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ABSTRACT

Some real-world domains are best characterized as a single task, but for others
this perspective is limiting. Instead, some tasks continually grow in complexity,
in tandem with the agent’s competence. In continual learning there are no explicit
task boundaries or curricula. As learning agents have become more powerful,
continual learning remains one of the frontiers that has resisted quick progress.
To test continual learning capabilities we consider a challenging 3D domain with
an implicit sequence of tasks and sparse rewards. We propose a novel agent archi-
tecture called Unicorn, which demonstrates strong continual learning and outper-
forms several baseline agents on the proposed domain. The agent achieves this by
jointly representing and efficiently learning multiple policies for multiple goals,
using a parallel off-policy learning setup.

1 INTRODUCTION

Continual learning, that is, learning from experience about a continuing stream of tasks in a way
that exploits previously acquired knowledge or skills, has been a longstanding challenge to the field
of AI (Ring, 1994; Schaul, 2018). A major draw of the setup is its potential for a fully autonomous
agent to incrementally build its competence and solve the challenges that a rich and complex envi-
ronment presents to it – without the intervention of a human that provides datasets, task boundaries,
or reward shaping. Instead, the agent considers tasks that continually grow in complexity, as the
agent’s competence increases. An ideal continual learning agent should be able to (A) solve multi-
ple tasks, (B) exhibit synergies when tasks are related, and (C) cope with deep dependency structures
among tasks (e.g., a lock can only be unlocked after its key has been picked up).

A plethora of continual learning techniques exist in the supervised learning setting, as recently
reviewed by Parisi et al. (2018), who note that more research is needed to tackle continual learning
with autonomous agents in uncertain environments - a setting well-suited to Reinforcement Learning
(RL). Previous work on continual learning with RL, and specifically on solving tasks with deep
dependency structures, has typically focused on separating learning into two stages; that is, first
individual skills are acquired separately and then later recombined to help solve a more challenging
task (Tessler et al., 2017; Oh et al., 2017). Finn et al. (2017) framed this as meta-learning and trained
an agent on a distribution of tasks that is explicitly designed to adapt to a new task in that distribution
with very little additional learning. In a linear RL setting Ammar et al. (2015) learn a latent basis
via policy gradients to solve new tasks as they are encountered. Brunskill & Li (2014) derive sample
complexity bounds for option discovery in a lifelong learning setting.

In this work we aim to solve tasks with deep dependency structures using single-stage end-to-end
learning. In addition, we aim to train the agent on all tasks simultaneously regardless of their
complexity. We argue that, in order to tackle this problem, we need two basic ingredients: task
generalization and off-policy learning. This allows experience to be shared across tasks, enabling
the agent to efficiently develop representations and competency for each task in parallel.

There are a number of RL techniques that perform task generalization by incorporating tasks directly
into the definition of the value function (Sutton et al., 2011; Dietterich, 2000; Kaelbling, 1993).
Universal Value Function Approximators (UVFAs; Schaul et al. (2015)) are the latest iteration of
these works that effectively combines the value functions for multiple rewards and policies into a
single function approximator. We extend UVFAs with off-policy learning (Sutton et al., 2011; Ashar,

1



Under review as a conference paper at ICLR 2019

1994; Peng & Williams, 1994) about multiple goals simultaneously, and scale them up to a parallel
agent architecture (Mnih et al., 2016; Espeholt et al., 2018) and train them end-to-end (they were
originally trained in a two-stage process). The resulting continual learning agent, called Unicorn1,
is capable of consistently solving continual learning tasks with deep dependency structures, at scale,
in complex domains (Figure 1). It does this by sharing experience and reusing representations and
skills across tasks. We claim the following contributions:

• Unicorn: The first effective end-to-end training of UVFA at scale, off-policy, using a novel
combination of state-of-the-art RL architectures.

• Adapting the parallelized policy-based state-of-the-art RL architecture (Espeholt et al.,
2018) to value-based as well as incorporating off-policy learning and off-policy corrections
into the architecture.

• A detailed investigation with multiple ablation experiments, showing that Unicorn effec-
tively learns multiple tasks in parallel and exhibits synergies when tasks are related.

• A continual learning experiment whereby the Unicorn learns to solve tasks with deep de-
pendency chains (e.g., collect a key, unlock a lock, open a door, and collect a chest in that
order. Then receive a reward upon completion of the task). This is achieved using task
generalization and off-policy learning, to solve this task which was impossible for existing
methods (see the ‘expert(chest)’ baseline in Figure 1, bottom).

• Treasure world, a new continual learning domain with deep dependency structure that re-
tains the full complexity of Beattie et al. (2016)’s DM Lab (action space, vision, memory,
navigation). This is especially important since continual learning benchmarks for RL are
scarce (Schaul, 2018).

2 BACKGROUND

Reinforcement learning (RL) is a computational framework for making decisions under uncertainty
in sequential-time decision making problems (Sutton & Barto, 1998). An RL problem is formulated
as a Markov decision process, defined as a 5-tuple 〈S,A, r,P, γ〉where S is a set of states,A is a set
of actions, r : S ×A → R is the reward function, P : S ×A×S → [0, 1] is a transition probability
distribution and γ ∈ [0, 1) is a discount factor. A policy π maps states s ∈ S to a probability
distribution over actions. We define the return from a given time step t as the discounted sum
of rewards: Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =

∑∞
k=0 γ

krt+k+1, where rt = r(st, at). Action
value functions Qπ(s, a) = Eπ[Rt|st = s, at = a] estimate the expected return for an agent that
selects an action a ∈ A in some state s ∈ S, and follows policy π thereafter. The optimal action
value function Q∗(s, a) estimates the expected return with respect to the optimal policy π∗.

Q-learning (Watkins, 1989; Watkins & Dayan, 1992) can be used to estimate the optimal action
value function Q∗(s, a), via an iterative bootstrapping procedure in which Q(st, at) is updated
towards a bootstrap target Zt that is constructed using the estimated Q-value at the next state:
Zt = rt+1 + γmaxaQ(st+1, a). The difference δt = Zt −Q(st, at) is referred to as the temporal
difference (TD) error (Sutton & Barto, 1998).

Multi-step Q-learning variants (Watkins, 1989; Peng & Williams, 1994; De Asis et al., 2017) use
multiple transitions in a single bootstrap target. A common choice is the n-step return defined
as G(n)

t =
∑n
k=1 γ

k−1rt+k + γnmaxaQ(st+n, a). In calculating n-step returns there may be a
mismatch in the action selection between the target and behavior policy within the n steps. In order
to learn off-policy, this mismatch can be corrected using a variety of techniques (Sutton et al., 2009;
Maei et al., 2010; Precup et al., 2001; Munos et al., 2016). We deal with off-policy corrections by
truncating the returns whenever a non-greedy action is selected, as suggested by Watkins (1989).

Universal Value Function Approximators (UVFA) extend value functions to be conditional on
a goal signal g ∈ G, with their function approximator (such as a deep neural network) sharing
an internal, goal-independent representation of the state f(s) (Schaul et al., 2015). As a result, a
UVFA Q(s, a; g) can compactly represent multiple policies by conditioning on any goal signal g
and choosing actions greedily. UVFA’s have previously been implemented in a two-stage process

1Unicorn stands for “UNIversal Continual Off-policy Reinforcement learNing”.
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Figure 1: Top: Continual learning domain. the agent needs to find and pick up objects in the spe-
cific order key, lock, door, chest (diagram, top left), while acting in the rich 3D environment
of DM Lab (screenshot, top right). Any deviation from that order resets the sequence (dashed gray
lines). Bottom: Results. The objective is to pick up as many chests as possible (purple). The bot-
tom left plot shows performance relative to final performance of the best baseline (glutton, dashed
line) as a function of training. Our method quickly learns to become competent on all 4 subtasks,
one at a time. The margin of improvement over the baseline is largest on the hardest subtasks (see
section 4.5 for details). The stacked bar plot (bottom right) shows the average number of collected
objects after training (1.5B frames). The unicorn can be conditioned on 4 goals, each conditioning
shown as a separate stack. E.g. the Unicorn’s door policy typically collects 15 keys, 12 locks,
10 doors and 1 chest. Note that the strict ordering imposed by the domain requires that there
are always at least as many keys as locks, etc. Black bars indicate the standard deviation across 5
independent runs.
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involving a matrix factorization step to learn embeddings and a separate multi-variate regression
procedure. In contrast, the Unicorn learns Q(s, a; g) end-to-end, in a joint parallel training setup
with off-policy goal learning and corrections.

Tasks vs. goals. For the purposes of this paper, we assign distinct meanings to the terms task
(τ ) and goal signal (g). A goal signal modulates the behavior of an agent (e.g., as input to the
UVFA). In contrast, a task defines a pseudo-reward rτ (e.g., rkey = 1 if a key was collected and 0
otherwise). During learning, a vector containing all pseudo-rewards is visible to the agent on each
transition, even if it is pursuing one specific goal. Each experiment defines a discrete set of K tasks
{τ1, τ2, . . . , τK}. In transfer experiments, tasks are split between K ′ training tasks and K − K ′

hold-out tasks.

3 UNICORN

This section introduces the Unicorn agent architecture with the following properties to facilitate
continual learning. (A): The agent should have the ability to simultaneously learn about multiple
tasks, enabling domains where new tasks are continuously encountered. We use a joint parallel
training setup with a single learner but many actors working on different tasks to accomplish this
(sections 3.2 and section 3.4). (B): As the agent accumulates more knowledge, we want it to gen-
eralize by reusing some of its knowledge to solve related tasks. This is accomplished by using a
single UVFA to capture knowledge about all tasks, with a separation of goal-dependent and goal-
independent representations to facilitate transfer (section 3.1). (C): The agent should be effective in
domains where tasks have a deep dependency structure. This is the most challenging aspect, but is
enabled by off-policy learning from the experience across all tasks (section 3.3). For example, an
actor pursuing the door goal will sometimes, upon opening a door, subsequently stumble upon a
chest. To the door-pursuing actor this is an irrelevant (non-rewarding) event, but when learning
about the chest task this same event is highly interesting as it is one of the rare non-zero reward
transitions.

We will next describe the various components that comprise the Unicorn. The full Unicorn algorithm
can be found in Appendix A.

3.1 VALUE FUNCTION ARCHITECTURE

A key component of the Unicorn agent is a UVFA, which is an approximator, such as a neural net-
work, that learns to approximate Q(s, a; g). The power of this approximator lies in its ability to be
conditioned on a goal signal g. This enables the UVFA to learn about multiple tasks simultaneously
where the tasks themselves may vary in their level of difficulty (e.g., tasks with deep dependencies).
Our proposed UVFA architecture is depicted schematically in Figure 2: the current frame of visual
input is processed by a convolutional network (CNN; LeCun et al. (1998)), followed by a recur-
rent layer of long short-term memory (LSTM; Hochreiter & Schmidhuber (1997)). As in (Espeholt
et al., 2018) the previous action and reward are part of the observation. The output of the LSTM is
concatenated with an “inventory stack”, to be described in section 4.1, to form a goal-independent
representation of state f(s). This vector is then concatenated with a goal signal g and further pro-
cessed via two layers of a multi-layer perceptron (MLP) with ReLU non-linearities to produce the
output vector of Q-values (one for each possible action a ∈ A). The union of trainable parameters
from all these components is denoted by θ. Further details about the networks and hyperparameters
can be found in Appendix B.

3.2 BEHAVIOUR POLICY

At the beginning of each episode, a goal signal gi is sampled uniformly, and is held constant for
the entire episode. The policy executed is ε-greedy after conditioning the UVFA on the current
goal signal gi: with probability ε the action taken at is chosen uniformly from A, otherwise at =
argmaxaQ(st, a; gi).
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CNN LSTM MLPConcat
f (s)

g
Q (s, a; g)

Figure 2: Our UVFA architecture. Observations are processed via a CNN and an LSTM block to
produce a goal-independent representation f(s), which is concatenated with the goal signal g, and
then processed by an MLP into Q(s, a; g).

3.3 OFF-POLICY MULTI-TASK LEARNING

Another key component of the Unicorn agent is its ability to learn about multiple tasks
off-policy. Therefore, even though it may be acting on-policy with respect to a particular
task, it can still learn about other tasks from this shared experience in parallel. Concretely,
when learning from a sequence of transitions, Q-values are estimated for all goal signals gi
in the training set and n-step returns G

(n)
t,i are computed for each corresponding task τi as

G
(n)
t,i =

∑n
k=1 γ

k−1rτi(st+k, at+k) + γnmaxaQ(st+n, a; gi). When a trajectory is generated by
a policy conditioned on one goal signal gi (the on-policy goal with respect to this trajectory), but
used to learn about the policy of another goal signal gj (the off-policy goal with respect to this tra-
jectory), then there are often action mismatches, so the off-policy multi-step bootstrapped targets
become increasingly inaccurate. Following (Watkins, 1989), we therefore truncate the n-step return
by bootstrapping at all times t when the taken action does not match what a policy conditioned on gj
would have taken,2 i.e. whenever at 6= argmaxaQ(st, a; gj). The network is updated with gradient
descent on the sum of TD errors across tasks and unrolled trajectory of length H (and possibly a
mini-batch dimension B), yielding the squared loss (Equation 1) where errors are not propagated
into the targets G(n)

t,i .

L =
1

2

K′∑
i=1

H∑
t=0

(
G

(n)
t,i −Q(st, at; gi)

)2
, (1)

3.4 PARALLEL AGENT IMPLEMENTATION

To effectively train such a system at scale, we employ a parallel agent setup consisting of multiple
actors3, running on separate (CPU) machines, that generate sequences of interactions with the envi-
ronment, and a single learner (GPU machine) that pulls this experience from a queue, processes it
in mini-batches, and updates the value network (see Figure 3, right). This is similar to the recently
proposed Importance Weighted Actor-Learner Architecture agent (Espeholt et al., 2018).

Each actor continuously executes the most recent policy for some goal signal gi. Together they
generate the experience that is sent to the learner in the form of trajectories of length H , which
are stored in a global queue. Before each new trajectory, an actor requests the most recent UVFA
parameters θ from the learner. Note that all M actors run in parallel and at any given time will
generally follow different goals.

The learner batches up trajectories of experience pulled from the global queue (to exploit GPU par-
allelism), passes them through the network, computes the loss in equation 1, updates the parameters
θ, and provides the most recent parameters θ to actors upon request. Batching happens both across
all K ′ training tasks, and across B×H time-steps (B trajectories of length H). Unlike DQN (Mnih
et al., 2015), we do not use a target network, nor experience replay: the large amount of diverse
experience passing through seems to suffice for stability.

4 EXPERIMENTS

Following our stated motivation for building continual learning agents, we set up a number of exper-
iments that test the Unicorn’s capability to solve multiple, related and dependent tasks. Specifically,
we now briefly discuss how the list of desirables properties presented in section 3 are addressed in

2Returns are also truncated for the on-policy goal when epsilon (i.e., non-greedy) actions are chosen.
3For our transfer experiments, a separate set of actor machines perform evaluation, by executing policies

conditioned on the hold-out goal signals, but without sending any experience back to the learner. Further details
about the Unicorn agent setup, the hardware used, as well as all hyperparameters can be found in Appendix B.
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⋮
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gradients Q (s, a; g)

minibatch 
of rollouts parameters

rollout  
for gi

Queue

Figure 3: Left: Inventory stack and pseudo-rewards. Each row illustrates an event where the
agent touches an object. The inventory stack (left) tracks the sequence of recently collected objects,
the pseudo-reward vector (right) is used to train the agent, and is 4-dimensional in this case because
there are visible 4 tasks. See section 4.5, where pseudo-rewards require the stack to contain the
dependent objects in the correct order (key, lock, door, chest) – any extra object resets the
sequence (like the door in row 3). Right: Agent architecture. Rollouts of experience are stored
in a global queue. Gradients w.r.t. the loss are propagated through the UVFA. After every training
step, all M actors are synchronized with the latest global UVFA parameters.

the sections to follow. Section 4.3 measures Unicorn’s capability of learning about multiple tasks
simultaneously (A), using a single experience stream and a single policy network; each task consists
of collecting a different kind of object. The setup in section 4.4 investigates the extent to which
knowledge about such tasks can be transferred to related tasks (B), which involve collecting objects
of unseen shape-color combinations, for example. Finally, section 4.5 investigates the full problem
of continual learning with a deep dependency structure between tasks (C) such that each is a strict
prerequisite for the next.

4.1 DOMAIN

All of these experiments take place in the Treasure World domain. We chose a visually rich 3D nav-
igation domain within the DM Lab framework (Beattie et al., 2016). The specific level used consists
of one large room filled with 64 objects of multiple types and equal frequency. Whenever an object is
collected, it respawns at a random location in the room. Episodes last for 60 in-game seconds, which
corresponds to 450 time-steps. The continual learning experiments last for 120 in-game seconds.
The objects used in the multi-task and transfer domains are different color variations of cassettes,
chairs, balloons and guitars. For continual learning, the TV, ball, balloon and cake objects play the
functional roles of a key, lock, door and chest respectively. Visual observations are provided
only via a first-person perspective, and are augmented with an inventory stack with the five most
recently collected objects (Figure 3). Picking up is done by simply walking into the object. There is
no special pick-up action; however, pick-ups can be conditional, e.g., a lock can only be picked up
if the key was picked up previously (see Figure 3). The goal signals are pre-defined one-hot vectors
unless otherwise stated.

4.2 BASELINES

We compare four baselines to the Unicorn agent. Note that we report the average Unicorn perfor-
mance across all tasks.

We first define the single-task expert that uses the same architecture and training setup as the Uni-
corn, but acts always on-policy for its single task, and learns only about its single task; in other
words, the agent uses a constant goal signal g. We train one of these agents for each individual task.
From the single task expert, we create two baselines:

The first baseline is expert (single), which is the single-task expert performance averaged across
all tasks. The horizontal axis for this baseline is not directly comparable as the experts together
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Figure 4: Left: Multi-task learning. A single Unicorn agent learns to collect any out of 16 object
types in the environment. Each thin red line corresponds to the on-policy performance for one such
task; the thick line is their average. We observe that performance across all tasks increases together,
and much faster, than when learning separately about each task (black). See text for the baseline
descriptions. Right: Off-policy transfer (I): The average performance across the 12 training tasks
is shown in green. Without additional training, the same agent is evaluated on the 4 cyan tasks
(thin red learning curves): it has learned to generalize well from fully off-policy experience.

Figure 5: Training and hold-out tasks for each of the three transfer experiments. Each square rep-
resents one task that requires collecting objects of a specific shape and color. Hold-out tasks are
surrounded by orange boxes. The augmented training set (III) includes the abstract tasks that reward
just color or just shape.

consume K times more experience than the Unicorn (as each single-task expert is trained on a
separate network). We therefore represent this baseline with a dotted line to indicate an upper
performance bound.

The second baseline is expert, which focuses on sample complexity and takes all accumulated ex-
perience of all the single-task expert agents, across all tasks, into account. In this case, the axes are
directly comparable.

The third type of baseline, denoted glutton, also uses the same architecture and training setup, but
uses a single composite task whose pseudo-reward is the sum of rewards of all the other tasks
rglutton(s, a) =

∑K
i ri(s, a). This is also a single-task agent that always acts on-policy according

to this cumulative goal. Its performance is measured by calculating the rewards the glutton policy
obtains on the individual tasks. This baseline is directly comparable in terms of compute and sample
complexity, but of course it optimizes for a different objective, so its maximal performance is in-
herently limited because it cannot specialize. It is nevertheless useful in scenarios where the expert
baseline fails to get off the ground (section 4.5). As a fourth baseline, we indicate the performance
of a uniformly random policy.

4.3 LEARNING MULTIPLE TASKS

The multi-task Treasure World experiment uses 16 unique objects types (all objects have one of 4
colors and one of 4 shapes), with an associated task τi for each of them: picking up that one type of
object is rewarding, and all others can be ignored. Figure 4 shows the learning curves for Unicorn
and how they relate to the baselines; data is from two independent runs. We see that learning works
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Figure 6: Combinatorial zero-shot transfer. Left: during training (green), the Unicorn agent sees
only a subset of 12 tasks, and experience from those 12 behavior policies (II). The transfer evaluation
is done by executing the policies for the 4 hold-out tasks (without additional training). After an initial
fast uptick, transfer performance drops again, presumably because the agent specializes to only the
12 objects that matter in training. Note that it is far above random because even when conditioned
on hold-out goal signals, the agent moves around efficiently and picks up transfer objects along
the way. Right: zero-shot transfer performance is significantly improved when the training tasks
include the 8 abstract tasks (III), for a total of K ′ = 20.

on all of the tasks (small gap between the best and the worst), and that learning about all of them
simultaneously is more sample-efficient than training separate experts, which indicates that there is
beneficial generalization between tasks. As expected, the final Unicorn performance is much higher
than that of the glutton baseline.

Ablative study - scalability: We conducted an experiment to understand the scalability of the agent
to an increasing number of tasks. Figure 8 in the appendix shows results for the setup of d = 7 object
types: the results are qualitatively the same as d = 16, but training is at about twice as fast (for both
Unicorn and the baselines), indicating a roughly linear scalability for multi-task learning. Scaling
to even larger numbers of tasks is a matter for future work, and some ideas are presented in Section 5.

4.4 GENERALIZATION TO RELATED TASKS

In the same setup of 16 object types as above, we conduct multiple transfer learning experiments
that test generalization to new tasks. Figure 5 summarizes what the training and hold-out sets are
for each experiment.

The first transfer experiment (Figure 5-II) investigates zero-shot transfer to a set of four hold-out
tasks (objects within the orange boxes) that see neither on-policy experience nor learning updates.
Generalization happens only through the relation in how goal signals are represented: each gi ∈ R8

is a two-hot binary vector with one bit per color and one bit per shape. Successful zero-shot transfer
would require the UVFA to factor the set of tasks into shape and color, and interpret the hold-out
goal signals correctly. Figure 6 (left) shows the average performance of the hold-out tasks, referred
to as zero-shot, compared to the training tasks and the additional baselines. We observe that there is
some amount of zero-shot transfer, because the zero-shot policy is clearly better than random.

The second transfer experiment (Figure 5-III) augments the set of training tasks by 8 abstract tasks
(20 training tasks in total) where reward is given for picking up any object of one color (inde-
pendently of shape), or any object of one shape (independently of color). Their goal signals are
represented as one-hot vectors gi ∈ R8. Figure 6 (right) shows that this augmented training set
substantially helps the zero-shot performance, above what the glutton baseline can do. These results
are consistent with those of Hermann et al. (2017). More detailed learning curves can be found in
the appendix.

Ablative study - Learning only from off-policy updates: In a probing experiment (Figure 5-I), the
Unicorn actors only act on-policy with respect to the 12 training goal signals (all non-cyan objects),
but learning happens for the full set of 16 objects; in other words the cyan objects (surrounded
by the orange bounding box) form a partial hold-out set, and are learned purely from off-policy
experience. Figure 4 summarizes the results, which show that the agent can indeed learn about
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goals from purely off-policy experience. Learning is not much slower than the on-policy goals.
Contrasting this with Figure 6 shows that the Unicorn’s performance is explained to a large extent
by the off-policy learning about many goals, and not by the more diverse generated experience.

4.5 CONTINUAL LEARNING WITH DEEP DEPENDENCIES

This section presents experiments that test the Unicorn agent’s ability to solve tasks with deep de-
pendency structures (C). For this, we modified the Treasure World setup slightly: it now contains
four copies of the four4 different object types, namely key, lock, door and chest, which need to
be collected in this given order (see Figure 1). The vector of pseudo-rewards corresponding to these
tasks is illustrated in Figure 3, which also shows how these are conditioned on precise sequences
in the inventory: to trigger a reward for the door task, the previous two entries must be key and
lock, in that order (e.g., second row of the inventory stack). Any object picked up out of order
breaks the chain, and requires starting with the key again.

This setup captures some essential properties of difficult continual learning domains: multiple tasks
are present in the same domain simultaneously, but they are not all of the same difficulty – instead
they form a natural ordering where improving the competence on one task results in easier explo-
ration or better performance on the subsequent one. Even if as designers we care only about the
performance on the final task (chest), continual learning in the enriched task space is more effec-
tive than learning only on that task in isolation. The bar-plot in Figure 1 shows this stark contrast:
compare the height of the violet bars (that is, performance on the chest task) for ‘unicorn(chest)’
and ‘expert(chest)’ – the Unicorn’s continual learning approach scores 4.75 on average, while the
dedicated expert baseline scores 0.05, not better than random.

Figure 1, and in more depth, Figure 14 in the appendix, show the temporal progression of the contin-
ual learning. Initially, the agent has a very low chance of encountering a chest reward (flatlining
for 200M steps). However, a quarter of the Unicorn’s experience is generated in pursuit of the key
goal; an easy task that is quickly learned. During those trajectories, there is often a key on top of
the inventory stack, and the agent regularly stumbles upon a lock (about 4 times per episode, see
the gray curve on the second panel of Figure 14). While such events are irrelevant for the key task,
the off-policy learning allows the same experience to be used in training Q(s, a; glock) for the lock
task, quickly increasing its performance. This same dynamic is what in turn helps with getting off
the ground on the door task, and later the chest task. Across 5 independent runs, the chest
expert baseline was never better than random. On the other hand, the glutton baseline learned a lot
about the domain: at the end of training, it collects an average of 38.72 key, 16.64 lock, 6.05
door and 1.05 chest rewards. As it is rewarded for all 4 equally, it also encounters the same kind
of natural curriculum, but with different incentives: it is unable to prioritize chest rewards. E.g.,
after a sequence (key, lock, door), it is equally likely to go for a key or a chest next, picking
the nearest. This happens at every level and explains why task performance goes down by a factor
2 each time the dependency depth increases (Figure 1). In contrast, the Unicorn conditioned on
gchest collects an average of 9.93 key, 6.99 lock, 5.92 door and 4.75 chest rewards at the end
of training. A video of the Unicorn performance in the 16 object setup and when solving Treasure
World can be found in the supplementary material and is available online5.

Ablative study - scalability: Additional experiments on a simpler version of the experiment with
only 3 objects can be found in the appendix (Figures 12 and 15). In that case, the single-task expert
baseline eventually learns the final task, but very slowly compared to the Unicorn. The difficulty
increases steeply when going from 4 to 5 strictly dependent tasks (adding cake after chest), see
Figures 13 and 16 in the appendix.

Preliminary results - Meta-learning. Closely related to the choice of how to act in the presence
of many goals is the choice of what (pseudo-rewards) to learn about, which can be seen as a form
of learning to learn, or meta-learning (Schaul & Schmidhuber, 2010). In particular, an automatic
curriculum (Karpathy & Van De Panne, 2012; Graves et al., 2017; Heess et al., 2017; Sukhbaatar
et al., 2017; Riedmiller et al., 2018) with progressively more emphasis on harder tasks can accelerate
learning via more efficient exploration and better generalization (Bengio et al., 2009; Florensa et al.,

4With only 16 (respawning) objects in total, this is less dense than in the experiments above, in order to
make it less likely that the agent collects an out-of-sequence object by mistake.

5https://youtu.be/h4lawNq2B9M
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2017; Graves et al., 2017). In preliminary experiments (not shown), we attempted to do this by
letting a bandit algorithm pick among goal signals in order to maximize the expected squared TD
error (a proxy for how much can be learned). We found this to not be clearly better than uniform
sampling, consistent with Graves et al. (2017).

5 DISCUSSION

Richer task spaces. The related work on successor features (Barreto et al., 2017) devised a
particularly simple way of defining multiple tasks within the same space and decomposable
task-dependent value functions. Incorporating successor features into the Unicorn would make it
easy to specify richer task interactions where the goals may be learned, continuous, or have ‘don’t
care’ dimensions.
Discovery. Our setup provides explicit task definitions and goal signals to the agent, and thus does
not address the so-called discovery problem of autonomously decomposing a complex tasks into
useful subtasks. This challenging open area of research is beyond our current scope. One promising
direction for future work would be to discover domain-relevant goal spaces using unsupervised
learning, as in the ‘feature control’ setting of UNREAL (Jaderberg et al., 2016) or the β-VAE
(Higgins et al., 2016).
Hierarchy. Our method of acting according to uniformly sampled goal signals is too simple for
richer goal spaces. Fortunately, this problem of intelligently choosing goal signals can be framed
as a higher level decision problem in a hierarchical setup; and the literature on hierarchical RL
contains numerous approaches that would be compatible with our setup (Sutton et al., 1998; Bacon
& Precup, 2017; Mankowitz et al., 2016; Vezhnevets et al., 2017; Kulkarni et al., 2016); possibly
allowing the higher-level agent to switch goal signals more often than once per episode.
Agent improvements. Additions include optimizing for risk-aware, (Tamar et al., 2015), robust
(Tamar et al., 2014; Mankowitz et al., 2018) as well as exploratory (Bellemare et al., 2017;
O’Donoghue et al., 2017) objectives to yield improved performance. Combining Rainbow-style
(Hessel et al., 2017) additions to the UVFA objective as well as auxiliary tasks (Jaderberg et al.,
2016) may also improve the performance.

6 CONCLUSION

We have presented the Unicorn, a novel agent architecture that exhibits the core properties required
for continual learning: task generalization and off-policy learning. Unicorn is able to (A) efficiently
learn about multiple tasks, (B) leverage learned knowledge to solve related tasks, even with zero-
shot transfer, and (C) solve tasks with deep dependencies. All of this is made efficient by off-
policy learning about multiple tasks simultaneously, using parallel streams of experience coming
from a distributed setup. Experiments in a rich 3D environment indicate that the Unicorn clearly
outperforms the corresponding single-task baseline agents, scales well, and manages to exploit the
natural curriculum present in the set of tasks.
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A UNICORN ALGORITHM

Algorithm 1 Unicorn algorithm
Require: θ - Unicorn network weights, K - number of goals, M - number of actors, l - episode

length, H - unroll length which is the number of steps for n-step update (l � H), T - number
of episodes for training, L - how often to perform learning, B - batch size for learning, Queue
- a global queue for storing trajectories of length H .

1: Queue← ∅ . Initialize the queue
2: Initialize Qθ(s, a, g)
3:
4: while episode < T do
5: for m = 1 :M do . Episode start: Sample a new goal for each actor
6: gm ∼ Uniform(1, · · · ,K) . Sample from K goals
7: end for
8:
9: Acting: For each actor m in parallel:

10: Generate a 〈s, a, r, s′〉 trajectory of length l using Qθ(s, a, gm)
11: Every H steps, where (H << l), append the H length sub-trajectory to Queue
12: episode+ = 1 . Increment the episode count
13:
14: Learning:
15: if episode%L == 0 then . Every L steps, perform learning update
16: Sample a batch of B trajectories from the queue
17: (Each batch trajectory is generated from an actor conditioned on one of the K goals)
18: for b = 1 : B do . Loop through each trajectory
19: Compute the n-step return for each of the K goals (including the on-policy goal)
20: For all off-policy goals, perform off-policy corrections:
21: Truncate n-step trace at all times t where the action chosen by on-policy goal
22: gi does not match the action that the off-policy goal gj(j 6= i) would have chosen
23: end for
24: Compute Loss L of Equation 1 (with additional batch dimension)
25: Compute the gradient∇θL
26: θnew = θ + αt∇θL . Update network weights
27: θ = θnew
28: end if
29: end while
30:

B UNICORN ARCHITECTURE AND HYPERPARAMETERS

B.1 NETWORK ARCHITECTURE

The neural network architecture consist of two convolutional layers (with 16-32 kernels of size 8-4
and stride 4-2 respectively). The convolutional layers are followed by a fully connected layer with
256 outputs and an LSTM with a state size of 256. A one-hot encoding of the previous action and
the previous clipped reward are also concatenated to the input to the LSTM.

The output of the LSTM layer is concatenated with an inventory I ∈ R5L, which is a single vector,
augmented with the one-hot representations of the last five objects collected by the agent. The
parameter L is the length of the dependency chain. This yields the feature vector f(s) ∈ R256+5L

as described in the main paper. At this point, we input the entire set of goals into the network
as a K × d one-hot matrix where K is the number of goals, and d is the dimensionality of the
goal representation. The ith row of this matrix defines the ith goal gi ∈ Rd. We then duplicate
f(s) to generate a K × (256 + 5L) matrix and concatenate f(s) with the goal matrix to form a
K × ((256 + 5L) + d) feature matrix. This matrix is then fed through an MLP consisting of two
hidden layers with ReLU activations. The hidden layer output sizes are 256 and A respectively,
where A is the number of actions available to the agent. This yields a K × A matrix of Q-values,
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where row i corresponds to Q(s, a1; gi) · · ·Q(s, aA; gi). At the start of each episode, each UVFA
actor is randomly assigned a goal gj and chooses actions in an epsilon greedy fashion.

B.2 LOSS

We optimize the loss with the TensorFlow implementation of the RMSProp optimizer, using a fixed
learning rate of 2e − 4, a decay of .99, no momentum, and an epsilon equal to .01. The n-step Q
targets are considered fixed and gradients are not back-propagated through them.

B.3 DISTRIBUTED SETUP

200 actors execute in parallel on multiple machines, each generating sequences of 20 environment
frames, batched in groups of 32 when processed by the learner.

B.4 STATE AND ACTION SPACE

The state observation is a rendered image frame with a resolution of 84 × 84, and pixel values are
rescaled so as to fall between 0 and 1.

The actors use an 8 dimensional discrete action space:

1. Forward
2. Backward
3. Strafe left
4. Strafe right
5. Look left
6. Look right
7. Look left and forward
8. Look right and forward.

Each action selected by the actor is executed for 8 consecutive frames (action repeats is 8 - Table 1)
in the environment before querying the actor for the next action. The actors select actions using an
ε-greedy policy where ε is annealed from 1 to 0.01 over the first million environment frames.

B.5 HYPERPARAMETER TUNING

A grid search was performed across a selected set of hyperparameters in order to further improve
the performance. Table 1 lists all of the hyperparameters, their corresponding values and whether
they were tuned or not.

C VIDEOS

A video is included with the supplementary material showcasing the performance of the trained
Unicorn in a multi-task and continual learning setting.

C.1 LEARNING ABOUT MULTIPLE TASKS

In the multi-task setting, the Unicorn conditions one of its UVFA actors on the goal of collecting
red balloons. As can be seen in the video, the Unicorn UVFA agent searches for, and collects, red
balloons. Due to the clutter in the environment, it may occasionally collect an incorrect object. The
performance of the Unicorn compared to the baselines for collecting red balloons can be seen in
Figure 7.

C.2 LEARNING DEEP DEPENDENCY STRUCTURES

In the continual learning setting, we showcase the performance of the trained Unicorn agent in a
setting with a dependency chain of length 3 (i.e. key → lock → door) and a chain of length 4
(i.e. key→ lock→ door→ chest). In both cases, we condition the Unicorn agent on the goal
corresponding to the deepest dependency (i.e. collect a door reward for the dependency chain of
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Table 1: Hyperparameter settings for the Unicorn architecture.

Hyperparameter Value Tuned
learning rate 2e− 4 X
discount γ 0.95 X
batch size 32 X

unroll length 20 ×
action repeats 8 X
ε end value 0.01 X
decay rate 0.99 ×

num. actors M 200 ×

length 3 and collect a chest reward for the chain of length 4). The Unicorn agent only receives
a reward for the task if it achieved all of the prerequisite tasks in the order given above, yielding a
sparse reward problem. As can be seen in the video, the agent is, in both settings, able to achieve the
deepest dependency task. The performance of the Unicorn in each task can be seen in Figures 12
and 14 for dependency chains of length 3 and 4 respectively.

D ADDITIONAL RESULTS

We have additional figures corresponding to:

1. Learning about multiple tasks.
2. Transfer to related tasks.
3. Learning about deep dependency structures.

D.1 LEARNING ABOUT MULTIPLE TASKS

Figure 8 presents the performance of the Unicorn compared to the various baselines discussed in the
main paper for multi-task learning with 7 objects. Figure 7 presents multi-task learning curves on a
subset of 4 out of the 16 objects in the multi-task learning with 16 objects setup.

D.2 TRANSFER TO RELATED TASKS

Figure 7 shows the pure off-policy learning results where objects of a single color (cyan) were
placed into a hold-out set and were only learned about from pure off-policy experience. We can see
in Figure 7 (right) the ability of the Unicorn to learn from pure off-policy experience and solve the
task of collecting cyan guitars; albeit in a slightly sub-optimal manner.

Figures 10 and 11 present the performance of the Unicorn agent when performing zero shot learning
on four hold-out tasks for K ′ = 12 and K ′ = 20 training tasks respectively. In these cases, the
Unicorn has seen no training data from any of these tasks; in contrast to the off-policy experiments
detailed in the previous paragraph.

D.3 LEARNING ABOUT DEEP DEPENDENCIES

Figure 14 presents the performance of the Unicorn compared to the baselines as a function of learn-
ing samples for a dependency chain of length 4. As can be seen in the graphs, the expert fails to get
off the ground whereas the Unicorn learns to collect a significant amount of chest rewards.

Figure 12 presents early (500 million frames) and late (1500 million frames) Unicorn performance
for the 3 chain dependency task (key, lock, door). The performance for each task as a function
of learning samples can be seen in Figure 15. As can be seen in the graphs, the expert does reach
comparable performance to that of the Unicorn, but takes a significantly longer time to converge.
Figure 13 shows the learning performance of the 5 chain dependency task (key, lock, door,
chest, cake). The performance as a function of learning samples can be found in Figure 16.
As seen in the figures, the Unicorn fails to solve the cake task in the 5 chain dependency setup.
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Figure 7: Multi-task learning curves, performance on a subset of 4 out of the 16 tasks, as indicated
by the subplot titles. There are two lines for each color, which are from two separate seeds.

Figure 8: Multi-task learning with 7 objects. Performance is qualitatively very similar to Figure 4
with 16 objects, except that learning is overall faster.

We mention some future directions in the Discussion section of the main paper that may scale the
Unicorn to solve even deeper dependency structures.

Figure 9: Off-policy transfer (I) learning curves. Only the last subplot guitar cyan is a transfer
task. See caption of Figure 7.
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Figure 10: Zero-shot transfer (II) learning curves on all 4 transfer tasks. See caption of Figure 7.

Figure 11: Augmented zero-shot transfer (III) learning curves on all 4 transfer tasks. See caption of
Figure 7.

Figure 12: Continual learning with depth 3 task dependency. Early learning (left) and late learning
(right). The performance gap compared to the expert is much larger in the beginning. See caption
of Figure 1.

Figure 13: Continual learning with depth 5 task dependency. This is a partially negative result
because the Unicorn learns to eat a lot of cake, but only when following the chest policy. See
caption of Figure 1.

18



Under review as a conference paper at ICLR 2019

Figure 14: Continual learning with depth 4 task dependency. Performance curves as a function of
learning samples. Each subplot shows the performance on one of the tasks (e.g. only counting chest
rewards on the right-hand side). Thin lines are individual runs (5 seeds), thick line show the mean
across seeds. In all 4 subplots the expert (black) is a single-minded baseline agent maximizing the
(very sparse) chest reward only.

Figure 15: Continual learning with depth 3 task dependency. Performance curves as a function of
learning samples. See caption of Figure 14.

Figure 16: Continual learning with depth 5 task dependency. Performance curves as a function of
learning samples. See caption of Figure 14.
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