

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFYING DIFFUSION AND AUTOREGRESSION FOR GENERALIZABLE VISION-LANGUAGE-ACTION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

A central objective of manipulation policy design is to enable robots to comprehend human instructions and predict generalized actions in unstructured environments. Recent autoregressive vision-language-action (VLA) approaches discretize actions into bins to exploit the pretrained reasoning and generation paradigms of vision-language models (VLMs). While these models achieve efficient and scalable training, the discretization undermines the continuity required for precise control. In contrast, diffusion-based VLA methods incorporate an additional diffusion head to predict continuous actions, but they rely solely on feature representations extracted from the VLM, without leveraging the pretrained large language model (LLM) as an expert for iterative action generation. To integrate the complementary strengths of autoregressive and diffusion generation, we introduce HybridVLA, which innovatively leverages a shared LLM backbone to perform iterative action prediction through both paradigms. Specifically, a collaborative training recipe is proposed, incorporating diffusion denoising into the next-token prediction process and mitigating interference between the two generation paradigms. With this recipe, we find these two action prediction methods not only reinforce each other but also exhibit varying strengths across different scenarios. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses both predictions, leading to more robust control. HybridVLA outperforms previous state-of-the-art VLA methods by 17% and 19% in mean success rate on simulation and real-world tasks, respectively, while demonstrating generalization to unseen configurations.

1 INTRODUCTION

Developing intelligent robots capable of performing manipulation tasks demands robust policies (Driess et al., 2023; Huang et al., 2023). In dynamic and unstructured real-world environments, such policies need to interpret human instructions and generalize across a wide range of complex tasks. Recently, vision-language models (VLMs) (Alayrac et al., 2022; Li et al., 2023a) have achieved significant breakthroughs in common-sense reasoning, primarily driven by advances in model architecture, large-scale pretraining, and the iterative generation paradigm. Building on this success, several studies have extended VLMs into vision-language-action (VLA) models, enabling them to predict low-level action poses for robotic manipulation (Brohan et al., 2023; Kim et al., 2024). This paradigm outlines a promising roadmap for building foundation models to facilitate generalist robots.

On the one hand, autoregressive VLA methods (Li et al., 2024b; Kim et al., 2024) emulate the pretrained reasoning and generation paradigms of VLMs for next action-token prediction, enabling efficient and scalable training (Pertsch et al., 2025). These methods enable generalized action prediction by quantizing continuous actions into discrete bins that occupy part of the LLM’s original vocabulary. However, this discretization disrupts the continuity of action poses and hinders precise control (Wen et al., 2024a). On the other hand, building on the success of diffusion models in content generation (Ho et al., 2022; Peebles & Xie, 2023), diffusion policies have been introduced in robotic imitation learning (Chi et al., 2023b; Reuss et al., 2023; Xian et al., 2023). Recent diffusion-based VLA methods (Black et al., 2024; Li et al., 2024a; Wen et al., 2024a; Bjorck et al., 2025) incorporate a diffusion head after the VLM, leveraging probabilistic denoising for action prediction. While these methods enable precise manipulation, the diffusion head lacks internet-scale pretraining and depends solely on feature representations extracted from the VLM, without fully leveraging the powerful LLM backbone as an action expert for iterative generation. Given these advantages and limitations, a

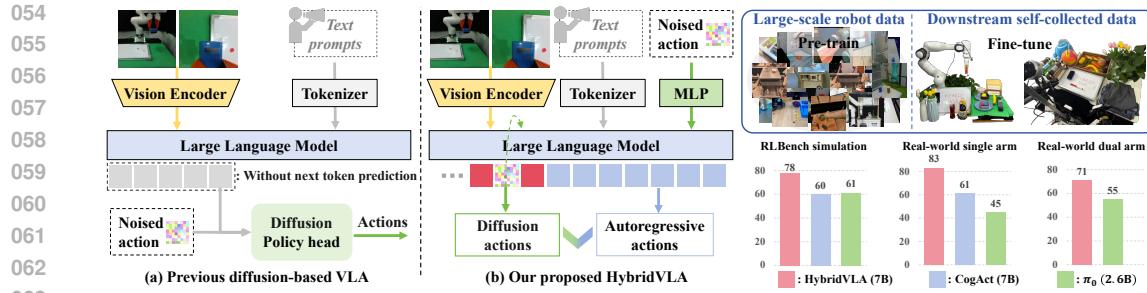


Figure 1: (a) Unlike recent diffusion-based VLA methods that attach a separate diffusion head after VLMs, (b) HybridVLA innovatively integrates diffusion and autoregressive action prediction within a single LLM, embedding the denoising process of diffusion into the next-token prediction. Under our proposed methods, HybridVLA achieves remarkable performance across a wide range of tasks involving both single-arm and dual-arm robots.

question arises: “*How can we elegantly construct a unified VLA model that integrates the strengths of both autoregressive and diffusion policies?*”

To this end, we propose HybridVLA, which leverages a unified LLM backbone to perform both autoregressive and diffusion action generation, harnessing the complementary strengths of both paradigms for robust robot control. Unlike prior diffusion-based VLA methods (Black et al., 2024; Li et al., 2024a) that append an independent diffusion head after the LLM (Figure 1 (a)), we introduce a collaborative training recipe that embeds the Markovian denoising steps of diffusion into the next-token prediction process (Figure 1 (b)), enabling each step to be interpreted as a reasoning iteration within the pretrained LLM. To stabilize the joint optimization of the autoregressive and diffusion components, we design a robotics-specific token sequence formulation that organizes multimodal inputs, diffusion tokens, and autoregressive tokens through specialized markers. Under this recipe, HybridVLA captures continuous action representations from diffusion modeling while inheriting the pretrained reasoning paradigm of autoregression, enabling the two paradigms to jointly approximate the same conditional action distribution. Empirically, these action prediction methods not only reinforce each other but also exhibit varying strengths across different tasks. Therefore, a collaborative action ensemble mechanism is proposed, where the two predictions are adaptively fused based on autoregressive action token confidence, improving robustness in manipulation.

To enhance generalization capability, we initialize HybridVLA with a pretrained VLM (Karamcheti et al., 2024) and adopt a step-by-step training strategy. As shown in the right of Figure 1, HybridVLA is first pretrained on large-scale, diverse, cross-embodiment robotic datasets, including Open X-Embodiment (O’Neill et al., 2023), DROID (Khazatsky et al., 2024), and ROBOMIND (Wu et al., 2024b), covering 760K trajectories and over 10K A800 GPU training hours. It is then fine-tuned on self-collected simulation data (James et al., 2020) and real-world demonstrations, achieving state-of-the-art (SOTA) manipulation performance across a wide range of tasks with both single-arm and dual-arm robots. In real-world testing, HybridVLA also exhibits strong generalization to unseen objects, backgrounds, spatial layouts, and lighting conditions, underscoring the effectiveness of our collaborative model design and training recipe. Moreover, we demonstrate that the autoregressive discrete action outputs of HybridVLA can be replaced with language-based task planning without compromising the stability of diffusion-based action prediction. Our contributions are as follows:

- We propose HybridVLA, which innovatively leverages a single LLM backbone for iterative action prediction through both autoregressive and diffusion generation within a unified token sequence, harnessing the complementary strengths of both paradigms.
- We introduce a collaborative training recipe that embeds the denoising process of diffusion into next-token prediction, enabling mutual reinforcement of both generation paradigms. Additionally, we propose a collaborative action ensemble mechanism that adaptively fuses autoregressive and diffusion-based actions, enhancing manipulation robustness.
- Our proposed HybridVLA achieves SOTA performance across diverse tasks while demonstrating strong generalization to several unseen configurations.

108

2 RELATED WORK

110 **Vision-language-action (VLA) models.** Some studies (Ahn et al., 2022; Driess et al., 2023; Huang
 111 et al., 2023; 2024b) enable robots to interpret both language and visual observations, automatically
 112 generating task plans. Meanwhile, vision-language-action (VLA) models leverage the inherent
 113 reasoning abilities of VLMs to predict low-level SE(3) poses. Specifically, RT2 (Brohan et al.,
 114 2023) quantizes 7-DoF actions into discrete bins for autoregressive pose prediction. Building on this,
 115 ManipLLM (Li et al., 2024b) incorporates affordance priors through chain-of-thought reasoning,
 116 while OpenVLA (Kim et al., 2024) performs large-scale pretraining on the Open X-Embodiment
 117 dataset (O’Neill et al., 2023). FAST (Pertsch et al., 2025) applies the discrete cosine transform to
 118 enable fast and scalable training of autoregressive-based VLA models. To support continuous action
 119 prediction, some VLA approaches (Liu et al., 2024a; Huang et al., 2024a; Li et al., 2023b; Wu et al.,
 120 2023a) incorporate a policy head, such as an MLP or LSTM (Graves & Graves, 2012), and use
 121 regression loss for imitation learning. However, quantization in autoregressive methods disrupts
 122 action continuity, while regressive methods fail to incorporate probabilistic action representations.
 123

124 **Diffusion-based VLA models.** Building on the success of diffusion models in content generation (Ho
 125 et al., 2020; 2022; Peebles & Xie, 2023), diffusion policies have been applied in robotics (Chi et al.,
 126 2023a), including reinforcement learning (Ajay et al., 2022; Wang et al., 2022), imitation learning
 127 (Pearce et al., 2023; Prasad et al., 2024; Reuss et al., 2023; Xian et al., 2023), grasping (Simeonov
 128 et al., 2023; Uraint et al., 2023; Wu et al., 2023b), and motion planning (Janner et al., 2022; Saha
 129 et al., 2024). Following this, 3D Diffusion Actor (Ke et al., 2024) and DP3 (Chi et al., 2023b)
 130 employ diffusion models to interpret point cloud data. Octo (Team et al., 2024) and RDT-1B (Liu
 131 et al., 2024b) augment a transformer for diffusion modeling to predict flexible actions. To integrate
 132 diffusion with VLMs, π_0 (Black et al., 2024) and $\pi_{0.5}$ (Intelligence et al., 2025) add an expert head
 133 that generates actions through flow matching, while TinyVLA (Wen et al., 2024b) incorporates a
 134 simple diffusion head after the lightweight VLM. CogACT (Li et al., 2024a) and DiVLA (Wen
 135 et al., 2024a) decouple reasoning and action prediction into the VLM and an injected diffusion
 136 head, respectively. Following this architecture, some works (Bjorck et al., 2025; Bu et al., 2025;
 137 figureai) introduce a dual-system design to enable control at different frequencies. However, in these
 138 methods, the diffusion head operates as a separate module and treats the VLM as a multimodal
 139 feature extractor, limiting its ability to fully exploit the pretrained knowledge of VLM. Unlike prior
 140 methods focused on image and language generation quality (Ge et al., 2024; Wu et al., 2024a;c; Xie
 141 et al., 2024), HybridVLA introduces a robotics-specific collaborative training strategy that integrates
 142 diffusion action generation into next-token prediction within a single LLM. **There are also related**
 143 **Transformer-based approaches. CDP (Ma et al., 2025) provides long-horizon conditioning for future**
 144 **action prediction, and ARP (Zhang et al., 2025) predicts task-specific action chunks to balance action**
 145 **accuracy with generation efficiency. In contrast, HybridVLA focuses on unifying diffusion-based and**
 146 **autoregressive action-generation paradigms within the unified model and token sequence, enabling**
 147 **the two paradigms to mutually enhance each other.**

148

3 HYBRIDVLA METHOD

149 **Problem Statement.** At time t , each demonstration consists of image observations o_t , language
 150 description l_t , and the current robot state r_t . Our model π aims to predict action a to control the
 151 robot arms, which can be formulated as: $\pi : (o_t, l_t, r_t) \rightarrow a_{t+1:t+H}$, H is the action horizon.
 152 Following Kim et al. (2024), the action a represents the end-effector pose, which uses 7-DOF and
 153 14-DOF for single-arm and dual-arm control, respectively. Each 7-DOF action includes 3-DOF for
 154 relative translation offsets ($[\Delta x, \Delta y, \Delta z] \in \mathbb{R}^3$), 3-DOF for rotation (Euler angles $\in \mathbb{R}^3$), and 1-DOF
 155 for the gripper state (open/closed $\in \mathbb{R}^1$). The ground truth (GT) and the model-predicted action are
 156 in SE(3), formulated as: $a = [\Delta x, \Delta y, \Delta z, Roll, Pitch, Yaw, 0/1]$.

157 **Motivation.** First, existing diffusion-based VLA methods (Black et al., 2024; Li et al., 2024a) append
 158 a separate diffusion head after the VLM and further train it to predict continuous actions. However,
 159 such diffusion heads lack internet-scale pretraining and rely solely on features extracted from the
 160 VLM as conditions, without leveraging the LLM backbone as an action expert for iterative genera-
 161 tion. Second, the autoregressive and diffusion paradigms offer distinct strengths in VLA modeling.
 Diffusion-based predictions excel at precise manipulation, particularly in fine-grained control and

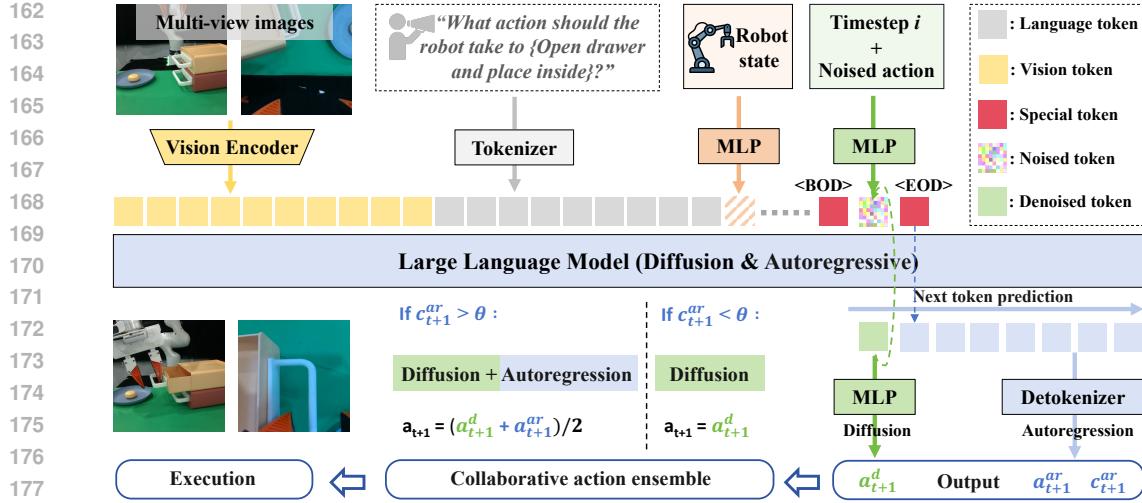


Figure 2: HybridVLA Framework. All multimodal inputs are encoded into tokens and subsequently organized into our designed token sequence formulation within the LLM’s embedding space. For diffusion tokens, HybridVLA simultaneously projects the denoising timestep and noise into continuous vector representations. During inference, we adopt DDIM (Song et al., 2020) with four sampling steps, where the corresponding noisy samples are iteratively fed into the LLM to predict the noise at each step. The marker tokens, $\langle\text{BOD}\rangle$ (Beginning of Diffusion) and $\langle\text{EOD}\rangle$ (End of Diffusion), are introduced to bridge the two generation paradigms. Subsequently, autoregressive actions are generated via next action-token prediction, explicitly conditioned on the preceding tokens. HybridVLA integrates the strengths of both generation paradigms into the unified LLM, enabling them to reinforce each other and be adaptively ensembled for robot arm control.

tasks involving dynamic objects. Autoregressive predictions, by inheriting the VLM generation paradigm, learn more efficiently from demonstrations (Pertsch et al., 2025; Intelligence et al., 2025) and show superior ability to understand flexible instructions and unseen objects. Empirical evidence supporting these insights is presented in Section A.1. Therefore, we propose HybridVLA, which leverages a unified LLM backbone to perform iterative action prediction through both autoregressive and diffusion generation, integrating the complementary strengths of both paradigms.

3.1 HYBRIDVLA ARCHITECTURE

This section presents the architecture and workflow of HybridVLA, which is available in two model sizes based on 7B and 2.7B large language models (LLMs). Following Kim et al. (2024), both HybridVLA (7B) and HybridVLA (2.7B) inherit the base architecture from Prismatic VLMs (Karamcheti et al., 2024), initializing with the corresponding pretrained VLM parameters. We then present the two basic components, the vision encoders and the LLM backbone, as shown in Figure 2.

Vision encoders. HybridVLA leverages powerful vision encoder combinations, such as DINOv2 (Oquab et al., 2023) and SigLIP (Zhai et al., 2023), to capture semantic features $f_d \in \mathbb{R}^{B \times N_v \times 1024}$ and $f_s \in \mathbb{R}^{B \times N_v \times 1152}$. B and N represent batch size and token sequence length, respectively. These features are concatenated along the channel dimension to form $f_v \in \mathbb{R}^{B \times N_v \times 2176}$, which is subsequently projected into the LLM’s embedding space via a projection layer. HybridVLA(2.7B) uses only the CLIP (Radford et al., 2021) model as its vision encoder. When processing multi-view images, we use the shared vision encoders to extract features from each view, which are then concatenated along the token dimension.

LLM backbone. HybridVLA adopts the 7B LLaMA-2 (Touvron et al., 2023a) as its LLM, which is responsible for multimodal understanding and action generation. Language prompts are encoded into the embedding space $f_l \in \mathbb{R}^{B \times N_l \times 4096}$ using the pretrained tokenizer, then concatenated with visual tokens and fed into the LLM. For HybridVLA (2.7B), the workflow remains identical to that of HybridVLA (7B) but employs the 2.7B Phi-2 (Javaheripi et al., 2023) as the LLM.

216 **Table 1: Exploration of token sequence formulations. All models are trained using hybrid objectives.**
 217 **Dif** and **AR** refer to using only autoregressive or diffusion-based generation on 10 RLBench tasks.

	Large Language Model								
Type 1	Vision/Language				Discrete robot state		<BOD>/<EOD>		
Type 2	Vision/Language				Diffusion		Autoregressive		
Type 3	Vision/Language				Continuous robot state		<BOD>/<EOD>		
Type 4 (ours)	Type 1	Type2	Type3	Type4 (ours)	Type 1	Type2	Type3	Type4 (ours)	
Dif	0.67	0.56	0.65	0.72	AR	0.59	0.54	0.60	0.65

230 3.2 COLLABORATIVE TRAINING RECIPE

232 To better integrate both diffusion and autoregressive generation capabilities within the LLM’s next-
 233 token prediction process, we propose a collaborative training strategy that includes a unified token
 234 sequence formulation, hybrid objectives, and structured training stages.

235 **Token sequence formulation design.** As shown in Figure 2, this design aims to organize multimodal
 236 tokens within the LLM’s embedding space into a unified and ordered token sequence, enabling
 237 coordination between the two generation paradigms during the next-token prediction process. In
 238 addition to the acquired vision and language tokens, our framework also integrates the robot state,
 239 diffusion timestep, noisy actions, and the autoregressive tokens. For the **robot state**, we integrate
 240 it into the LLM to enhance temporal consistency in action generation. Instead of discretizing the
 241 robot state and merging it with the language query (Li et al., 2024b) (Type 1 of Table 1), we employ
 242 a learnable MLP to map the robot state directly into the embedding space, $f_r \in \mathbb{R}^{B \times 1 \times 4096}$. For
 243 diffusion-based actions, we predict them through a diffusion denoising process. During training, the
 244 **diffusion timestep** and **noisy actions** are projected into the LLM’s embedding space through MLPs,
 245 represented as continuous vectors. To seamlessly connect diffusion-related tokens within this token
 246 sequence, we introduce special beginning-of-diffusion (<BOD>) and end-of-diffusion (<EOD>)
 247 tokens to encapsulate them. This design not only clarifies the boundaries between diffusion and
 248 autoregressive generation but also prevents confusion in the next-token prediction process, such
 249 as avoiding diffusion tokens directly predicting masked discrete tokens (Type 2 of Table 1). For
 250 **autoregressive actions**, we quantize the end-effector pose into discrete bins and replace part of
 251 the vocabulary in the LLM (Kim et al., 2024), which is then tokenized into a sequence of discrete
 252 tokens. Due to the autoregressive nature of LLMs (Touvron et al., 2023b), both the question and the
 253 answer, including the discrete action ground truth (GT), are provided during training, whereas only
 254 the question is available at inference time. Therefore, placing autoregression before the diffusion
 255 tokens may cause action GT leakage (Type 3 in Table 1), as all preceding tokens serve as conditions
 256 in diffusion modeling. To avoid this, we position diffusion tokens before autoregression to explicitly
 257 provide continuous latent conditions for subsequent token prediction (Type 4 in Table 1). Moreover,
 258 since diffusion operates on noise, it naturally circumvents the risk of information leakage.

259 **Hybrid objectives.** To equip HybridVLA with both autoregressive and diffusion generative capabili-
 260 ties, we combine two training losses under our designed token sequence. For the *diffusion* part, we
 261 adopt the standard objective used in diffusion policies (Chi et al., 2023b), which minimizes the mean
 262 squared error between the predicted noise ϵ_π and the sampled Gaussian noise ϵ . The corresponding
 263 loss function is defined as: $\mathcal{L}_{dif} = E_{a,i,c}[\|\epsilon - \epsilon_\pi(a_i^t, i, c)\|^2]$, where $\epsilon \sim \mathcal{N}(0, 1)$ and c represents the
 264 conditioning context. For the *autoregressive* part, we minimize the cross-entropy loss \mathcal{L}_{ar} to train
 265 the model on predicting the discrete actions. Under our proposed token sequence formulation, both
 266 loss functions are jointly optimized in a unified training objective, defined as: $\mathcal{L}_{hybrid} = \mathcal{L}_{dif} + \mathcal{L}_{ar}$.
 267 For action generation, the autoregressive and diffusion branches aim to approximate the same action
 268 distribution space, as the action data are normalized in the same way (range [-1, 1]). Note that the
 269 discrete action is simply a quantized representation of this distribution. Moreover, we validate that
 the hybrid objectives, coupled with our proposed token formulation, foster mutual reinforcement
 between the two generation paradigms, as evidenced by both quantitative experiments (Section 4.2)
 and Principal Component Analysis (Appendix A.2).

270 **Structured training stage.** After loading the pretrained VLM parameters, HybridVLA undergoes
 271 two training stages with hybrid objectives: large-scale pretraining on open-source robotic data and
 272 fine-tuning on self-collected data. During pretraining, we train HybridVLA for 10 epochs on 35
 273 datasets. These datasets contain 760K robot trajectories, comprising 33M frames. Due to dataset
 274 differences, pretraining relies solely on single 2D observations, whereas fine-tuning relies on either
 275 single or multi-view observations, depending on the downstream task. The details of the pretraining
 276 dataset are provided in Appendix B.1.

277 **3.3 COLLABORATIVE ACTION ENSEMBLE**

280 During inference, either autoregressive or diffusion-based actions can be used for robot control.
 281 However, we observe that the two prediction methods not only reinforce each other but also exhibit
 282 varying strengths across different tasks. This motivates a collaborative action ensemble mechanism
 283 that adaptively fuses both predictions.

284 **Diffusion actions.** When generating diffusion actions, we append the special token <BOD> after
 285 the preceding condition tokens to signal the start of the denoising process. We employ DDIM (Song
 286 et al., 2020) with n sampling steps, and find empirically that n can be reduced to as low as 4 while
 287 maintaining an optimal balance between performance and inference speed. As shown in the right
 288 part of Figure 2, at each denoising step, only the current noisy sample is input to the LLM to predict
 289 the noise for the next step, and the token sequence does not retain any previous noise samples.
 290 Each denoising step is treated as a reasoning iteration, allowing HybridVLA to progressively refine
 291 diffusion-based action predictions by leveraging the LLM’s pretrained knowledge. In this way, we
 292 enable a multi-step Markovian denoising process that aligns with the LLM’s next-token prediction
 293 mechanism. After obtaining the denoised tokens, we use an MLP to map them to the action space.
 294 To accelerate sampling, we introduce a KV cache design for the diffusion process. During the initial
 295 step, the model processes the vision and language tokens, the denoising timestep, and the initial noise.
 296 In subsequent steps, only the updated timestep and noisy actions are forwarded, while the cached
 297 keys and values are reused. This approach reduces redundant computation and significantly enhances
 298 inference efficiency for diffusion-based action generation.

299 **Autoregressive actions.** As shown in Figure 2, the autoregressive generation begins after the special
 300 token <EOD>. Unlike previous autoregressive VLA methods (Kim et al., 2024), HybridVLA’s
 301 autoregressive generation additionally conditions on continuous action representations derived from
 302 diffusion tokens. This yields superior manipulation performance over standalone autoregressive
 303 paradigms without explicit continuous latent conditioning, as shown in the ablation study.

304 **Ensembled actions.** After obtaining the two types of actions under our collaborative training recipe,
 305 we empirically observe two phenomena. 1) Different action types demonstrate varying performance
 306 across tasks and scenarios. 2) The confidence of autoregressive tokens serves as a reliable indicator
 307 of action quality. In over 80% of successfully completed test samples, the average confidence of
 308 autoregressive action tokens exceeds 0.96 (range [0, 1]). Therefore, as shown in Figure 2, we use
 309 the mean confidence of autoregressive tokens (c_{t+1}^{ar}) to guide the action ensemble. If the confidence
 310 exceeds θ ($\theta = 0.96$), we consider the autoregressive action (a_{t+1}^{ar}) sufficiently accurate and perform
 311 an average operation with the diffusion action (a_{t+1}^d). Otherwise, we rely solely on the diffusion
 312 action to control the robot. Further analysis of the confidence threshold can be found in Appendix C.2.

313 **4 EXPERIMENT**

315 In Section 4.1, we compare the manipulation ability of HybridVLA with previous VLA methods
 316 in simulation environments. The effectiveness of each component is validated in Section 4.2 and
 317 Appendix C.2. In Section 4.3, we present both quantitative and qualitative results of HybridVLA
 318 in real-world scenarios. The generalization capabilities of HybridVLA are examined in Section 4.4,
 319 testing on unseen manipulated instances, background, spatial positions, and lighting conditions.

320 **4.1 SIMULATION EXPERIMENT**

321 **Simulation benchmark.** To systematically evaluate our method, we select the RLBench (James et al.,
 322 2020) benchmark in the CoppeliaSim simulator, which contains 10 different tabletop tasks. These

324 **Table 2: Comparison of HybridVLA and baselines on RLBench.** We train all methods in the
 325 multi-task setting (Shridhar et al., 2022) and report the success rates (S.R.) and variances (Var.).

Models	Close box	Close laptop lid	Toilet seat down	Sweep to dustpan	Close fridge	Phone on base	Umbrella out	Frame off hanger	Wine at rack	Water plants	Mean S.R. \uparrow & Var. \downarrow	Infer. speed \uparrow
ARP (one view)	0.35	0.60	0.75	0.80	0.70	0.30	0.40	0.25	0.35	0.20	0.47 ± 0.03	-
ARP (four views)	0.55	0.95	1.00	0.90	0.95	0.45	0.50	0.40	0.70	0.40	0.68 ± 0.02	-
ManipLLM (7B)	0.50	0.80	0.40	0.20	0.80	0.35	0.10	0.25	0.15	0.20	0.38 ± 0.05	2.2 Hz
OpenVLA (7B)	0.65	0.40	0.75	0.60	0.80	0.20	0.35	0.15	0.10	0.10	0.41 ± 0.02	6.3 Hz
OpenVLA-OFT (7B)	1.00	0.65	0.60	0.30	0.80	0.30	0.30	0.20	0.20	0.15	0.45 ± 0.03	13.4 Hz
π_0 (2.6B)	0.90	0.60	1.00	0.30	0.90	0.25	0.35	0.75	0.65	0.45	0.61 ± 0.03	13.8 Hz
CogACT (7B)	0.80	0.85	0.90	0.65	0.90	0.50	0.60	0.35	0.25	0.25	0.60 ± 0.04	9.8 Hz
HybridVLA-ar (7B)	0.90	0.90	0.95	0.85	0.95	0.30	0.30	0.40	0.45	0.50	0.65 ± 0.04	6.3 Hz
HybridVLA-dif (7B)	0.95	0.90	1.00	0.55	0.90	0.25	0.55	0.75	0.85	0.45	0.72 ± 0.03	9.4 Hz
HybridVLA (7B)	0.95	0.95	1.00	0.90	1.00	0.55	0.60	0.70	0.60	0.55	0.78 ± 0.04	6.1 Hz
HybridVLA (2.7B)	1.00	0.90	0.90	0.80	0.90	0.25	0.55	0.45	0.70	0.25	0.67 ± 0.03	12.3 Hz

334 tasks are performed using a Franka Panda robot and a front-view camera. The data are collected using
 335 pre-defined waypoints and the Open Motion Planning Library (Sucan et al., 2012). Following the
 336 frame-sampling method used in previous works (Shridhar et al., 2022; Goyal et al., 2023; Jia et al.,
 337 2024), we construct the training dataset, with each task consisting of 100 trajectories. We further
 338 validate our approach on the SimplerEnv (Li et al., 2024c), with details provided in Appendix C.1.

339 **Training and Evaluation Details.** We compare our method with five previous SOTA VLA models,
 340 including ManipLLM (Li et al., 2024b), OpenVLA (Kim et al., 2024), OpenVLA-OFT (Kim et al.,
 341 2025), π_0 (Black et al., 2024), CogACT (Li et al., 2024a). **Meanwhile, we also compare our method**
 342 **with the related work ARP (Zhang et al., 2025).** Specifically, we report two versions: ARP (four
 343 views), which uses four camera views, and ARP (one view), which uses only the front-view camera,
 344 matching the camera configuration used by other VLA methods. To ensure a fair comparison,
 345 we load the official pretrained parameters provided by each method, adhering to their respective
 346 training settings. Meanwhile, we categorize our method into four modes: HybridVLA-ar (7B),
 347 HybridVLA-dif (7B), HybridVLA (7B), and HybridVLA (2.7B). All modes are jointly trained using
 348 our proposed collaborative training recipe. However, HybridVLA-ar (7B) and HybridVLA-dif (7B)
 349 rely solely on autoregressive or diffusion-based action generation during inference, respectively. For
 350 HybridVLA, the single-view RGB input is resized to 224×224 , and the robot state is consistent with
 351 predicted actions (7-DOF end-effector poses). During training, we use the AdamW optimizer with a
 352 fixed learning rate of $2e-5$ to update both the LLM and the injected MLP parameters. Our models
 353 are trained for 300 epochs on downstream tasks using mixed-precision. For evaluation, following
 354 previous VLA method (Kim et al., 2024), we test all methods with 20 rollouts per task from the latest
 355 epoch checkpoint, repeating the process three times to report the mean success rate with variance.

356 **Quantitative Results.** As shown in Table 2, HybridVLA (7B) achieves an average success rate of 78%
 357 across 10 distinct tasks, outperforming the previous SOTA autoregressive-based VLA (OpenVLA)
 358 and diffusion-based VLA (π_0) by 37% and 17%, respectively. These results demonstrate that
 359 our method effectively integrates the two generation approaches within a shared LLM backbone,
 360 simultaneously capturing the continuous characteristics of diffusion-based actions and inheriting
 361 the LLM’s pretrained generation paradigm for efficient learning from demonstrations. Remarkably,
 362 compared to CogACT and π_0 , HybridVLA-dif (7B) also achieves performance improvements of
 363 12% and 11%, respectively. These results highlight that, unlike previous approaches which attach the
 364 diffusion head after the VLM, our method more effectively leverages the LLM’s pretrained knowledge
 365 to fully unlock the potential of diffusion action prediction. Note that by manually annotating sub-task
 366 plans and applying GPT (Achiam et al., 2023) for automated augmentation, we train HybridVLA
 367 (7B) to generate language-based plans autoregressively and actions through diffusion. This training
 368 paradigm achieves a task success rate of 74%, not only validating the effectiveness of our proposed
 369 collaborative generation method but also demonstrating that the autoregressive generation branch
 370 of HybridVLA does not compromise the stability of diffusion-based action prediction. Finally,
 371 HybridVLA (2.7B) delivers satisfactory results, confirming our method’s effectiveness in enhancing
 372 VLM manipulation capabilities across different backbone sizes. **For inference speed**, As shown
 373 in Table 2, when tested on an NVIDIA 4090D GPU, HybridVLA-dif (7B) and HybridVLA (2.7B)
 374 achieve satisfactory model inference speed comparable to CogACT (7B) and π_0 (2.6B). Note that all
 375 models are run with bfloat16 precision during inference, without employing action chunking.

376 4.2 ABLATION STUDY

377 **The impact of each component.** We conduct ablation experiments on 10 RLbennch tasks, using the
 378 same training and evaluation settings as in the simulation experiments. **For collaborative training**

378 **recipe**, we begin by comparing different **token sequence formulation** designs in Table 1, demonstrating
 379 that Type 4 yields the best performance. The corresponding analysis is provided in Section 3.2.
 380 To validate the effectiveness of **hybrid objectives** under our proposed token formulation, we
 381 present a comparative study in Table 3, contrasting Ex1 with Ex2, and Ex3 with Ex4. Specifically,
 382 Ex1 and Ex3 are trained using only the autoregressive loss \mathcal{L}_{ar} or diffusion loss
 383 \mathcal{L}_{dif} , respectively, and thus produce only the
 384 corresponding action type. In contrast, Ex2
 385 (HybridVLA-ar) and Ex4 (HybridVLA-dif) are
 386 both trained with the hybrid loss \mathcal{L}_{hybrid} , yet
 387 are constrained to output only autoregressive
 388 or diffusion actions, respectively. These results
 389 validate that our proposed hybrid training not
 390 only avoids negative interference between the
 391 two generation paradigms but also enables mutual reinforcement. Finally, the comparison between
 392 Ex5 and Ex6 highlights the importance of the **structured training stage**. Although Ex6 is initialized
 393 with pretrained VLM parameters, it suffers from a significant drop in accuracy, highlighting the
 394 essential role of large-scale pretraining on robot datasets in ensuring stable control. **For collaborative**
 395 **action ensemble**, as evidenced by the results of Ex2, Ex4, and Ex5 in Table 3, the performance
 396 of HybridVLA (Ex5) is further improved, which demonstrates that fusing the two output modes
 397 enhances the robustness of robot control. Moreover, the confidence of the autoregressively generated
 398 action can be used as an indicator to guide the fusion of actions from the two paradigms. The above
 399 ablation studies corroborate our initial motivation that the two action-generation paradigms possess
 400 distinct advantages, and HybridVLA effectively integrates them during both training and inference.
 401 Due to space limitations, Appendix C.2 provides additional ablation studies on: (1) confidence
 402 thresholds in the collaborative action ensemble, (2) the influence of the diffusion-based KV cache on
 403 inference speed, and (3) the impact of DDIM sampling steps on performance.
 404

Table 3: **Impact of each component.** AR and Dif denote that use solely autoregressive and diffusion-based action, respectively. CAE indicates the collaborative action ensemble method, whereas LSP refers to large-scale pretraining on robotic datasets.

	AR	Dif	CAE	\mathcal{L}_{ar}	\mathcal{L}_{dif}	\mathcal{L}_{hybrid}	LSP	Mean ↑
Ex1	✓	-	-	✓	-	-	✓	0.57
Ex2	✓	-	-	-	-	✓	✓	0.65
Ex3	-	✓	-	-	✓	-	✓	0.65
Ex4	-	✓	-	-	-	✓	✓	0.72
Ex5	✓	✓	✓	-	-	✓	✓	0.78
Ex6	✓	✓	✓	-	-	✓	-	0.22

Table 4: **The impact of different confidence threshold.** We report success rates for HybridVLA (7B) and HybridVLA (2.7B) on various tasks with confidence threshold from 0.90 to 0.98.

Threshold	Close box	Close laptop lid	Toilet seat down	Sweep to dustpan	Close fridge	Phone on base	Umbrella out	Frame off hanger	Wine at rack	Water plants	Mean S.R. ↑
HybridVLA (7B)											
0.90	0.80	0.85	0.95	0.95	0.85	0.50	0.40	0.55	0.55	0.45	0.68
0.92	0.95	0.85	1.00	0.90	0.90	0.40	0.40	0.70	0.60	0.45	0.72
0.94	0.95	0.90	1.00	0.90	0.95	0.55	0.50	0.65	0.55	0.50	0.75
0.96	0.95	0.95	1.00	0.90	1.00	0.55	0.60	0.70	0.60	0.55	0.78
0.98	0.95	0.90	0.95	0.90	0.95	0.55	0.50	0.70	0.55	0.45	0.74
HybridVLA (2.7B)											
0.90	0.70	0.75	0.85	0.80	0.90	0.25	0.45	0.40	0.50	0.10	0.58
0.92	0.85	0.90	0.90	0.80	0.85	0.25	0.45	0.35	0.50	0.20	0.61
0.94	1.00	0.85	0.95	0.75	0.85	0.25	0.40	0.40	0.60	0.25	0.63
0.96	1.00	0.90	0.90	0.80	0.90	0.25	0.55	0.45	0.70	0.25	0.67
0.98	0.90	0.90	0.95	0.55	0.90	0.20	0.55	0.35	0.70	0.15	0.62

The impact of confidence threshold in collaborative action ensemble. We evaluated HybridVLA on ten RLBench tasks, varying the confidence threshold from 0.90 to 0.98. The score of each task under every confidence threshold and different backbones are shown in Table 4. We find that when the confidence threshold drops below 0.94, autoregressive predictions become unreliable, leading to a slight degradation in the performance of the ensemble action. Conversely, when the threshold reaches 0.98, the number of valid autoregressive actions becomes too limited, causing the performance of the ensemble action to closely match that of the diffusion-predicted action. Empirically, we conclude that setting the threshold to 0.96 ensures a stable action ensemble. For different backbones, we conduct the same ablation experiment using the 2.7B Phi-2 model as the LLM backbone and find that setting the action-token confidence threshold to 0.96 still serves as a robust indicator for determining whether action ensembling should be applied.

432 **Table 5: Real-world experiments.** The manipulation success is determined by human evaluation.
 433 Since CogACT lacks support for multi-view images, which are crucial for dual-arm tasks (Black
 434 et al., 2024; Fu et al., 2024), we conduct our dual-arm comparison solely with π_0 .
 435

436 Models	437 Franka single-arm robot						438 AgileX dual-arm robot					
	Pick and place	Unplug charger	Pour water	Wipe blackboard	Open drawer and place inside	Mean. S.R.↑	Pick and place	Lift ball and place	Place bottles at rack	Wipe blackboard	Fold shorts	Mean. S.R.↑
π_0 (2.6B)	0.50	0.35	0.45	0.35	0.60	0.45	0.75	0.65	0.40	0.30	0.65	0.55
CogACT (7B)	0.80	0.70	0.40	0.65	0.50	0.61	-	-	-	-	-	-
HybridVLA(7B)	0.90	0.95	0.80	0.85	0.65	0.83	0.90	0.80	0.60	0.55	0.70	0.71

440 Task Progress
441 Task Progress

442 Pour water
443 Open drawer and place inside
444 Lift ball and place inside
445 Place bottles at rack

446 Wipe blackboard
447
448
449 Wipe blackboard
450

451 Single-arm real-world tasks
Dual-arm real-world tasks

451 4.3 REAL-WORLD EXPERIMENT

452 **Self-collected Data.** For single-arm tasks, we use a Franka Research 3 robot with a static front-view
 453 and a wrist-view camera. We perform 5 tasks: 1) *Pick and place*, 2) *Unplug charger*, 3) *Open*
 454 *drawer and place object inside*, 4) *Pour water*, 5) *Wipe blackboard using eraser*. For each task, 100
 455 demonstrations are collected using a SpaceMouse device. For dual-arm tasks, we use an AgileX robot
 456 equipped with a static exterior view, a right-wrist view, and a left-wrist view camera. We conduct 5
 457 coordinated dual-arm tasks: 1) *Pick and place*, 2) *Lift ball and place it in basket*, 3) *Place two bottles*
 458 *at rack*, 4) *Wipe blackboard using eraser*, 5) *Fold shorts*. Similarly, 100 demonstrations are collected
 459 for each task using master-puppet teleoperation. Additional details are provided in Appendix B.2.

460 **Training and Evaluation Details.** We evaluate HybridVLA (7B) against previous VLA methods,
 461 π_0 (Black et al., 2024) and CogACT (Li et al., 2024a). The implementation details remain consistent
 462 with our simulation experiments, except for using two-view inputs for single-arm tasks and three-view
 463 inputs for dual-arm tasks. For evaluation, we use the checkpoint from the latest epoch to perform 20
 464 rollouts across diverse tabletop positions.

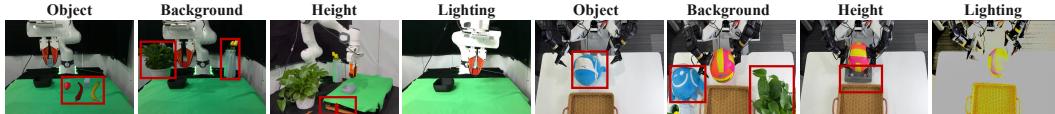
465 **Quantitative and Qualitative Results.** In Table 5, HybridVLA achieves outstanding performance
 466 across single-arm tasks. For *Pick and place* and *Unplug charger*, HybridVLA achieves success rates
 467 of 90% and 95%, respectively, demonstrating accurate object position prediction. For *Pour water*,
 468 HybridVLA outperforms the previous SOTA method by 35%, showcasing its ability to comprehend
 469 object relationships and predict precise rotations. The superior performance on *Wipe blackboard*
 470 and *Open drawer and place inside* further underscores the robustness of our method in long-horizon
 471 tasks. For dual-arm tasks, we extend the action dimensions of both diffusion and autoregressive
 472 tokens to 14-DOF, representing the 7-DOF end-effector poses for both the right and left arms. Our
 473 method consistently outperforms previous VLA approaches across five distinct tasks, highlighting
 474 HybridVLA’s ability to effectively leverage LLM’s pretrained knowledge for dual-arm coordination
 475 in complex scenarios. Furthermore, in the lower part of Table 5, we present visualizations of the
 476 manipulation processes performed by our method, which accurately predict actions across various task
 477 demands, including precise positioning and rotation, dual-arm coordination, and scene understanding.
 478 Additional qualitative results and failure case analyses are provided in Appendix D and Appendix E,
 479 respectively, and execution videos are available in the supplementary materials.

480 4.4 GENERALIZATION EXPERIMENT

481 Since CogACT and π_0 excel in single-arm and dual-arm tasks, respectively, we design four common
 482 generalization experiments, comparing our HybridVLA (7B) with CogACT on the single-arm *Pick*
 483 and *place* task and with π_0 on the *dual-arm Pick and Place*, *Lift ball and place*, and *Place Bottles on*
 484 *Rack* task. The visualization of four generalization test scenarios is shown in the left part of Table 6.

486 **Table 6: Generalization.** “Object”, “Background”, “Height”, and “Lighting” denote unseen manipulated
 487 objects, backgrounds, spatial positions, and lighting conditions, respectively. The image on the
 488 left depicts the unseen test scenarios, with red boxes marking the key differences.

490 Scenario	491 Pick and place (single arm)		492 Lift ball and place (dual arm)		493 Pick and Place (dual arm)		494 Place Bottles on Rack (dual arm)	
	495 HybridVLA	496 CogACT	497 HybridVLA	498 π_0	499 HybridVLA	500 π_0	501 HybridVLA	502 π_0
Original	0.90	0.80	0.80	0.65	0.90	0.75	0.60	0.40
Object	0.60(-33%)	0.45(-43%)	0.75(-6%)	0.60(-8%)	0.90(-0%)	0.55(-26%)	0.55(-8%)	0.30(-25%)
Background	0.80(-11%)	0.50(-37%)	0.60(-25%)	0.50(-23%)	0.80(-11%)	0.50(-33%)	0.50(-17%)	0.30(-25%)
Height	0.75(-17%)	0.50(-37%)	0.60(-25%)	0.45(-31%)	0.70(-22%)	0.50(-33%)	0.45(-25%)	0.25(-37%)
Lightning	0.70(-22%)	0.60(-25%)	0.75(-6%)	0.55(-15%)	0.80(-11%)	0.65(-13%)	0.55(-8%)	0.35(12%)
Mean	0.71(-21%)	0.51(-36%)	0.68(-15%)	0.52(-20%)	0.80(-11%)	0.55(-27%)	0.51(-15%)	0.30(-25%)



503 **1) Unseen manipulated objects.** In this scenario, we replace the training manipulated objects with
 504 a series of unseen objects, e.g., replacing the red block with a charger. As shown in the “Object”
 505 row of Table 6, our method demonstrates the smallest accuracy drop. These results indicate that
 506 HybridVLA effectively integrates diffusion into the autoregressive next-token prediction process,
 507 not only capturing the continuous characteristics of diffusion-based generation, but also preserving
 508 the object-level semantic reasoning capabilities of the pretrained VLM. **2) Unseen background.** In
 509 this scenario, cluttered backgrounds are introduced during testing, such as adding unseen flowers
 510 around the manipulated object. HybridVLA still shows satisfactory results, further demonstrating
 511 that our proposed training recipe effectively inherits the VLM’s scene-level understanding, enhancing
 512 robustness to environmental variations. **3) Unseen Spatial position.** Unlike position shifts within
 513 the same plane, we introduce height variations during testing, further challenging the model’s
 514 spatial comprehension. As shown in the “Height” row of Table 6, HybridVLA consistently achieves
 515 precise manipulation even when encountering objects in previously unseen spatial positions. These
 516 results highlight that HybridVLA exhibits strong trajectory generalization through the ensemble of
 517 two action generation methods. **4) Unseen lighting conditions.** Finally, we introduce variations
 518 in lighting conditions, a common challenge in real-world environments. All methods maintain
 519 satisfactory performance, demonstrating that large-scale pretraining on robotic datasets enhances
 520 their generalization across diverse data distributions. **To provide a clearer overview, in the Table 6**
 521 **below, we summarize the average score and average accuracy drop percentage across all unseen**
 522 **configurations.** The results show that our method reduces the accuracy drop by approximately
 523 **5–16%** compared to the baselines under generalization scenarios. These findings demonstrate that
 524 **HybridVLA effectively integrates diffusion into the autoregressive next-token prediction, achieving**
 525 **not only more robust action generation, but also more efficient learning from demonstrations, thereby**
 526 **enhancing its generalization capability across diverse tasks.**

5 CONCLUSION AND LIMITATION

530 In this paper, we introduce HybridVLA, a unified Vision-Language-Action (VLA) framework that
 531 equips a single LLM with both diffusion-based and autoregressive action generation capabilities. To
 532 integrate the distinct strengths of both paradigms, we propose a collaborative training recipe that
 533 embeds diffusion denoising into the next-token prediction process, enabling mutual reinforcement
 534 and improving manipulation robustness. By effectively inheriting the continuous nature of diffusion-
 535 based action generation and leveraging the pretrained knowledge of LLMs, HybridVLA achieves
 536 outstanding performance and strong generalization across both simulation and real-world tasks. One
 537 limitation of HybridVLA is that its inference speed is constrained by the slower autoregressive
 538 generation, similar to prior autoregressive VLA methods (Kim et al., 2024; Brohan et al., 2023;
 539 Li et al., 2024b). However, our collaborative training enables mutual reinforcement between the
 540 two generation methods, allowing inference using only the diffusion-based action for robot control
 (HybridVLA-dif), achieving a 9.4 Hz inference speed.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv preprint arXiv:2303.08774*, 2023.

545 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
546 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
547 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

548 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
549 ditional generative modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*,
550 2022.

551 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
552 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
553 model for few-shot learning. *Advances in Neural Information Processing Systems*, 35:23716–
554 23736, 2022.

555 Suneel Belkhale, Yuchen Cui, and Dorsa Sadigh. Hydra: Hybrid robot actions for imitation learning.
556 *arxiv*, 2023.

557 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
558 Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00tn1: An open foundation model for generalist
559 humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

560 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
561 Lachy Groom, Karol Hausman, Brian Ichter, et al. pi0: A vision-language-action flow model for
562 general robot control. *arXiv preprint arXiv:2410.24164*, 2024.

563 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
564 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
565 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

566 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
567 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
568 models transfer web knowledge to robotic control. *arXiv preprint arXiv:2307.15818*, 2023.

569 Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
570 He, Xu Huang, Shu Jiang, et al. Agibot world colosseo: A large-scale manipulation platform for
571 scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025.

572 Federico Ceola, Lorenzo Natale, Niko Sünderhauf, and Krishan Rana. Lhmanip: A dataset for
573 long-horizon language-grounded manipulation tasks in cluttered tabletop environments. *arXiv*
574 *preprint arXiv:2312.12036*, 2023.

575 Lawrence Yunliang Chen, Simeon Adebola, and Ken Goldberg. Berkeley UR5 demonstration dataset.
576 <https://sites.google.com/view/berkeley-ur5/home>.

577 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
578 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Proceedings of*
579 *Robotics: Science and Systems (RSS)*, 2023a.

580 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
581 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The*
582 *International Journal of Robotics Research*, pp. 02783649241273668, 2023b.

583 Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ Tedrake,
584 and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without in-the-wild
585 robots. *arXiv preprint arXiv:2402.10329*, 2024.

586 Zichen Jeff Cui, Yibin Wang, Nur Muhammad Mahi Shafiullah, and Lerrel Pinto. From play to policy:
587 Conditional behavior generation from uncurated robot data. *arXiv preprint arXiv:2210.10047*,
588 2022.

594 Shivin Dass, Jullian Yapeter, Jesse Zhang, Jiahui Zhang, Karl Pertsch, Stefanos Nikolaidis, and
 595 Joseph J. Lim. CLVR jaco play dataset, 2023. URL https://github.com/clvrai/clvr_jaco_play_dataset.

596

597 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
 598 Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal
 599 language model. *arXiv preprint arXiv:2303.03378*, 2023.

600

601 Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
 602 Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic skills
 603 with cross-domain datasets. *arXiv preprint arXiv:2109.13396*, 2021.

604 figureai. Helix: A vision-language-action model for generalist humanoid control. <https://www.figure.ai/news/helix>. Accessed 2025.5.7.

605

606

607 Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
 608 with low-cost whole-body teleoperation. *arXiv preprint arXiv:2401.02117*, 2024.

609

610 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
 611 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
 612 *arXiv preprint arXiv:2404.14396*, 2024.

613

614 Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
 615 transformer for 3d object manipulation. In *Conference on Robot Learning*, pp. 694–710. PMLR,
 616 2023.

617

618 Alex Graves and Alex Graves. Long short-term memory. *Supervised sequence labelling with
 recurrent neural networks*, pp. 37–45, 2012.

619

620 Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
 621 Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
 622 Su. Maniskill2: A unified benchmark for generalizable manipulation skills, 2023. URL <https://arxiv.org/abs/2302.04659>.

623

624 Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J. Lim. Furniturebench: Reproducible
 625 real-world benchmark for long-horizon complex manipulation. In *Robotics: Science and Systems*,
 626 2023.

627

628 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 neural information processing systems*, 33:6840–6851, 2020.

629

630 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 631 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 632 2022.

633

634 Siyuan Huang, Iaroslav Ponomarenko, Zhengkai Jiang, Xiaoqi Li, Xiaobin Hu, Peng Gao, Hongsheng
 635 Li, and Hao Dong. Manipvqa: Injecting robotic affordance and physically grounded information
 636 into multi-modal large language models. *arXiv preprint arXiv:2403.11289*, 2024a.

637

638 Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
 639 Composable 3d value maps for robotic manipulation with language models. *arXiv preprint
 arXiv:2307.05973*, 2023.

640

641 Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal rea-
 642 soning of relational keypoint constraints for robotic manipulation. *arXiv preprint arXiv:2409.01652*,
 643 2024b.

644

645 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 646 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_{0.5}$: a vision-language-action
 647 model with open-world generalization, 2025. URL <https://arxiv.org/abs/2504.16054>, 1(2):3.

648

649 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 650 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_{0.5}$: a vision-language-action
 651 model with open-world generalization. *arXiv preprint arXiv:2504.16054*, 2025.

648 Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
 649 learning benchmark & learning environment. *IEEE Robotics and Automation Letters*, 5(2):3019–
 650 3026, 2020.

651

652 Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
 653 and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In
 654 *Conference on Robot Learning*, pp. 991–1002. PMLR, 2022.

655 Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
 656 flexible behavior synthesis. *arXiv preprint arXiv:2205.09991*, 2022.

657

658 Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jyoti Aneja, Sébastien Bubeck, Caio
 659 César Teodoro Mendes, Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth Gopi, et al.
 660 Phi-2: The surprising power of small language models. *Microsoft Research Blog*, 1(3):3, 2023.

661

662 Yueru Jia, Jiaming Liu, Sixiang Chen, Chenyang Gu, Zhilue Wang, Longzan Luo, Lily Lee, Pengwei
 663 Wang, Zhongyuan Wang, Renrui Zhang, et al. Lift3d foundation policy: Lifting 2d large-scale
 664 pretrained models for robust 3d robotic manipulation. *arXiv preprint arXiv:2411.18623*, 2024.

665

666 Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
 667 Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. QT-Opt: Scalable deep
 668 reinforcement learning for vision-based robotic manipulation. *arXiv preprint arXiv:1806.10293*,
 2018.

669

670 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
 671 Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
 672 *arXiv preprint arXiv:2402.07865*, 2024.

673

674 Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
 675 with 3d scene representations. *arXiv preprint arXiv:2402.10885*, 2024.

676

677 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 678 Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
 679 Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
 680 Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Youngwoon
 681 Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin Black,
 682 Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pannag R
 683 Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe, Ted Xiao,
 684 Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal, Mateo Guan-
 685 man Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul Foster, Jensen
 686 Gao, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng Hu, Donovon Jackson, Charlotte
 687 Le, Yunshuang Li, Kevin Lin, Roy Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani,
 688 Daniel Morton, Tony Nguyen, Abigail O’Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen
 689 Tian, Emi Tran, Andrew E. Wang, Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu
 690 Zhang, Osbert Bastani, Glen Berseth, Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek
 691 Gupta, Dinesh Jayaraman, Joseph J Lim, Jitendra Malik, Roberto Martín-Martín, Subramanian
 692 Ramamoorthy, Dorsa Sadigh, Shuran Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar,
 693 Sergey Levine, and Chelsea Finn. Droid: A large-scale in-the-wild robot manipulation dataset.
 694 2024.

695

696 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 697 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 698 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.

699

700 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
 701 speed and success, 2025. URL <https://arxiv.org/abs/2502.19645>.

702

703 Vikash Kumar, Rutav Shah, Gaoyue Zhou, Vincent Moens, Vittorio Caggiano, Abhishek Gupta,
 704 and Aravind Rajeswaran. Robohive: A unified framework for robot learning. In *Thirty-seventh
 705 Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.
 706 URL <https://openreview.net/forum?id=0H5fRQcpQ7>.

702 Michelle A. Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh
 703 Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning of
 704 multimodal representations for contact-rich tasks, 2019. URL <https://arxiv.org/abs/1810.10191>.
 705

706 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 707 pre-training with frozen image encoders and large language models. In *International conference*
 708 *on machine learning*, pp. 19730–19742. PMLR, 2023a.
 709

710 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 711 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 712 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024a.
 713

714 Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang, Jiaming
 715 Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-centric
 716 robotic manipulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 717 *Pattern Recognition*, pp. 18061–18070, 2024b.
 718

718 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
 719 Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
 720 imitators. *arXiv preprint arXiv:2311.01378*, 2023b.
 721

721 Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
 722 Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su, Quan
 723 Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation. *arXiv*
 724 *preprint arXiv:2405.05941*, 2024c.
 725

725 Huihan Liu, Soroush Nasiriany, Lance Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on the job:
 726 Human-in-the-loop autonomy and learning during deployment. In *Robotics: Science and Systems*
 727 (*RSS*), 2023.
 728

729 Jiaming Liu, Mengzhen Liu, Zhenyu Wang, Lily Lee, Kaichen Zhou, Pengju An, Senqiao Yang,
 730 Renrui Zhang, Yandong Guo, and Shanghang Zhang. Robomamba: Multimodal state space model
 731 for efficient robot reasoning and manipulation. *arXiv preprint arXiv:2406.04339*, 2024a.
 732

732 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 733 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. *arXiv preprint*
 734 *arXiv:2410.07864*, 2024b.
 735

736 Jianlan Luo, Charles Xu, Xinyang Geng, Gilbert Feng, Kuan Fang, Liam Tan, Stefan Schaal, and
 737 Sergey Levine. Multi-stage cable routing through hierarchical imitation learning. *arXiv preprint*
 738 *arXiv:2307.08927*, 2023.
 739

739 Jianlan Luo, Charles Xu, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, and Sergey
 740 Levine. Fmb: a functional manipulation benchmark for generalizable robotic learning. *arXiv*
 741 *preprint arXiv:2401.08553*, 2024.
 742

742 Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
 743 Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. *IEEE Robotics*
 744 *and Automation Letters*, 2023.
 745

746 Jiahua Ma, Yiran Qin, Yixiong Li, Xuanqi Liao, Yulan Guo, and Ruimao Zhang. Cdp: Towards robust
 747 autoregressive visuomotor policy learning via causal diffusion. *arXiv preprint arXiv:2506.14769*,
 748 2025.
 749

749 Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
 750 Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. RoboTurk: A
 751 crowdsourcing platform for robotic skill learning through imitation. *CoRR*, abs/1811.02790, 2018.
 752 URL <http://arxiv.org/abs/1811.02790>.
 753

754 Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language with visual affordances
 755 over unstructured data. In *Proceedings of the IEEE International Conference on Robotics and*
 756 *Automation (ICRA)*, London, UK, 2023.

756 Russell Mendonca, Shikhar Bahl, and Deepak Pathak. Structured world models from human videos.
 757 *CoRL*, 2023.

758

759 Soroush Nasiriany, Tian Gao, Ajay Mandlekar, and Yuke Zhu. Learning and retrieval from prior data
 760 for skill-based imitation learning. In *Conference on Robot Learning (CoRL)*, 2022.

761 Abby O'Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Abhishek
 762 Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al. Open x-embodiment:
 763 Robotic learning datasets and rt-x models. *arXiv preprint arXiv:2310.08864*, 2023.

764

765 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 766 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 767 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

768 Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
 769 Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
 770 human behaviour with diffusion models. *arXiv preprint arXiv:2301.10677*, 2023.

771 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of
 772 the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

773

774 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 775 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 776 models. *arXiv preprint arXiv:2501.09747*, 2025.

777 Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy:
 778 Accelerated visuomotor policies via consistency distillation. *arXiv preprint arXiv:2405.07503*,
 779 2024.

780

781 Gabriel Quere, Annette Hagengruber, Maged Iskandar, Samuel Bustamante, Daniel Leidner, Freek
 782 Stulp, and Joern Vogel. Shared Control Templates for Assistive Robotics. In *2020 IEEE Interna-
 783 tional Conference on Robotics and Automation (ICRA)*, pp. 7, Paris, France, 2020.

784 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 785 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 786 models from natural language supervision. In *International conference on machine learning*, pp.
 787 8748–8763. PMLR, 2021.

788 Ilija Radosavovic, Tete Xiao, Stephen James, Pieter Abbeel, Jitendra Malik, and Trevor Darrell.
 789 Real-world robot learning with masked visual pre-training. In *Conference on Robot Learning*, pp.
 790 416–426. PMLR, 2023.

791

792 Moritz Reuss, Maximilian Li, Xiaogang Jia, and Rudolf Lioutikov. Goal-conditioned imitation
 793 learning using score-based diffusion policies. *arXiv preprint arXiv:2304.02532*, 2023.

794 Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent
 795 plans for task agnostic offline reinforcement learning. In *Proceedings of the 6th Conference on
 796 Robot Learning (CoRL)*, 2022.

797

798 Kallol Saha, Vishal Mandadi, Jayaram Reddy, Ajit Srikanth, Aditya Agarwal, Bipasha Sen, Arun
 799 Singh, and Madhava Krishna. Edmp: Ensemble-of-costs-guided diffusion for motion planning.
 800 In *2024 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 10351–10358.
 801 IEEE, 2024.

802 Saumya Saxena, Mohit Sharma, and Oliver Kroemer. Multi-resolution sensing for real-time control
 803 with vision-language models. In *7th Annual Conference on Robot Learning*, 2023. URL <https://openreview.net/forum?id=WuBv9-IGDUA>.

804

805 Nur Muhammad Mahi Shafiullah, Anant Rai, Haritheja Etukuru, Yiqian Liu, Ishan Misra, Soumith
 806 Chintala, and Lerrel Pinto. On bringing robots home, 2023.

807

808 Rutav Shah, Roberto Martín-Martín, and Yuke Zhu. MUXE: Learning unified policies from
 809 multimodal task specifications. In *7th Annual Conference on Robot Learning*, 2023. URL
<https://openreview.net/forum?id=PwqiqaEEzJ>.

810 Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
 811 elasto-plastic object manipulation with diverse tools, 2023. URL <https://arxiv.org/abs/2306.14447>.

812

813 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
 814 robotic manipulation. In *Proceedings of the 6th Conference on Robot Learning (CoRL)*, 2022.

815

816 Anthony Simeonov, Ankit Goyal, Lucas Manuelli, Lin Yen-Chen, Alina Sarmiento, Alberto Ro-
 817 driguez, Pulkit Agrawal, and Dieter Fox. Shelving, stacking, hanging: Relational pose diffusion
 818 for multi-modal rearrangement. *arXiv preprint arXiv:2307.04751*, 2023.

819

820 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 821 preprint arXiv:2010.02502*, 2020.

822

823 Ioan A Sucan, Mark Moll, and Lydia E Kavraki. The open motion planning library. *IEEE Robotics &
 824 Automation Magazine*, 19(4):72–82, 2012.

825

826 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 827 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 828 policy. *arXiv preprint arXiv:2405.12213*, 2024.

829

830 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 831 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 832 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

833

834 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 835 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 836 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

837

838 Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se (3)-diffusionfields: Learning
 839 smooth cost functions for joint grasp and motion optimization through diffusion. In *2023 IEEE
 840 International Conference on Robotics and Automation (ICRA)*, pp. 5923–5930. IEEE, 2023.

841

842 Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim, Max Du, Chongyi Zheng, Tony Zhao,
 843 Philippe Hansen-Estruch, Quan Vuong, Andre He, Vivek Myers, Kuan Fang, Chelsea Finn, and
 844 Sergey Levine. Bridgedata v2: A dataset for robot learning at scale, 2023.

845

846 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 847 class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022.

848

849 Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li,
 850 Xiaoyu Liu, Yixin Peng, Chaomin Shen, et al. Diffusion-vla: Scaling robot foundation models via
 851 unified diffusion and autoregression. *arXiv preprint arXiv:2412.03293*, 2024a.

852

853 Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
 854 Chaomin Shen, Yixin Peng, et al. Tinyvla: Towards fast, data-efficient vision-language-action
 855 models for robotic manipulation. *arXiv preprint arXiv:2409.12514*, 2024b.

856

857 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
 858 Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal
 859 understanding and generation. *arXiv preprint arXiv:2410.13848*, 2024a.

860

861 Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
 862 Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
 863 manipulation. *arXiv preprint arXiv:2312.13139*, 2023a.

864

865 Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhiqin Yang, Meng Li, Yinuo
 866 Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
 867 normative data for robot manipulation. *arXiv preprint arXiv:2412.13877*, 2024b.

868

869 Tianhao Wu, Mingdong Wu, Jiayao Zhang, Yunchong Gan, and Hao Dong. Learning score-based
 870 grasping primitive for human-assisting dexterous grasping. *Advances in Neural Information
 871 Processing Systems*, 36:22132–22150, 2023b.

864 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 865 Zhu, Enze Xie, Hongxu Yin, Li Yi, et al. Vila-u: a unified foundation model integrating visual
 866 understanding and generation. *arXiv preprint arXiv:2409.04429*, 2024c.

867 Zhou Xian, Nikolaos Gkanatsios, Theophile Gervet, Tsung-Wei Ke, and Katerina Fragkiadaki.
 868 Chaineddiffuser: Unifying trajectory diffusion and keypose prediction for robotic manipulation. In
 869 *7th Annual Conference on Robot Learning*, 2023.

870 Zeqi Xiao, Yifan Zhou, Shuai Yang, and Xingang Pan. Video diffusion models are training-free
 871 motion interpreter and controller. *Advances in Neural Information Processing Systems*, 37:76115–
 872 76138, 2024.

873 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 874 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 875 to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024.

876 Ge Yan, Kris Wu, and Xiaolong Wang. ucsd kitchens Dataset. August 2023.

877 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 878 image pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
 879 pp. 11975–11986, 2023.

880 Xinyu Zhang, Yuhan Liu, Haonan Chang, Liam Schramm, and Abdeslam Boularias. Autoregressive
 881 action sequence learning for robotic manipulation. *IEEE Robotics and Automation Letters*, 2025.

882 Gaoyue Zhou, Victoria Dean, Mohan Kumar Srirama, Aravind Rajeswaran, Jyothish Pari, Kyle Hatch,
 883 Aryan Jain, Tianhe Yu, Pieter Abbeel, Lerrel Pinto, Chelsea Finn, and Abhinav Gupta. Train
 884 offline, test online: A real robot learning benchmark, 2023.

885 Xinghao Zhu, Ran Tian, Chenfeng Xu, Mingyu Ding, Wei Zhan, and Masayoshi Tomizuka. Fanuc
 886 manipulation: A dataset for learning-based manipulation with fanuc mate 200id robot. 2023a.

887 Yifeng Zhu, Peter Stone, and Yuke Zhu. Bottom-up skill discovery from unsegmented demonstrations
 888 for long-horizon robot manipulation. *IEEE Robotics and Automation Letters*, 7(2):4126–4133,
 889 2022.

890 Yifeng Zhu, Abhishek Joshi, Peter Stone, and Yuke Zhu. Viola: Imitation learning for vision-based
 891 manipulation with object proposal priors, 2023b.

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 **Appendix A.** To validate our motivation, we first present empirical analyses showing that the
 919 autoregressive and diffusion action generation paradigms exhibit distinct advantages across different
 920 tasks and scenarios. Furthermore, through Principal Component Analysis, we demonstrate that our
 921 collaborative training recipe enables mutual reinforcement between the two paradigms.

922 **Appendix B.** We present the details of our large-scale pretraining and self-collected real-world
 923 datasets.

924 **Appendix C.** Additional simulation experiments and ablation studies are presented.

925 **Appendix D.** We include further visualizations of both single-arm and dual-arm manipulation
 926 processes.

927 **Appendix E.** An analysis of failure cases encountered when using HybridVLA to control a robot.

928 **Appendix F.** The Use of Large Language Models (LLMs)

929 A VALIDATION OF THE MOTIVATION

930 A.1 DISTINCT STRENGTHS OF TWO GENERATION PARADIGMS

931 In this section, we present a variety of experimental comparisons to highlight the respective advantages
 932 of the autoregressive and diffusion action output paradigms, while also emphasizing the necessity of
 933 integrating the two generation approaches. To this end, we employ two modes of our model: Our-ar
 934 and Our-dif, which use only autoregressive or diffusion-based action generation during inference,
 935 respectively.

936 **Fine-grained task.** We evaluate Our-ar and Our-dif on a fine-grained manipulation task (unplug a
 937 charging cable from its docking base) using an AgileX dual-arm robot. Under the same training and
 938 testing setup as Section 4.3, both models were trained on 30 demonstrations. As shown in Figure 3(a),
 939 Our-dif achieves significantly higher action accuracy than Our-ar, which is critical for fine-grained
 940 control. We attribute this superiority to the continual action generation nature of diffusion and our
 941 proposed method, which allows the diffusion process to more effectively exploit the pretrained
 942 knowledge of the LLM through progressively refined action predictions.

943 **Dynamic manipulation task.** To evaluate the two action generation paradigms on a dynamic
 944 manipulation task, we conducted a pick-and-place experiment with the AgileX robot under controlled
 945 perturbations. Specifically, the target banana was dynamically shifted left or right within the left arm’s
 946 manipulable range prior to pick-up (see the first row of Figure 10). We compared Our-dif and Our-ar
 947 directly using their trained models in a zero-shot manner. As shown in Figure 3 (b), Our-dif achieves
 948 a higher success rate, underscoring its superior robustness in dynamic manipulation scenarios.

949 **Unseen objects.** Following the setup of the generalization experiments (Section 4.4), we evaluate
 950 Our-dif and Our-ar using single-arm robot on a pick-and-place task where the manipulated objects are
 951 replaced with previously unseen instances (e.g., a charger or a strawberry). As shown in the Figure 3
 952 (c), Our-ar undergoes a smaller performance degradation upon object replacement, suggesting that
 953 the autoregressive paradigm is more effective at capturing semantic variations across novel objects.

954 **Unseen language instructions.** Since the RLBench benchmark provides multiple language instruc-
 955 tions for each task, we directly conduct simulator experiments using unseen instructions to test Our-ar
 956 and Our-dif. For each task, we employ a variety of semantically equivalent instructions that were
 957 not encountered during training. As shown in Figure 3(d), the performance of Our-ar decreases
 958 by only 9% on average, which is much smaller than that of Our-dif. This demonstrates that the
 959 autoregressive paradigm exhibits relatively robust contextual reasoning ability when handling flexible
 960 natural language instructions.

961 Consequently, these results highlight a clear pattern: diffusion-based generation excels at producing
 962 fine-grained, temporally consistent actions, particularly in dynamically evolving environments,
 963 whereas autoregressive action generation inherits the large-scale pretrained paradigm of VLMs,
 964 enabling more efficient demonstration learning (Pertsch et al., 2025; Intelligence et al.) and exhibiting
 965 robustness in language comprehension and generalization to novel objects. Building upon this
 966 observation, we propose HybridVLA. Our approach leverages a unified LLM backbone to generate

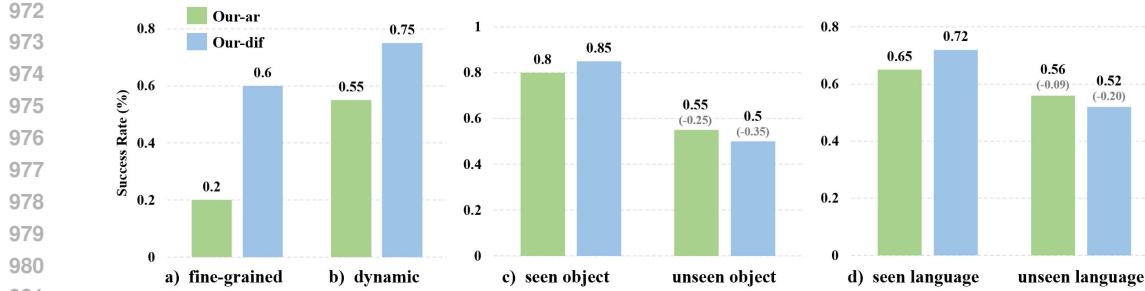


Figure 3: **Respective strengths of diffusion-based and autoregressive action generation paradigms.** We evaluate the performance of Our-ar and Our-dif across a variety of scenarios.

actions through both autoregressive and diffusion paradigms, thereby harnessing the distinct strengths of each.

A.2 PRINCIPAL COMPONENT ANALYSIS

In Section 4.2, we validate the effectiveness of our Collaborative Training Recipe through ablation studies in the simulator, demonstrating that joint training with hybrid objectives enables mutual reinforcement between the two generation paradigms, compared to training them individually. To validate that our Collaborative Training Recipe improves the representation capacity of both action generation paradigms, we follow Xiao et al. (2024) and conduct a Principal Component Analysis (PCA) study of their feature distributions. In particular, we sample several trajectories from both Pick and Place actions and feed the corresponding frames into the model. From these inputs, we extract the diffusion-denoised tokens as well as the autoregressive action tokens, and project them into a 2D space using PCA. We compare models trained with our collaborative training recipe against models where each generation paradigm is trained independently, i.e., optimized solely with either the diffusion loss or the autoregressive loss. As shown in Table 7, jointly trained models yield diffusion and autoregressive features that form tighter intra-class clusters and exhibit larger inter-class separation for both Pick and Place actions. This indicates that joint optimization not only improves the feature representation, but also implicitly regularizes the latent space to preserve dimensions beneficial to both diffusion- and autoregressive-based generation.

Table 7: **PCA feature analysis of HybridVLA.** Comparison of intra-class and inter-class distances under collaborative training versus independent training. Collaborative optimization yields tighter intra-class clustering and larger inter-class separation.

Metric	Our Collaborative Training		Independent Training	
	Diffusion Token	AR Token	Diffusion Token	AR Token
Intra-class Distance	0.49	0.44	0.73	0.91
Inter-class Distance	8.7	10.8	8.6	4.4

B ADDITIONAL DATASET DETAILS

B.1 LARGE-SCALE PRETRAINING DATASET

Our pre-training dataset collection comprises 35 datasets, encompassing a total of 760K trajectories and 33M frames. Table 8 provides a comprehensive list of our pre-training datasets along with their respective sampling weights. The number of trajectories and the sampling weights can be automatically adjusted during dataset assembly. Following the prior data preprocessing approach (Kim et al., 2024), we reformulate the pre-training datasets to emphasize end-effector sequence control, ensuring alignment with the specific requirements of our model training. Due to inherent differences among datasets, only single 2D observations are used during pre-training. However, during fine-tuning, HybridVLA can accommodate both single- and multi-view observations depending on the

1026 Table 8: The dataset name and sampling weight used in our mixed large-scale pretraining dataset.
1027

1028 Training Dataset Mixture	
1030 Fractal (Brohan et al., 2022)	9.1%
1031 Kuka (Kalashnikov et al., 2018)	27.8%
1032 Bridge(Ebert et al., 2021; Walke et al., 2023)	4.1%
1033 Taco Play (Rosete-Beas et al., 2022; Mees et al., 2023)	2.1%
1034 Jaco Play (Dass et al., 2023)	0.3%
1035 Berkeley Cable Routing (Luo et al., 2023)	0.2%
1036 Roboturk (Mandlekar et al., 2018)	1.7%
1037 Viola (Zhu et al., 2023b)	0.7%
1038 Berkeley Autolab UR5 (Chen et al.)	0.9%
1039 Toto (Zhou et al., 2023)	1.5%
1040 Language Table (Lynch et al., 2023)	3.1%
1041 Stanford Hydra Dataset (Belkhale et al., 2023)	3.2%
1042 Austin Buds Dataset (Zhu et al., 2022)	0.2%
1043 NYU Franka Play Dataset (Cui et al., 2022)	0.6%
1044 Furniture Bench Dataset (Heo et al., 2023)	1.8%
1045 UCSD Kitchen Dataset (Yan et al., 2023)	<0.1%
1046 Austin Sailor Dataset (Nasiriany et al., 2022)	1.6%
1047 Austin Sirius Dataset (Liu et al., 2023)	1.2%
1048 DLR EDAN Shared Control (Quere et al., 2020)	<0.1%
1049 IAMLab CMU Pickup Insert (Saxena et al., 2023)	0.7%
1050 UTAustin Mutex (Shah et al., 2023)	1.6%
1051 Berkeley Fanuc Manipulation (Zhu et al., 2023a)	0.6%
1052 CMU Stretch (Mendonca et al., 2023)	0.1%
1053 BC-Z (Jang et al., 2022)	5.4%
1054 FMB Dataset (Luo et al., 2024)	5.0%
1055 DobbE (Shafiullah et al., 2023)	1.0%
1056 DROID (Khazatsky et al., 2024)	7.2%
1057 Stanford Kuka Dataset (Lee et al., 2019)	0.1%
1058 Stanford Robocook Dataset (Shi et al., 2023)	0.1%
1059 Maniskill (Gu et al., 2023)	6.3%
1060 Berkeley RPT (Radosavovic et al., 2023)	0.1%
1061 QUT Dexterous Manipulation (Ceola et al., 2023)	0.1%
1062 RoboSet (Kumar et al., 2023)	1.8%
1063 BridgeData V2 (Walke et al., 2023)	4.7%
1064 RoboMind (Wu et al., 2024b)	5.2%

1064 task requirements. For instance, AgileX dual-arm robot tasks require three viewpoints, an ego view
1065 and two wrist camera views, to capture a comprehensive observation of the object while mitigating
1066 occlusions caused by the robot arm. HybridVLA processes multi-view images using a shared vision
1067 encoder and then concatenates the visual feature along the token dimension. Notably, the difference
1068 in the number of images used during pre-training and fine-tuning does not impact manipulation
1069 performance in downstream tasks.

1072 B.2 SELF-COLLECTED REAL-WORLD DATASET

1074 The experimental assets and environments for the single-arm and dual-arm setups are shown in
1075 Figure 4 (a) and (b), respectively. For the single-arm setup, a 3D-printed UMI gripper (Chi et al.,
1076 2024) is attached to the Franka robot and is used across all baselines. We utilize RealSense 435 and
1077 RealSense 515 cameras to capture both wrist and front views. For the dual-arm setup, two Orbbec
1078 DABAI cameras are used to capture the left and right wrist views, while a RealSense 515 is mounted
1079 overhead to capture a static third-person view. We provide a detailed explanation of the real-world
tasks and their success conditions. We begin by describing the single-arm tasks:

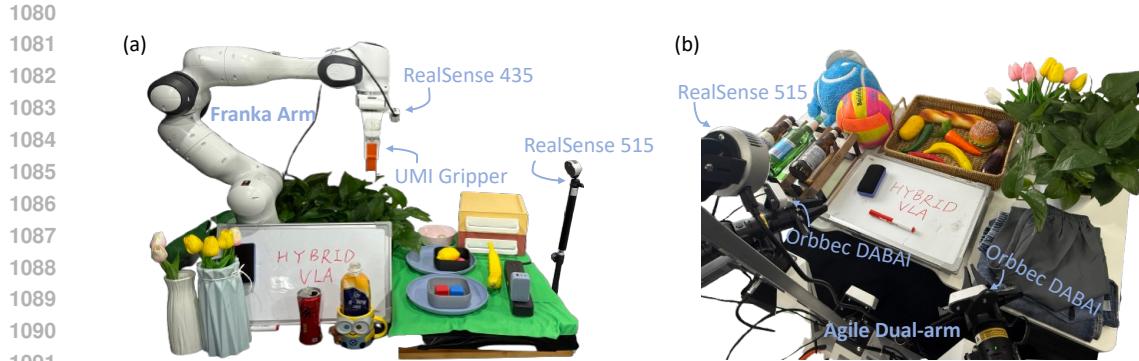


Figure 4: **Real-World Assets and Experimental Settings.** We provide visualizations of the assets used and the settings for single-arm FR3 robot tasks and dual-arm AgileX robot tasks, respectively.

1. *Pick and place.* This task requires the robot to pick up a specifically colored block based on a language description and place it in a specifically colored bowl.

2. *Unplug charger.* The robot needs to grasp the charger at an optimal position and rotation, and then lift it to a certain height without slipping.

3. *Pour water.* The robot needs to first pick the bottle, then rotate it to a position slightly above the cup, and tilt it to perform the pouring action. The task is deemed successful only if the bottle opening is correctly aligned with the cup.

4. *Wipe blackboard.* The robot needs to first grasp an eraser and then use it to remove the red markings from a blackboard placed on the tabletop. The red markings are drawn on an unfixed region, and the task is considered successful only if they are completely erased.

5. *Open drawer and place inside.* The robot needs to open the top drawer, pick up the required objects based on the language description, place them in the opened drawer, and then close it. This task consists of four sequential sub-tasks: *open drawer*, *pick object*, *place object*, and *close drawer*. The task is considered complete once all sub-tasks have been successfully executed.

We then describe the details of dual-arm tasks:

1. *Pick and place.* The robot must use both its left and right arms to pick up two objects based on the language description and place them in the container.

2. *Lift ball and place.* Both the left and right arms must simultaneously make contact with the ball, which is secured between the two grippers. The arms coordinate their movements to transport the ball to the container while ensuring it does not slip. This task highly tests the model’s dual-arm coordination capabilities.

3. *Place bottles at rack.* The left and right robot arms need to grasp the bottles placed on their respective sides and rotate them to position them parallel to the rack.

4. *Wipe blackboard.* Unlike the single-arm setting, the dual-arm setting requires one arm to hold the whiteboard while the other picks up the eraser and wipes off the red marker.

5. *Fold shorts:* This task requires folding a pair of shorts, involving two sequential steps. First, one pant leg is folded over the other to align them. Then, the pants are folded in half from top to bottom. Throughout the process, both arms must coordinate their movements. For example, in the first step, the left arm holds the bottom of the pant leg while the right arm grips the upper part, working together to complete the folding.

C ADDITIONAL QUANTITATIVE RESULTS

C.1 ADDITIONAL SIMULATION EXPERIMENTS

To further investigate the generalization capability of HybridVLA, we conduct experiments in the SimplerEnv (Li et al., 2024c) variant aggregation setting using the Google robot, which poses

1134
 1135 **Table 9: Evaluation results on SimperEnv.** We evaluate our models in the variant aggregation
 1136 setting of the Google Robot benchmark, where the number of test trials per scene follows the official
 1137 protocol. All models are finetuned on the Fractal dataset. **Bold** indicates the highest score.
 1138

Models	Pick Coke Can	Move Near	Open/Close Drawer	Open Top Drawer and Place	Mean S.R. \uparrow
π_0 (2.6B)	0.72	0.50	0.34	0.38	0.49
HybridVLA (7B)	0.84	0.64	0.40	0.48	0.59

1141
 1142 significant challenges for evaluating a model’s generalization to unseen configurations. Since the
 1143 pretraining of π_0 does not include the Fractal dataset (Brohan et al., 2022) as a subset, unlike
 1144 HybridVLA, we ensure a fair comparison by initializing both models with their respective pretrained
 1145 checkpoints and finetuning them for 5 epochs on the same Fractal dataset. As shown in Table 9,
 1146 HybridVLA consistently outperforms π_0 across 4 tasks. In particular, on tasks that demand strong
 1147 scene understanding, such as *Open Top Drawer and Place*, HybridVLA achieves up to a 10% higher
 1148 success rate.
 1149

1150 C.2 ADDITIONAL ABLATION STUDY

1151 **The impact of confidence threshold in collaborative action ensemble.** The proposed collaborative
 1152 ensemble strategy determines whether to use the action predicted by diffusion alone or the averaged
 1153 output of both diffusion and autoregressive generations, guided by a mean confidence threshold
 1154 derived from the autoregressive action token. In this experiment, we investigate the optimal confidence
 1155 threshold required to ensure the accuracy of autoregressive actions and enhance the overall precision
 1156 of the ensemble-generated action. Specifically, we evaluated HybridVLA on ten RLBench tasks,
 1157 varying the confidence threshold from 0.90 to 0.98. The main results are presented in Table 10.
 1158 We find that when the confidence threshold drops below 0.94, autoregressive predictions become
 1159 unreliable, leading to a slight degradation in the performance of the ensemble action. Conversely,
 1160 when the threshold reaches 0.98, the number of valid autoregressive actions becomes too limited,
 1161 causing the performance of the ensemble action to closely match that of the diffusion-predicted action.
 1162 Empirically, we conclude that setting the threshold to 0.96 ensures a stable action ensemble.
 1163

1164 **Table 10: Confidence threshold.** We explore the impact of different confidence thresholds on the
 1165 performance of ensemble actions. The model used for testing is HybridVLA (7B).
 1166

Threshold	0.90	0.92	0.94	0.96	0.98
Mean S.R. \uparrow	0.68	0.72	0.75	0.78	0.74

1169 **The impact of diffusion-based KV cache in inference speed.** As described in Section 3.3, we
 1170 adopt the diffusion-based KV cache to eliminate redundant computations and improve inference
 1171 speed. In this experiment, we examine the extent to which this mechanism accelerates inference.
 1172 With the diffusion-based KV cache enabled (Table 2 of the main paper), HybridVLA-dif achieves an
 1173 average success rate of 72% across 10 simulation tasks with an inference speed of 9.4 Hz. Removing
 1174 it results in a similar average success rate but reduces the inference speed to 5.0 Hz. Although the KV
 1175 cache has typically been used in previous autoregressive VLA methods (Kim et al., 2024; Li et al.,
 1176 2024b), we are the first to integrate it into an LLM’s diffusion-based action generation.
 1177

1178 **The impact of denoising steps.** Figure 5 illustrates the relationship between manipulation perfor-
 1179 mance and the number of denoising steps for HybridVLA-dif across ten RLBench tasks. Consistent
 1180 with the findings of previous work (Bjork et al., 2025; Liu et al., 2024b), we reduced the number
 1181 of DDIM denoising steps of inference from 20 to 2 without observing a significant degradation in
 1182 manipulation performance. To balance inference speed and accuracy, we set the diffusion denoising
 1183 steps to 4 in our final implementation.
 1184

1185 **The impact of weights between diffusion and AR losses.** As shown in Table 11, we conducted a
 1186 detailed ablation study to examine how the dynamic weighting between the two losses influences
 1187 manipulation success rates across the 10 simulation tasks. Except for adjusting the loss ratios, all
 1188 other training settings remain identical to those used in the main paper. Since our model is pretrained
 1189 on large-scale robotic datasets, the initial values of the two losses are similar. First, we observe

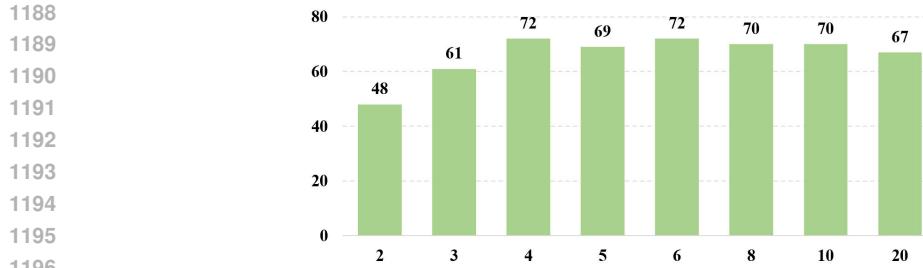


Figure 5: **The impact of denoising steps**, where the x-axis and y-axis represent the denoising steps and manipulation success rate.

that a ratio between AR and Diff models slightly above 1:1 yields a relatively stable average task success rate of approximately 0.78 to 0.80. When the ratio falls below 1:1, the performance becomes comparatively poorer. Additionally, we find that maintaining a ratio slightly above 1:1 leads to a marginally faster convergence speed during model training.

Table 11: Task success rates under different ratios of AR and diffusion losses.

$\mathcal{L}_{AR} : \mathcal{L}_{Diff}$	10:1	5:1	2:1	1:1	1:2	1:5	1:10
Mean S.R. \uparrow	0.79	0.80	0.78	0.78	0.75	0.77	0.75

The impact of different temperature hyperparameters. We added a sensitivity analysis for the LLM temperature hyperparameter across 10 simulation tasks. It is worth noting that some autoregressive VLA models do not explicitly set the temperature and instead directly select the token with the highest probability (Kim et al., 2024). Our experiments in the main paper also follow this setting. As shown in Table 12, we observe that when the temperature is less than or equal to 1, the manipulation success rate remains consistent. However, when the temperature exceeds 1, the action predictions become noticeably unstable. We observe that the robot arm may performs anomalous steps during closed-loop control, ultimately leading to a degradation in accuracy. The results demonstrate that, for robotic tasks, stability in action generation is far more important than output diversity. Therefore, it is reasonable to either adopt the OpenVLA strategy or use a relatively small temperature hyperparameter.

Table 12: Task success rates under different temperature settings.

Temperature	no sample	0.1	0.2	0.5	1.0	1.5	2.0
HybridVLA	0.78	0.78	0.77	0.78	0.76	0.71	0.64

C.3 ADDITIONAL GENERALIZATION EXPERIMENTS

To further investigate the spatial generalization capability of HybridVLA in real-world settings, we design a more stringent positional generalization benchmark for the pick-and-place task. In this experiment, we re-collected a dataset of 100 demonstrations with a precisely defined training distribution. The tabletop is divided into two non-overlapping spatial regions, from which object locations for the training and test sets are independently sampled. Figure 6 shows the visualization of the two regions. This setup enforces a clear positional distribution shift and provides a more challenging measure of generalization.

We evaluate HybridVLA(7B) and CogACT with 20 rollout episodes on the pick-and-place task. As shown in Figure 6, HybridVLA maintains strong performance despite the strict spatial separation between training and testing regions. The results demonstrate that the model is able to transfer learned manipulation behaviors to novel object locations outside the training distribution, highlighting its robustness in real-world positional generalization.

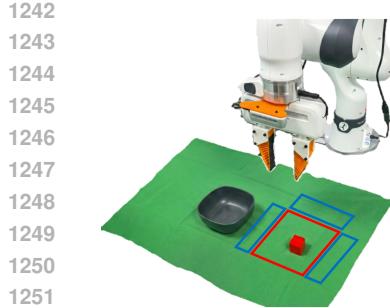


Figure 6: **Positional generalization visualization and results on real-world pick-and-place task.** The figure left shows the non-overlapping regions of training and testing, the red box refers to the training region, and the blue boxes are testing regions. The table below shows the success rate of the generalization experiments.

Setting	HybridVLA	CogACT
Original region	0.85	0.75
Unseen position region	0.75 (-11.8%)	0.50 (-33.3%)

C.4 ADDITIONAL MOTIVATION EXPERIMENTS

We conducted additional experiments to further validate our motivation of leveraging an internet-scale pretrained LLM backbone as an action expert and combining the strengths of diffusion and autoregressive action generation, demonstrating clear advantages over using a separate diffusion head. Specifically, we constructed two variations of HybridVLA across 10 simulation tasks:

Variation 1: We append a Transformer-based diffusion head to HybridVLA and initialize it using the pretrained weights of the last two layers of the LLM backbone. To ensure consistency with prior diffusion-based VLM policies, we follow the token-processing scheme used in $\pi_{0.5}$: the diffusion head conditions only on the visual observation tokens and question tokens, and noise is injected at the action head for diffusion modeling. Following the $\pi_{0.5}$ (Intelligence et al., 2025) training paradigm, the LLM’s AR branch predicts discrete tokens, whereas the additional diffusion head outputs continuous actions.

Variation 2: Under this setup, we essentially replace π_0 ’s VLM with HybridVLA’s backbone, without using any part of HybridVLA’s LLM-based AR or diffusion generation pathways. We append the same Transformer diffusion head, allowing the model to rely solely on the diffusion loss. Similar to π_0 Black et al. (2024) and consistent with Variation 1, the diffusion head is still conditioned solely on visual observation tokens and question tokens.

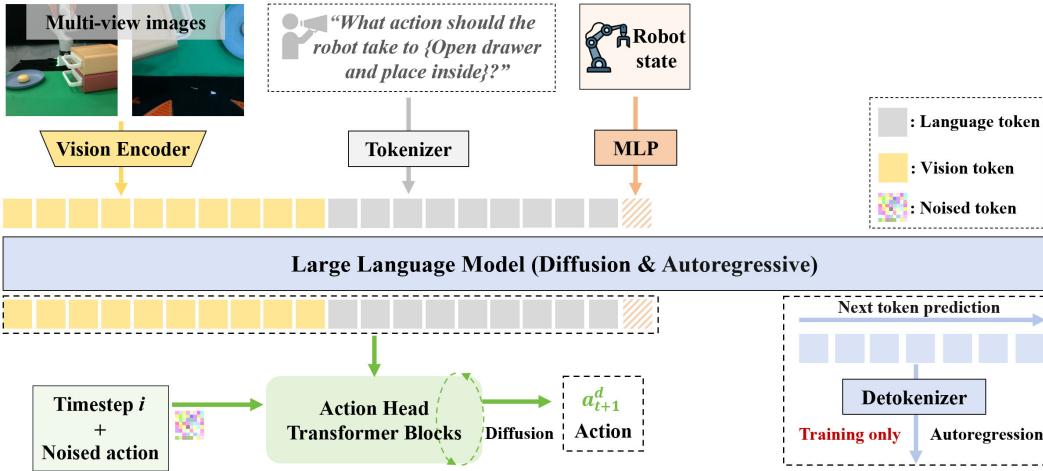


Figure 7: **The model architectures of variation1.** The transformer-based diffusion head is attached to HybridVLA.

Figure 7 and 8 shows schematic diagrams of the two variant model structures. We show the quantitative results on the 10 tasks of these different models in Table 13. First, compared with HybridVLA-dif, both Variation 1 and Variation 2 show a noticeable performance degradation. These results support our motivation and highlight the advantage of our approach: embedding the Markovian denoising steps of diffusion into the next-token prediction process allows each denoising step to function as a reasoning iteration within the LLM backbone, thereby fully leveraging the internet-scale

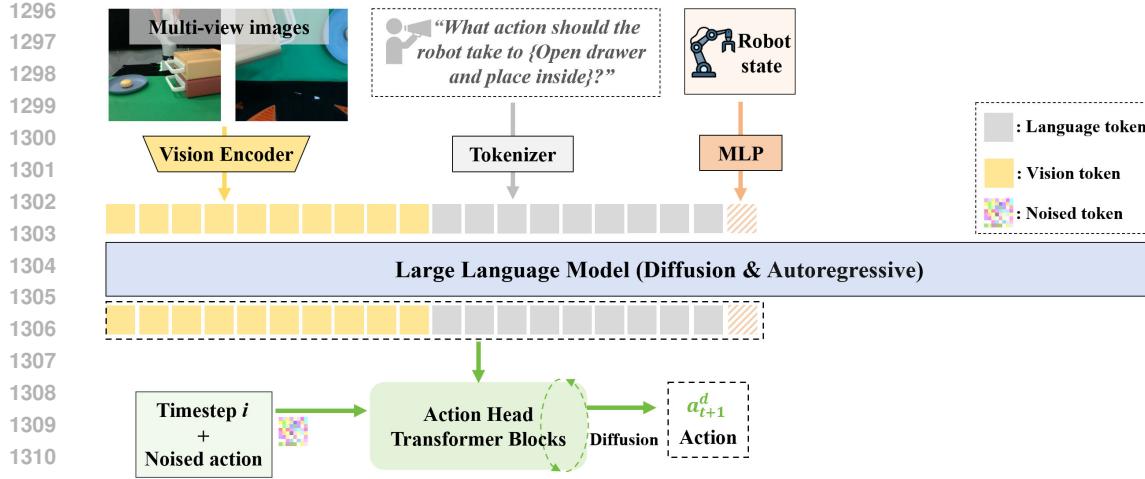


Figure 8: **The model architectures of variation2.** The same transformer diffusion head is attached but AR action generation from HybridVLA is disabled.

pretrained knowledge of the LLM. Simply attaching a diffusion head and loading pretrained weights is insufficient, because VLMs are pretrained using the full 32-layer Transformer architecture for forward feature propagation. Therefore, preserving the LLM’s inherent contextual modeling paradigm is essential for achieving more robust diffusion-based action generation.

Next, when comparing HybridVLA-dif with the baseline Ex3, and similarly comparing Variation 1 with Variation 2, we observe that introducing AR generation consistently improves diffusion-based action accuracy across all variants. These results demonstrate that the AR branch inherits the VLM’s pretrained generation paradigm, which enables it to learn from demonstrations more efficiently. Meanwhile, this finding also reinforces our motivation and the strength of our method: the two action paradigms can mutually reinforce each other and thereby enhance overall action robustness.

Table 13: Task success rates of HybridVLA-dif and variants.

Method	HybridVLA-dif	Ex3 (Ablation Table 3)	Variation 1	Variation 2
Mean S.R.	0.72	0.65	0.67	0.59

D ADDITIONAL VISUALIZATIONS

Figure 9 and Figure 10 illustrate keyframes of single-arm and dual-arm real-world execution processes. Notably, our Franka Research 3 (FR3) operates with controller version 5.6.0, libfranka version 0.13.3, Franka ROS version 0.10.0, and Ubuntu 20.04 with ROS Noetic. Under these software settings, the FR3 remains in *green* light execution mode with the FCI switch set to ‘on’.

These tasks demonstrate HybridVLA’s capability in accurately predicting position and rotation, as well as determining the precise timing for changing the gripper’s open state. Additionally, the dual-arm tasks highlight HybridVLA’s ability to coordinate both robotic arms, enabling it to complete tasks beyond the capability of a single arm, such as transporting a ball to a container. Notably, the single-arm task ‘open drawer and place’ and the dual-arm tasks ‘wipe whiteboard’ and ‘fold shorts’ are long-horizon tasks that involve at least three atomic sub-tasks. These results further confirm that HybridVLA can reliably predict long-horizon actions, demonstrating its capability to complete extended tasks.

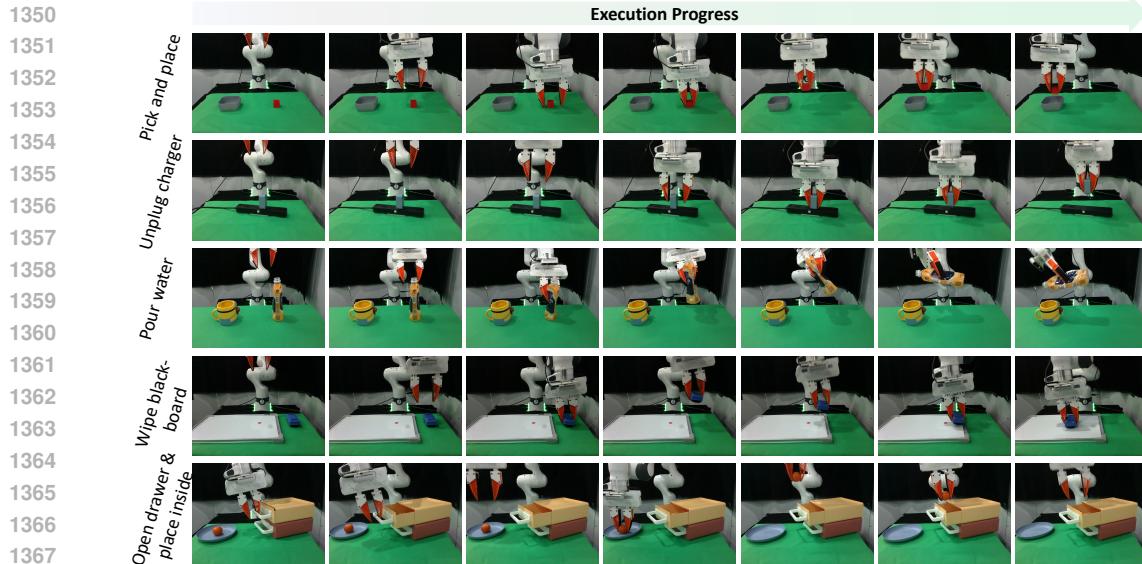


Figure 9: **Single-arm Execution Visualization.** We visualize key frames of the agent’s execution process from the front perspective.

E FAILURE CASE ANALYSIS.

Through extensive real-world experiments, we identify three primary failure categories that impact the performance of HybridVLA. The first category, **rotational prediction deviations**, is particularly evident in tasks requiring precise rotation control, such as *Pour water* and *Place bottle at rack*. These failures include accumulated errors in multi-step rotational movements and incorrect rotation angles when interacting with target objects. The second category pertains to pose predictions that exceed the robot’s **degree of freedom limits**. The model sometimes predicts poses beyond the mechanical constraints of the Fr3 arm or AgileX dual-arm robot, generates target positions that fall outside the workspace boundaries, or produces kinematically infeasible configurations during complex transitions. The third category involves failures in **dual-arm coordination**, where both arms must collaborate to complete a task. Since the model predicts each arm’s actions based on the current object state, any interaction by one arm can alter the object’s state, potentially invalidating the previously predicted action of the other arm.

F THE USE OF LARGE LANGUAGE MODELS (LLMs).

The research ideation of this paper did not involve any assistance from LLMs. However, during the writing process, we employed GPT (Achiam et al., 2023) to check grammar and refine word choice, aiming to ensure rigor in the manuscript. In addition, when constructing the language-based task plan data, we utilized LLMs by first performing manual annotations and subsequently applying GPT for automated augmentation and validation.

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

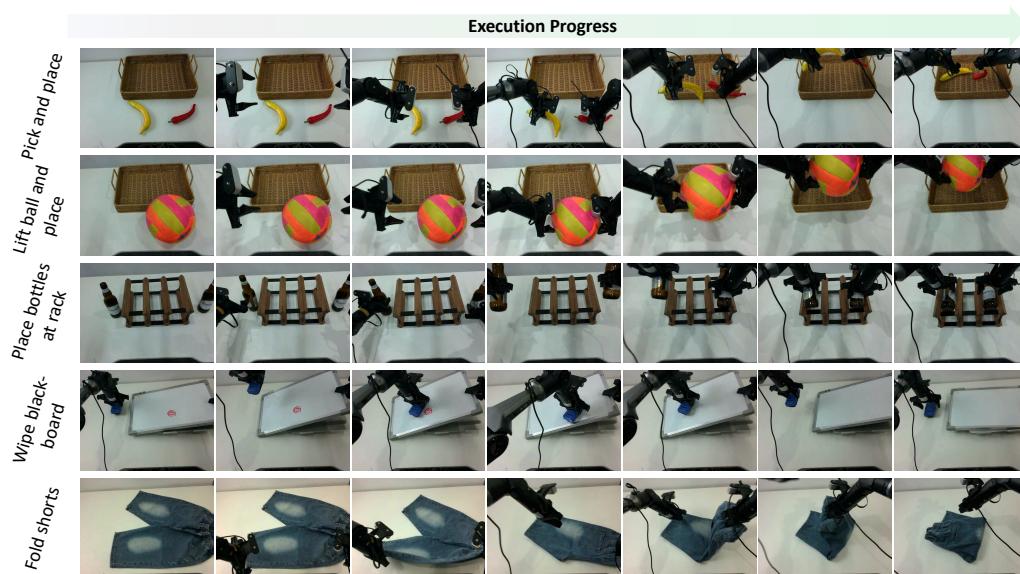


Figure 10: **Dual-arm Execution Visualization.** We visualize key frames of the agent’s execution process from a static exterior view.