Autocompletion of Code from Keywords

Anonymous Authors'

Abstract

We present a simple approach for synthesizing
code from keywords. Our system takes keywords,
a subset of tokens from the target code, and gen-
erates a line of code. The main challenge is that
we only have the output of the system and do not
know the real input distribution. We construct
simple synthetic distributions by dropping each
keyword randomly and based on its frequency,
which still generalize to various test distributions.
We train a standard sequence-to-sequence model
on the synthetic training data and successfully
synthesize 71.5% of examples in our manually
generated test set. Our approach is simple and
language-agnostic and therefore can be easily ex-
tended and applied to any programming language.

1. Introduction

Developers often have to repeatedly write boilerplate code,
or they may not remember the exact syntax of the desired
code. Most IDE:s try to alleviate this problem by autocom-
pleting one token at a time.! However, they require users
to know and specify all tokens in the target code in a left-
to-right manner to get suggestions. Other tools such as
snippets®> generate multiple tokens at once by simply re-
placing a string with another string, e.g., 1f main with if
_name__. == "_main__":, based on hard-coded map-
pings. In this case, users have to remember and maintain all
the mappings.

In this paper, we present a new type of autocomplete sys-
tem to help developers become more efficient in an actual
programming environment. We define our task as follows:
given a set of keywords, i.e., a subset of tokens from desired

! Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference

on Machine Learning (ICML). Do not distribute.
"https://code.visualstudio.com/docs/

editor/intellisense
https://github.com/honza/vim-snippets
3https ://github.com/SirVer/ultisnips

Input Output

for i 10
import np
class example
except e
with tf sess

for i in range (10):
import numpy as np
class Example () :
except Exception as e:
with tf.Session() as sess:

Table 1. Example inputs and outputs synthesized by our system

code, we want to synthesize a line of code. Our method
mainly targets boilerplate code as well as common struc-
tures and patterns in source code. We target Python in
this work, but our approach does not require any language-
specific preprocessing and therefore can be easily applied to
any programming language. Table 1 shows example inputs
and corresponding outputs produced by our system. More
examples are listed in Appendix A.

Despite having a vast amount of available source code,
which serves as the output of our system, we do not know
what the user input will be like. In other words, we need
to model how terse or verbose users will be, or which to-
kens they will keep or drop. To this end, we create artificial
training data from synthetic distributions and use a standard
sequence-to-sequence model (Sutskever et al., 2014) with
attention (Luong et al., 2015) and copy mechanisms (Gu
et al., 2016) to synthesize code from keywords.

We evaluate our system with two corpora: one is manually
constructed to capture the gist of our system’s ability, and
the other is generated from a GitHub repository to gain a
sense of how much benefit users can get in a real-world
programming environment. Our method can synthesize
71.5% of common use cases, generating 10.24 tokens from
5.28 keywords on average.

2. Problem Statement

Our system takes a sequence of keywords z = (z1, ..., z,,)
as input and produces a sequence of tokens y = (y1, ..., Ym)
as output. Here, we consider the case where x C v, i.e., the
keywords are a subset of the output tokens.

Note that keywords are a subset of the output tokens, not
a subsequence, as we do not require the order of tokens
to be preserved, and any combination of (not necessarily
consecutive) tokens from the output can be selected.

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/intellisense
https://github.com/honza/vim-snippets
https://github.com/SirVer/ultisnips

Autocompletion of Code from Keywords

Input: for i 10
1 De-tokenize

1 Drop and Trim
for . i . in . range (10)
fia> 5 05 0 5 0 5 5 5 5 5
ffR@ 7 0 4 0 8 0 3 8 0 8 .8
™M 9 0 0 0 0 0 0 1 0 1 1
™TME 1 0 0 0 1 0 1 0 0 0 O
1 Assign dropout probability
‘for - 1 o in o range (10)

1 Tokenize

QOutput: for 1 in range(10):

Table 2. Overall process of generating input and output pairs. The
dropout probability for each token is sampled from the random,
frequency-based, and type-based distributions, respectively.

3. Synthesizing Datasets

In this section, we describe our main contribution of cre-
ating training data from synthetic distributions, which can
generalize to various real test distributions. Table 2 shows
how we derive a sequence of keywords (input) from a line
of original code (output), producing an input-output pair.
For each line of code, we first tokenize, assign a probability
of being dropped to each token, drop tokens based on the
probability, trim by inserting and removing whitespace, and
de-tokenize the result to generate input keywords. We repeat
this process line by line and use the input-output pairs as
our training data. For test sets, keywords are derived in the
same way, but we utilize the prior knowledge of the target
language to create tailored test sets.

Step 1. Abstraction Before tokenization, we gener-
ate two output sequences from each line of code, once
with and once without the arguments, e.g., for i in
range (10) and for i in range (). For simplicity,
we consider any token between a pair of matching paren-
theses to be an argument and remove all arguments without
considering several or nested functions separately. It can
be seen as abstraction in that we discard case-specific argu-
ments and focus on general structures of code. By doing so,
our model can learn when to synthesize general structures
as opposed to always trying to synthesize concrete code.

Step 2. Tokenization We use a standard tokenization
based on non-alphanumeric characters, underscores, and
camel cases. Additionally, we use four special tokens to (1)
distinguish string literals, (2) distinguish number literals, (3)

capitalize the first letter of the next token, and (4) capitalize
all letters in the next token. In order to identify strings,
we restrict strings to be placed between quotation marks.
De-tokenization is the reverse of tokenization.

Step 3. Dropout probability We propose several ways
to model the input distribution. During training, we do
not require any prior knowledge of the target language to
model the input distribution. Instead, we assign a probabil-
ity of being dropped to each token based on random and
frequency-based distributions.

Given a sequence of keywords © = (1, ..., 2,) as input,
we want to compute the probability of each token z; € x
being dropped. As a baseline, we drop every token with a
fixed probability of p as follows:

fll}AND(xi) =p.

Alternatively, we can drop tokens based on their frequency
to keep rare tokens such as variable names and literals as
follows:

freq(z,)

FREQ(.\ —
S) max,ey freq(v)

where the frequency of each token is normalized by the
highest frequency of a token in the entire vocabulary. In
practice, we scale the probability to be in the range between
0 and 0.8.

In testing time, we utilize the prior knowledge of the target
language to drop all tokens with specific properties and
evaluate our system’s ability on recovering certain types
of tokens. Here, we consider two token types, delimiters
and reserved words, since other types such as operators,
identifiers, and literals are almost impossible to be recovered
when dropped. We identify and drop tokens of the type ¢ as
follows:

TYPE _ 1 iftype (v;) =t
t (zi) = .
0 otherwise.

For instance, if we want to drop reserved words from the
example in Table 2, we assign 1 to for, in, and range
and 0 to the other tokens.

Step 4. Trimming To resemble a realistic user input
query, we insert and remove whitespace. While dropping
tokens, we keep all the whitespace and replace each dropped
token with a single whitespace. Then, we remove redun-
dant whitespace at the beginning and end of the sequence
and aggregate any consecutive whitespace between tokens.
For example, if the result of dropis . i . . 10, we trim
starting and trailing whitespace and aggregate consecutive
whitespace to get the final input keywords i . 10.

Autocompletion of Code from Keywords

4. Model

We use a standard sequence-to-sequence model (Sutskever
et al., 2014) with attention (Luong et al., 2015) and copy
mechanisms (Gu et al., 2016). We first encode input key-
words using the encoder and use the decoder to generate
tokens from a fixed vocabulary or copy tokens from the in-
put. The use of attention helps the model learn long-distance
dependencies over input and output tokens, and the copy
mechanism allows the model to output unseen tokens such
as variable names by copying from input keywords.

5. Experiments

In this section, we describe the setup for our experiments,
report results, and analyze errors. Our main findings are
as follows: the frequency-based distribution achieves con-
siderably high accuracy on the manually generated test set,
demonstrating the effectiveness of our system on its main
use cases. The baseline random dropout distribution per-
forms well, even comparable to the frequency-based dis-
tribution. Both of them result in relatively low accuracy
on automatically generated test sets, because the input of
these test sets often fails to retain all necessary keywords to
recover the original code.

Data collection. For training, we use over 800 GitHub
repositories containing 200K files and 2M lines of code. We
remove empty lines and comments and sample twice from
each line, once with and once without arguments. Then,
we select lines that have at least one alphanumeric token
and occur more than 10 times to rule out irregular lines,
resulting in about 1.5M lines of code.

For testing, we use two corpora. First, we use carefully
constructed 200 input and output pairs to represent the real
user input distribution. This manual test set is designed
to reflect simple, common code usage, as our system aims
to learn general patterns and structures. Second, we use a
single GitHub repository, which contains 3K lines of code,
to understand how much benefit users can get in a real-world
programming environment. We observe that the manually
constructed keywords tend to include not only rare tokens
like case-specific arguments, but also common tokens such
as def to specify the intention. The pairs used in the manual
test set are listed in Appendix A and B.

Input distributions. We create training data by sampling
from the random and frequency-based distributions, while
varying the value for the parameter p. We name a trained
model with the name of the distribution used to generate its
training data, e.g., RAND 0.5 for the model trained with the
data generated with fRANP.

For test sets, we construct one test set from the manually

Manual
RAND 0.1 32.5
RAND 0.3 49.5

RAND 0.5 60.0
RAND 0.7 58.0
RAND 0.9 42.0

FREQ 71.5

Table 3. Accuracy of models trained on the random and frequency-
based distributions and evaluated on the manual test set

Rank Accuracy

1 71.5
2 76.5
3 78.0

Table 4. Accumulative accuracy for the top 3 suggestions of FREQ

generated corpus by selecting keywords by hand, and four
test sets from a repository by automatically deriving input
keywords using fRANP, fFREQ FTINPE "ang fIYPE We name
a test set with the name of the distribution, e.g., Manual
for the manually generated test set and Delimiters for the

automatically generated test set with fLY7E.

Implementation. Our model consists of a two layer bidi-
rectional LSTM encoder and a unidirectional decoder with
512 hidden units. We use stochastic gradient descent with
a learning rate starting from 1.0 with decaying by 0.5 and
a dropout of 0.3 at the input of each state. We jointly learn
the 512-dimensional word embedding while training.

Accuracy. To measure the performance of our model, we
compare the output of the system with the target code and
consider the synthesis to be successful only if the two strings
are identical. Note that this type of exact match is the most
conservative way of evaluating the result for three reasons:

1. There can be multiple reasonable outputs for a single
input. For instance, if none is the input, both if
None: and return None are reasonable outputs.

2. The functional equivalence of programs is undecidable.
The exact match between class A: and class
A () : fails, although they are semantically equivalent.

3. Even though the system generates nearly correct output,
it can still struggle with synthesizing parts of the output
such as variable names.

Comparing with top n suggestions of the system or evaluat-
ing based on edit distance could mitigate this problem. In
this work, we report all results based on exact match with
the top 1 suggestion by default.

Autocompletion of Code from Keywords

Automatically Generated Test Sets
Rand | Freq | Deli | Rese
RAND 0.5 | 5.53 | 17.28 | 14.74 | 34.09
FREQ | 3.81 | 18.40 | 18.97 | 39.07

Table 5. Accuracy of the two best distributions on automatically
generated test sets. Both of them achieve relatively low accuracy,
because the automatically generated test sets often fail to retain
necessary keywords to recover the original code.

5.1. Evaluation on Manually Generated Test Set

Table 3 shows the performance of the models trained
with different distributions and evaluated on the manually-
generated test set. We find that the model trained on the
frequency-based distribution FREQ yields the best perfor-
mance of 71.5%, while the best model with the random
distribution RAND 0.5 results in the comparable accuracy
of 60%. We observe that when tokens are dropped too ag-
gressively (RAND 0.9) or conservatively (RAND 0.1), the
performance can degrade significantly.

As shown in Table 4, our best model FREQ synthesizes
78% of pairs within the top 3 suggestions based on beam
search and ranks the correct code as the top 1 suggestion
91.67% of the time. It generates 10.24 tokens from 5.28
input keywords on average.

We categorize common errors made by the system and list
examples of errors in each category in Appendix B. We
observe that even when the system fails to synthesize the
desired code, it tends to generate (seemingly) syntactically
correct output. However, it often fails to copy all input
keywords, format syntax, find proper tokens to insert, or
keep irrelevant tokens from being inserted.

5.2. Evaluation on Automatically Generated Test Sets

Table 5 shows the performance of the two best models,
RAND 0.5 and FREQ. Overall, the accuracy of both models
is much lower than that on the manually generated test set.
They both achieve low accuracy of 5.53% on the random
test set, moderate accuracy of 18.97% on the frequency and
delimiters test sets, and relatively high accuracy of 39.07%
on the reserved words test set, mainly because of the easy
cases such as import x,def x,and class x.

One of the main reasons for such low accuracy on the auto-
generated sets, especially the random and frequency test
sets, is that the derived input keywords often fail to retain
all tokens necessary to fully recover the original code. For
example, it is impossible to recover 1f not x: when
either not or x is dropped.

We also notice that even when only certain type of tokens
are dropped, the model has to reason about all possible
types of tokens and often outputs the most probable code.

Consider the case result. Although the model generates
the reasonable output return result, the original code
result = [] contains case-specific delimiters, which is
hard for the model to predict solely from the given input.

Lastly, these test sets contain many rare tokens, e.g., user-
defined variables, as well as repetitions of nearly-identical
lines, e.g., adding arguments to a parser. This increases the
difficulty of synthesis and can overly penalize a model for
failing a set of similar inputs.

6. Related Work and Discussion

We strike a balance between existing autocomplete tools and
recent data-driven approaches to code generation. With most
existing tools, it is extremely difficult to find the desired
code when users do not know tokens in the middle, since
the tokens must be specified in sequential order. Moreover,
even if users know every token in the target code, they still
need to type or find roughly the same number of tokens one
by one. In contrast, our system allows users to specify a
subset of tokens to get the complete line.

Recently, many data-driven approaches have been proposed
to generate or retrieve the code from natural language de-
scriptions (Yin & Neubig, 2017) or natural language-like
labels (Murali et al., 2018). Their output tends to be richer,
spanning one to multiple lines of code, in order to synthesize
code that performs the task specified by users. However,
they serve more as tailored search engines rather than built-
in tools for a programming environment. On the other hand,
our system can be easily incorporated with the existing en-
vironment and used to write each and every line of code.

By being language-agnostic, however, there are limitations
in our approach. Since our method is not aware of the con-
text of input, it often fails to generate user-defined tokens
such as variable names, whereas they are easily inferred
by most existing tools. Another major limitation is that it
does not guarantee the syntactic correctness of the output.
Most previous work heavily relies on the prior knowledge
of syntax and semantics to represent or reason about pro-
grams (Murali et al., 2018; Allamanis et al., 2018) or limits
the output to be within the scope of domain-specific lan-
guages (Lin et al., 2018; Yu et al., 2018; Desai et al., 2016).

In this work, we define a new task for autocompletion and
present a simple, language-agnostic approach. A natural
next step would be to incorporate contextual information
into the synthesis process, so that the system can achieve
comparable performance to the existing tools. Ultimately,
we would like to customize the output of the system for each
user based on local data, and be able to both autocomplete
and search over source code. We hope that our work moti-
vates the development of richer models and methods that
can tackle this task.

Autocompletion of Code from Keywords

References

Allamanis, Miltiadis, Brockschmidt, Marc, and Khademi,
Mahmoud. Learning to Represent Programs with Graphs.
In ICLR, 2018.

Desai, Aditya, Gulwani, Sumit, Hingorani, Vineet, Jain,
Nidhi, Karkare, Amey, Marron, Mark, and Roy, Subhajit.
Program Synthesis using Natural Language. In ICSE,
2016.

Gu, Jiatao, Lu, Zhengdong, Li, Hang, and Li, Vic-
tor OK. Incorporating Copying Mechanism in Sequence-
to-Sequence Learning. In ACL, 2016.

Lin, Xi Victoria, Wang, Chenglong, Zettlemoyer, Luke, and
Ernst, Michael D. NL2Bash: A Corpus and Semantic
Parser for Natural Language Interface to the Linux Oper-
ating System. In arXiv, 2018.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christo-
pher D. Effective Approaches to Attention-based Neural
Machine Translation. In ACL, 2015.

Murali, Vijayaraghavan, Qi, Letao, Chaudhuri, Swarat, and
Jermaine, Chris. Neural Sketch Learning for Conditional
Program Generation. In ICLR, 2018.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence
to Sequence Learning with Neural Networks. In NIPS,
2014.

Yin, Pengcheng and Neubig, Graham. A Syntactic Neural
Model for General-Purpose Code Generation. In ACL,
2017.

Yu, Tao, Li, Zifan, Zhang, Zilin, Zhang, Rui, and Radev,
Dragomir. TypeSQL: Knowledge-based Type-Aware Neu-
ral Text-to-SQL Generation. In arXiv, 2018.

Autocompletion of Code from Keywords

A. Examples of Successful Cases

Input (keywords in parentheses are optional)

Desired and Synthesized Output

for

for k

for 10

for 1 mylist

for 1 sorted mylist
for i len mylist
for enumerate

for i in range():

for k in range():

for i in range(10):

for 1 in mylist:

for 1 in sorted(mylist):

for i in range(len(mylist)):
for i, value in enumerate() :

def main

def example

def my function

def £ a b ¢

def £ a="default"

(def) init

(def) init self

(def) init kwargs
(def) init args kwargs

def main () :

def example () :

def my_function() :
def f(a, b, c):

def f (a="default"):

def __init__():

def __init__(self):

def __init__(self, «*xkwargs):

def __init__(self, =xargs, #*xkwargs):

class example
class my exception

class Example () :
class MyException (Exception) :

if x none

if x not none

(if) isfile

(1f) path not exists

(1f) isinstance

(1f) isinstance mylist list
(if) not isinstance mylist str

if x is None:

if x is not None:

if os.path.isfile():

if not os.path.exists():

if isinstance():

if isinstance(mylist, list):

if not isinstance(mylist, str):

os
sys

logging

argparse

unittest

numpy

tensorflow

unittest test case
future division

future print

future absolute import
future unicode literals
absolute division print

import os

import sys

import logging

import argparse

import unittest

import numpy as np

import tensorflow as tf

from unittest import TestCase

from __future__ import division

from __future_. import print_function

from __future__ import absolute_import

from __future__ import unicode_literals

from __future__ import absolute_import
division, print_function

except

except io

except value
except import
except eof

except attribute
except attribute a
except e

except:

except IOError:

except ValueError:

except ImportError:

except EOFError:

except AttributeError:
except AttributeError as a:
except Exception as e:

raise assertion
raise implemented

raise AssertionError ()
raise NotImplementedError ()

exit
exit 1
exit 2

sys.exit ()
sys.exit (1)
sys.exit (2)

parser argparse
args parse
add argument

parser = argparse.ArgumentParser ()
args = parser.parse_args()
parser.add_argument ()

Table A. Examples of inputs and outputs (both desired and synthesized by the system) from the manually generated test set

Autocompletion of Code from Keywords

try

finally

else

pass

while true
none

true

false

assert true
assert false

try:
finally:
else:

pass

while True:
return None
return True
return False
assert True
assert False

i 256 i = 256
s "hello" s = "hello"
if s "hello" if s == "hello":

for s "hello"
print "hello"

for s in "hello":
print ("hello")

self x
name = kwargs get
name = kwargs get "name"

self.x = x
self.name = kwargs.get ()

self.name = kwargs.get ("name", None)

f write data
data f read
data f read split

f.write (data)
data = f.read()
data = f.read().split()

open filename "r" with open(filename, "r") as f:
mylist sort mylist.sort ()
newlist sorted mylist newlist = sorted(mylist)
myline = " " join mylist myline = " ".Jjoin(mylist)
newlist sorted list set mylist newlist = sorted(list (set (mylist)))
super init super () ._-init__()

if _name__ == "_main__":

(if) name "_main__"

self assert in

self assert not in

self assert raises

self assert not equal

self assert not none

self assert instance

with self assert raises type

self.assertIn()
self.assertNotIn ()
self.assertRaises ()
self.assertNotEqual ()
self.assertIsNotNone ()
self.assertIsInstance ()
with self.assertRaises (TypeError) :

logger get
logger (set) level
logger debug "mymessage"

logger = logging.getLogger ()
logger.setlLevel ()
logger.debug ("mymessage")

myarray 1 2 3
myarray np 1 2 3

myarray = [1, 2, 3]
myarray = np.array([1l, 2, 3])

with tf sess
with tf graph default

with tf.Session() as sess:
with tf.Graph() .as_default():

Table A. [continue] Examples of inputs and outputs (both desired and synthesized by the system) from the manually generated test set

Table A shows 86 out of 143 (60.14%) input and output pairs that are successfully synthesized by our system. Note that
the system can distinguish similar, but different input keywords, e.g., s "hello" and if s "hello", and be able to

generate desired outputs s = "hello"and if s == "hello":,respectively.

B. Examples of Erroneous Cases

Table B shows 26 out of 57 (45.61%) input and output pairs that our system could not synthesize as the top 1 suggestion.
We include short description of the major errors in the examples and highlight relevant tokens. Specifically, tokens that are
specified as input keywords, but are not included in the output, or tokens that are not desired, but inserted as a part of the

output, are colored in red. Note that one example may contain multiple errors.

Autocompletion of Code from Keywords

Input

| Desired and Synthesized Output (first and second line, respectively)

Limited by common usage of code spanning more than one line

parser add

parser.add_-argument ()
parser.add_argument (

Fail to copy all input keywords

for a b ¢ tuples

for a, b, ¢ in tuples:
for a, b in tuples:

def f a=none

def f (a=None) :
def f(self, A, A):

def f self args kwargs

def f(self, =xargs, =*x*kwargs)
def f(self, args, =*args):

Fail to format syntax

self assert all equal

self.assertAllEqual ()
self.assert_all_equal ()

myarray 1 2 3 4 5

myarray = [1, 2, 3, 4, 5]
myarray = [[1, 2, 31, [4, 5]]

rst = filter none tmp

rst = filter (None, tmp)
rst.filter(filter, tmp)

0
|

= sorted mylist lambda x x[1]

s = sorted(mylist, key=lambda x: x[1])
s = sorted(mylistmylist, x[x:x], x)[1]

s = sorted mylist lambda k v v k

s = sorted(mylist, key=lambda (k, Vv): (v, k))
s = sorted(mylistmylist, lambda =*k, xxk:None)

codecs open filename "r" "utf-8"

with codecs.open(filename, "r", "utf-8") as f:
with codecs.open(filename, "r") as "utf-8":

Insert additional tokens

self assert true

self.assertTrue ()
self.assertIsTrue ()

self assert false

self.assertFalse()
self.assertIsFalse()

self assert equal

self.assertEqual ()
self.assertNotEqual ()

self assert none

self.assertIsNone ()
self.assertIsNotNone ()

class my class

class MyClass():
class MyClass (Class) :

Fail to insert proper tokens

import tf

import tensorflow as tf
import tf

import groupby

from itertools import groupby
import groupby

from import groupby

from itertools import groupby

from . import groupby
from import copytree from shutil import copytree
from . import copytree

import tensorflow layers

import tensorflow.contrib.layers as layers
import tensorflow.layers

import tensorflow slim

import tensorflow.contrib.slim as slim
import tensorflow as slim

import tensorflow lookup ops

from tensorflow.python.ops import lookup-ops
import tensorflow.lookup.test_ops

import test case

from unittest import TestCase
from test import TestCase

mylist sort reverse

mylist.sort (reverse=True)
mylist.sort (reverse())

pickle dump data "save.p"

pickle.dump (data, open("save.p", "w"))
pickle.dump (data="save.p")

data = pickle load "save.p"

data = pickle.load(open ("save.p", "r"))
data = pickle.load("save.p")

Table B. Erroneous examples from the manually generated test set. Tokens that are specified as input keywords, but are not included in the
output, or tokens that are not desired, but inserted as a part of the output, are colored in red.

