:1 1:2 1:5 1:10

Mean S.R. ↑ 0.79 0.80 0.78 0.78 0.75 0.77 0.75

The impact of different temperature hyperparameters. We added a sensitivity analysis for
the LLM temperature hyperparameter across 10 simulation tasks. It is worth noting that some
autoregressive VLA models do not explicitly set the temperature and instead directly select the
token with the highest probability (Kim et al., 2024). Our experiments in the main paper also follow
this setting. As shown in Table 12, we observe that when the temperature is less than or equal
to 1, the manipulation success rate remains consistent. However, when the temperature exceeds 1,
the action predictions become noticeably unstable. We observe that the robot arm may performs
anomalous steps during closed-loop control, ultimately leading to a degradation in accuracy. The
results demonstrate that, for robotic tasks, stability in action generation is far more important than
output diversity. Therefore, it is reasonable to either adopt the OpenVLA strategy or use a relatively
small temperature hyperparameter.

Table 12: Task success rates under different temperature settings.

Temperature no sample 0.1 0.2 0.5 1.0 1.5 2.0

HybridVLA 0.78 0.78 0.77 0.78 0.76 0.71 0.64

C.3 ADDITIONAL GENERALIZATION EXPERIMENTS

To further investigate the spatial generalization capability of HybridVLA in real-world settings,
we design a more stringent positional generalization benchmark for the pick-and-place task. In
this experiment, we re-collected a dataset of 100 demonstrations with a precisely defined training
distribution. The tabletop is divided into two non-overlapping spatial regions, from which object
locations for the training and test sets are independently sampled. Figure 6 shows the visualization
of the two regions. This setup enforces a clear positional distribution shift and provides a more
challenging measure of generalization.

We evaluate HybridVLA(7B) and CogACT with 20 rollout episodes on the pick-and-place task. As
shown in Figure 6, HybridVLA maintains strong performance despite the strict spatial separation
between training and testing regions. The results demonstrate that the model is able to transfer learned
manipulation behaviors to novel object locations outside the training distribution, highlighting its
robustness in real-world positional generalization.
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Figure 6: Positional generalization visualization and results on
real-world pick-and-place task. The figure left shows the non-
overlapping regions of training and testing, the red box refers to the
training region, and the blue boxes are testing regions. The table
below shows the success rate of the generalization experiments.

Setting HybridVLA CogACT

Original region 0.85 0.75
Unseen position region 0.75 (-11.8%) 0.50 (-33.3%)

C.4 ADDITIONAL MOTIVATION EXPERIMENTS

We conducted additional experiments to further validate our motivation of leveraging an internet-
scale pretrained LLM backbone as an action expert and combining the strengths of diffusion and
autoregressive action generation, demonstrating clear advantages over using a separate diffusion head.
Specifically, we constructed two variations of HybridVLA across 10 simulation tasks:

Variation 1: We append a Transformer-based diffusion head to HybridVLA and initialize it using
the pretrained weights of the last two layers of the LLM backbone. To ensure consistency with prior
diffusion-based VLM policies, we follow the token-processing scheme used in π0.5: the diffusion
head conditions only on the visual observation tokens and question tokens, and noise is injected
at the action head for diffusion modeling. Following the π0.5 (Intelligence et al., 2025) training
paradigm, the LLM’s AR branch predicts discrete tokens, whereas the additional diffusion head
outputs continuous actions.

Variation 2: Under this setup, we essentially replace π0’s VLM with HybridVLA’s backbone, without
using any part of HybridVLA’s LLM-based AR or diffusion generation pathways. We append the
same Transformer diffusion head, allowing the model to rely solely on the diffusion loss. Similar to
π0 Black et al. (2024) and consistent with Variation 1, the diffusion head is still conditioned solely on
visual observation tokens and question tokens.

Figure 7: The model architectures of variation1. The transformer-based diffusion head is attached
to HybridVLA.

Figure 7 and 8 shows schematic diagrams of the two variant model structures. We show the
quantiative results on the 10 tasks of these different models in Table 13. First, compared with
HybridVLA-dif, both Variation 1 and Variation 2 show a noticeable performance degradation. These
results support our motivation and highlight the advantage of our approach: embedding the Markovian
denoising steps of diffusion into the next-token prediction process allows each denoising step to
function as a reasoning iteration within the LLM backbone, thereby fully leveraging the internet-scale
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Figure 8: The model architectures of variation2. The same transformer diffusion head is attached
but AR action generation from HybridVLA is disabled.

pretrained knowledge of the LLM. Simply attaching a diffusion head and loading pretrained weights
is insufficient, because VLMs are pretrained using the full 32-layer Transformer architecture for
forward feature propagation. Therefore, preserving the LLM’s inherent contextual modeling paradiam
is essential for achieving more robust diffusion-based action generation.

Next, when comparing HybridVLA-dif with the baseline Ex3, and similarly comparing Variation 1
with Variation 2, we observe that introducing AR generation consistently improves diffusion-based
action accuracy across all variants. These results demonstrate that the AR branch inherits the VLM’s
pretrained generation paradigm, which enables it to learn from demonstrations more efficiently.
Meanwhile, this finding also reinforces our motivation and the strength of our method: the two action
paradigms can mutually reinforce each other and thereby enhance overall action robustness.

Table 13: Task success rates of HybridVLA-dif and variants.

Method HybridVLA-dif Ex3 (Ablation Table 3) Variation 1 Variation 2

Mean S.R. 0.72 0.65 0.67 0.59

D ADDITIONAL VISUALIZATIONS

Figure 9 and Figure 10 illustrate keyframes of single-arm and dual-arm real-world execution processes.
Notably, our Franka Research 3 (FR3) operates with controller version 5.6.0, libfranka version 0.13.3,
Franka ROS version 0.10.0, and Ubuntu 20.04 with ROS Noetic. Under these software settings, the
FR3 remains in green light execution mode with the FCI switch set to ‘on’.

These tasks demonstrate HybridVLA’s capability in accurately predicting position and rotation,
as well as determining the precise timing for changing the gripper’s open state. Additionally, the
dual-arm tasks highlight HybridVLA’s ability to coordinate both robotic arms, enabling it to complete
tasks beyond the capability of a single arm, such as transporting a ball to a container. Notably, the
single-arm task ‘open drawer and place’ and the dual-arm tasks ‘wipe whiteboard’ and ‘fold shorts’
are long-horizon tasks that involve at least three atomic sub-tasks. These results further confirm
that HybridVLA can reliably predict long-horizon actions, demonstrating its capability to complete
extended tasks.
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Figure 9: Single-arm Execution Visualization. We visualize key frames of the agent’s execution
process from the front perspective.

E FAILURE CASE ANALYSIS.

Through extensive real-world experiments, we identify three primary failure categories that impact
the performance of HybridVLA. The first category, rotational prediction deviations, is particularly
evident in tasks requiring precise rotation control, such as Pour water and Place bottle at rack. These
failures include accumulated errors in multi-step rotational movements and incorrect rotation angles
when interacting with target objects. The second category pertains to pose predictions that exceed
the robot’s degree of freedom limits. The model sometimes predicts poses beyond the mechanical
constraints of the Fr3 arm or AgileX dual-arm robot, generates target positions that fall outside the
workspace boundaries, or produces kinematically infeasible configurations during complex transitions.
The third category involves failures in dual-arm coordination, where both arms must collaborate to
complete a task. Since the model predicts each arm’s actions based on the current object state, any
interaction by one arm can alter the object’s state, potentially invalidating the previously predicted
action of the other arm.

F THE USE OF LARGE LANGUAGE MODELS (LLMS).

The research ideation of this paper did not involve any assistance from LLMs. However, during the
writing process, we employed GPT (Achiam et al., 2023) to check grammar and refine word choice,
aiming to ensure rigor in the manuscript. In addition, when constructing the language-based task plan
data, we utilized LLMs by first performing manual annotations and subsequently applying GPT for
automated augmentation and validation.
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Figure 10: Dual-arm Execution Visualization. We visualize key frames of the agent’s execution
process from a static exterior view.
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