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ABSTRACT

Careful tuning of the learning rate, or even schedules thereof, can be crucial to
effective neural net training. There has been much recent interest in gradient-based
meta-optimization, where one tunes hyperparameters, or even learns an optimizer,
in order to minimize the expected loss when the training procedure is unrolled.
But because the training procedure must be unrolled thousands of times, the meta-
objective must be defined with an orders-of-magnitude shorter time horizon than
is typical for neural net training. We show that such short-horizon meta-objectives
cause a serious bias towards small step sizes, an effect we term short-horizon bias.
We introduce a toy problem, a noisy quadratic cost function, on which we analyze
short-horizon bias by deriving and comparing the optimal schedules for short and
long time horizons. We then run meta-optimization experiments (both offline and
online) on standard benchmark datasets, showing that meta-optimization chooses
too small a learning rate by multiple orders of magnitude, even when run with a
moderately long time horizon (100 steps) typical of work in the area. We believe
short-horizon bias is a fundamental problem that needs to be addressed if meta-
optimization is to scale to practical neural net training regimes.

1 INTRODUCTION

The learning rate is one of the most important and frustrating hyperparameters to tune in deep
learning. Too small a value causes slow progress, while too large a value causes fluctuations or even
divergence. While a fixed learning rate often works well for simpler problems, good performance
on the ImageNet (Russakovsky et al., 2015) benchmark requires a carefully tuned schedule. A
variety of decay schedules have been proposed for different architectures, including polynomial,
exponential, staircase, etc. Learning rate decay is also required to achieve convergence guarantee for
stochastic gradient methods under certain conditions (Bottou, 1998). Clever learning rate heuristics
have resulted in large improvements in training efficiency (Goyal et al., 2017; Smith, 2017). A
related hyperparameter is momentum; typically fixed to a reasonable value such as 0.9, careful
tuning can also give significant performance gains (Sutskever et al., 2013). While optimizers such
as Adam (Kingma & Ba, 2015) are often described as adapting coordinate-specific learning rates, in
fact they also have global learning rate and momentum hyperparameters analogously to SGD, and
tuning at least the learning rate can be important to good performance.

In light of this, it is not surprising that there have been many attempts to adapt learning rates,
either online during optimization (Schraudolph, 1999; Schaul et al., 2013), or offline by fitting a
learning rate schedule (Maclaurin et al., 2015). More ambitiously, others have attempted to learn
an optimizer (Andrychowicz et al., 2016; Li & Malik, 2017; Finn et al., 2017; Lv et al., 2017;
Wichrowska et al., 2017; Metz et al., 2017). All of these approaches are forms of meta-optimization,
where one defines a meta-objective (typically the expected loss after some number of optimization
steps) and tunes the hyperparameters to minimize this meta-objective. But because gradient-based
meta-optimization can require thousands of updates, each of which unrolls the entire base-level
optimization procedure, the meta-optimization is thousands of times more expensive than the base-
level optimization. Therefore, the meta-objective must be defined with a much smaller time horizon
∗Equal contribution.
Code available at https://github.com/renmengye/meta-optim-public
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(e.g. hundreds of updates) than we are ordinarily interested in for large-scale optimization. The hope
is that the learned hyperparameters or optimizer will generalize well to much longer time horizons.
Unfortunately, we show that this is not achieved in this paper. This is because of a strong tradeoff
between short-term and long-term performance, which we refer to as short-horizon bias.

−2 −1 0 1 2

x

−0.2

−0.1

0.0

0.1

0.2

y

1.100
1.300

1.700

2.200

3.000
4.000

L(x, y) = 1
2(x2 + 100y2) + σ2

Figure 1: Aggressive learning rate (red) fol-
lowed by a decay schedule (yellow) wins over
conservative learning rate (blue) by making
more progress along the low curvature direction
(x direction).

In this work, we investigate the short-horizon bias
both mathematically and empirically. First, we an-
alyze a quadratic cost function with noisy gradients
based on Schaul et al. (2013). We consider this a
good proxy for neural net training because second-
order optimization algorithms have been shown to
train neural networks in orders-of-magnitude fewer
iterations (Martens, 2010), suggesting that much of
the difficulty of SGD training can be explained by
quadratic approximations to the cost. In our noisy
quadratic problem, the dynamics of SGD with mo-
mentum can be analyzed exactly, allowing us to derive
the greedy-optimal (i.e. 1-step horizon) learning rate
and momentum in closed form, as well as to (locally)
minimize the long-horizon loss using gradient descent.
We analyze the differences between the short-horizon
and long-horizon schedules.

Interestingly, when the noisy quadratic problem is either deterministic or spherical, greedy schedules
are optimal. However, when the problem is both stochastic and badly conditioned (as is most
neural net training), the greedy schedules decay the learning rate far too quickly, leading to
slow convergence towards the optimum. This is because reducing the learning rate dampens the
fluctuations along high curvature directions, giving it a large immediate reduction in loss. But this
comes at the expense of long-run performance, because the optimizer fails to make progress along
low curvature directions. This phenomenon is illustrated in Figure 1, a noisy quadratic problem in
2 dimensions, in which two learning rate schedule are compared: a small fixed learning rate (blue),
versus a larger fixed learning rate (red) followed by exponential decay (yellow). The latter schedule
initially has higher loss, but it makes more progress towards the optimum, such that it achieves an
even smaller loss once the learning rate is decayed.

Figure 2 shows this effect quantitatively for a noisy quadratic problem in 1000 dimensions (defined
in Section 2.3). The solid lines show the loss after various numbers of steps of lookahead with a
fixed learning rate; if this is used as the meta-objective, it favors small learning rates. The dashed
curves show the loss if the same trajectories are followed by 50 steps with an exponentially decayed
learning rate; these curves favor higher learning rates, and bear little obvious relationship to the solid
ones. This illustrates the difficulty of selecting learning rates based on short-horizon information.
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Figure 2: Short-horizon meta-
objectives for the noisy quadratic
problem. Solid: loss after k updates
with fixed learning rate. Dashed:
loss after k updates with fixed learn-
ing rate, followed by exponential
decay.

The second part of our paper empirically investigates gradient-
based meta-optimization for neural net training. We consider
two idealized meta-optimization algorithms: an offline algo-
rithm which fits a learning rate decay schedule by running
optimization many times from scratch, and an online algorithm
which adapts the learning rate during training. Since our
interest is in studying the effect of the meta-objective itself
rather than failures of meta-optimization, we give the meta-
optimizers sufficient time to optimize their meta-objectives well.
We show that short-horizon meta-optimizers, both online and
offline, dramatically underperform a hand-tuned fixed learning
rate, and sometimes cause the base-level optimization progress
to slow to a crawl, even with moderately long time horizons
(e.g. 100 or 1000 steps) similar to those used in prior work on
gradient-based meta-optimization.

In short, we expect that any meta-objective which does not cor-
rect for short-horizon bias will probably fail when run for a much
longer time horizon than it was trained on. There are applications
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where short-horizon meta-optimization is directly useful, such as few-shot learning (Santoro et al.,
2016; Ravi & Larochelle, 2017). In those settings, short-horizon bias is by definition not an issue.
But much of the appeal of meta-optimization comes from the possibility of using it to speed up or
simplify the training of large neural networks. In such settings, short-horizon bias is a fundamental
obstacle that must be addressed for meta-optimization to be practically useful.

2 NOISY QUADRATIC PROBLEM

In this section, we consider a toy problem which demonstrates the short-horizon bias and can be
analyzed analytically. In particular, we borrow the noisy quadratic model of Schaul et al. (2013);
the true function being optimized is a quadratic, but in each iteration we observe a noisy version
with the correct curvature but a perturbed minimum. This can be equivalently viewed as noisy
observations of the gradient, which are intended to capture the stochasticity of a mini-batch-based
optimizer. We analyze the dynamics of SGD with momentum on this example, and compare the
long-horizon-optimized and greedy-optimal learning rate schedules.

2.1 BACKGROUND

Approximating the cost surface of a neural network with a quadratic function has led to powerful
insights and algorithms. Second-order optimization methods such as Newton-Raphson and natural
gradient (Amari, 1998) iteratively minimize a quadratic approximation to the cost function. Hessian-
free (H-F) optimization (Martens, 2010) is an approximate natural gradient method which tries to
minimize a quadratic approximation using conjugate gradient. It can often fit deep neural networks
in orders-of-magnitude fewer updates than SGD, suggesting that much of the difficulty of neural net
optimization is captured by quadratic models. In the setting of Bayesian neural networks, quadratic
approximations to the log-likelihood motivated the Laplace approximation (MacKay, 1992) and
variational inference (Graves, 2011; Zhang et al., 2017). Koh & Liang (2017) used quadratic
approximations to analyze the sensitivity of a neural network’s predictions to particular training
labels, thereby yielding insight into adversarial examples.

Such quadratic approximations to the cost function have also provided insights into learning rate
and momentum adaptation. In a deterministic setting, under certain conditions, second-order
optimization algorithms can be run with a learning rate of 1; for this reason, H-F was able to
eliminate the need to tune learning rate or momentum hyperparameters. Martens & Grosse (2015)
observed that for a deterministic quadratic cost function, greedily choosing the learning rate and
momentum to minimize the error on the next step is equivalent to conjugate gradient (CG). Since CG
achieves the minimum possible loss of any gradient-based optimizer on each iteration, the greedily
chosen learning rates and momenta are optimal, in the sense that the greedy sequence achieves the
minimum possible loss value of any sequence of learning rates and momenta. This property fails to
hold in the stochastic setting, however, and as we show in this section, the greedy choice of learning
rate and momentum can do considerably worse than optimal.

Our primary interest in this work is to adapt scalar learning rate and momentum hyperparameters
shared across all dimensions. Some optimizers based on diagonal curvature approximations
(Kingma & Ba, 2015) have been motivated in terms of adapting dimension-specific learning rates,
but in practice, one still needs to tune scalar learning rate and momentum hyperparameters. Even
K-FAC (Martens & Grosse, 2015), which is based on more powerful curvature approximations, has
scalar learning rate and momentum hyperparameters. Our analysis applies to all of these methods
since they can be viewed as performing SGD in a preconditioned space.

2.2 ANALYSIS

2.2.1 NOTATIONS

We will primarily focus on the SGD with momentum algorithm in this paper. The update is written
as follows:

v(t+1) = µ(t)v(t) − α(t)∇θ(t)L, (1)

θ(t+1) = θ(t) + v(t+1), (2)
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where L is the loss function, t is the training step, and α(t) is the learning rate. We call the gradient
trace v(t) “velocity”, and its decay constant µ(t) “momentum”. We denote the ith coordinate of a
vector v as vi. When we focus on a single dimension, we sometimes drop the dimension subscripts.
We also denote A(·) = E[·]2 + V[·], where E and V denote expectation and variance respectively.

2.2.2 PROBLEM FORMULATION

We now define the noisy quadratic model, where in each iteration, the optimizer is given the gradient
for a noisy version of a quadratic cost function, where the curvature is correct but the minimum is
sampled stochastically from a Gaussian distribution. We assume WLOG that the Hessian is diagonal
because SGD is a rotation invariant algorithm, and therefore the dynamics can be analyzed in a
coordinate system corresponding to the eigenvectors of the Hessian. We make the further (nontrivial)
assumption that the noise covariance is also diagonal.1 Mathematically, the stochastic cost function
is written as:

L̂(θ) =
1

2

∑
i

hi(θi − ci)2, (3)

where c is the stochastic minimum, and each ci follows a Gaussian distribution with mean θ∗i and
variance σ2

i . The expected loss is given by:

L(θ) = E
[
L̂(θ)

]
=

1

2

∑
i

hi
(
(θi − θ∗i )2 + σ2

i

)
. (4)

The optimum of L is given by θ∗ = E[c]; we assume WLOG that θ∗ = 0. The stochastic gradient
is given by ∂L̂

∂θi
= hi(θi−ci). Since the deterministic gradient is given by ∂L

∂θi
= hiθi, the stochastic

gradient can be viewed as a noisy Gaussian observation of the deterministic gradient with variance
h2iσ

2
i . This interpretation motivates the use of this noisy quadratic problem as a model of SGD

dynamics.

We treat the iterate θ(t) as a random variable (where the randomness comes from the sampled c’s);
the expected loss in each iteration is given by

E
[
L(θ(t))

]
= E

[
1

2

∑
i

hi

(
(θ

(t)
i )2 + σ2

i

)]
(5)

=
1

2

∑
i

hi

(
E
[
θ
(t)
i

]2
+ V

[
θ
(t)
i

]
+ σ2

i

)
. (6)

2.2.3 OPTIMIZED AND GREEDY-OPTIMAL SCHEDULES

We are interested in adapting a global learning rate α(t) and a global momentum decay parameter
µ(t) for each time step t. We first derive a recursive formula for the mean and variance of the iterates
at each step, and then analyze the greedy-optimal schedule for α(t) and µ(t).

Several observations allow us to compactly model the dynamics of SGD with momentum on the
noisy quadratic model. First, E[L(θ(t))] can be expressed in terms of E[θi] and V[θi] using Eqn. 5.
Second, due to the diagonality of the Hessian and the noise covariance matrix, each coordinate
evolves independently of the others. Third, the means and variances of the parameters θ(t)i and the
velocity v(t)i are functions of those statistics at the previous step.

Because each dimension evolves independently, we now drop the dimension subscripts. Combining
these observations, we model the dynamics of SGD with momentum as a deterministic recurrence
relation with sufficient statistics E[θ(t)], E[v(t)], V[θ(t)], V[v(t)], and Σ

(t)
θ,v = Cov(θ(t), v(t)). The

dynamics are as follows:

1This amounts to assuming that the Hessian and the noise covariance are codiagonalizable. One heuristic
justification for this assumption in the context of neural net optimization is that under certain assumptions,
the covariance of the gradients is proportional to the Fisher information matrix, which is close to the Hessian
(Martens, 2014).
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Theorem 1 (Mean and variance dynamics). The expectations of the parameter θ and the velocity v
are updated as,

E
[
v(t+1)

]
= µ(t)E

[
v(t)
]
− (α(t)h)E

[
θ(t)
]
,

E
[
θ(t+1)

]
= E

[
θ(t)
]

+ E
[
v(t+1)

]
.

The variances of the parameter θ and the velocity v are updated as

V
[
v(t+1)

]
=
(
µ(t)
)2

V
[
v(t)
]

+
(
α(t)h

)2
V
[
θ(t)
]
− 2µ(t)α(t)hΣ

(t)
θ,v +

(
α(t)hσ

)2
,

V
[
θ(t+1)

]
=
(

1− 2α(t)h
)
V
[
θ(t)
]

+ V
[
v(t+1)

]
+ 2µ(t)Σ

(t)
θ,v,

Σ
(t+1)
θ,v = µ(t)Σ

(t)
θ,v − α(t)hV

[
θ(t)
]

+ V
[
v(t+1)

]
.

By applying Theorem 1 recursively, we can obtain E[θ(t)] and V[θ(t)], and hence E[L(θ(t))], for
every t. Therefore, using gradient-based optimization, we can fit a locally optimal learning rate and
momentum schedule, i.e. a sequence of values {(α(t), µ(t))}Tt=1 which locally minimizes E[L(θ(t))]
at some particular time T . We refer to this as the optimized schedule.

Furthermore, there is a closed-form solution for one-step lookahead, i.e., we can solve for the
optimal learning rate α(t)∗ and momentum µ(t)∗ that minimizes E[L(θ(t+1))] given the statistics
at time t. We call this as the greedy-optimal schedule.
Theorem 2 (Greedy-optimal learning rate and momentum). The greedy-optimal learning rate and
momentum schedule is given by

α(t)∗ =

∑
i h

2
iA
(
θ
(t)
i

) [∑
j hjA

(
v
(t)
j

)]
−
(∑

j hjE
[
θ
(t)
j v

(t)
j

])
h2i E

[
θ
(t)
i v

(t)
i

]
∑
i h

3
i

[
A
(
θ
(t)
i

)
+ σ2

i

] [∑
j hjA

(
v
(t)
j

)]
−
(∑

j h
2
j E
[
θ
(t)
j v

(t)
j

])
h2i E

[
θ
(t)
i v

(t)
i

] ,
µ(t)∗ = −

∑
i hi
(
1− α(t)∗hi

)
E
[
θ
(t)
i v

(t)
i

]
∑
i hiA

(
v
(t)
i

) .

Note that Schaul et al. (2013) derived the greedy optimal learning rate for SGD, and Theorem 2
extends it to the greedy optimal learning rate and momentum for SGD with momentum.

2.2.4 UNIVARIATE AND SPHERICAL CASES

As noted in Section 2.1, Martens & Grosse (2015) found the greedy choice of α and µ to be optimal
for gradient descent on deterministic quadratic objectives. We now show that the greedy schedule is
also optimal for SGD without momentum in the case of univariate noisy quadratics, and hence also
for multivariate ones with spherical Hessians and gradient covariances. In particular, the following
holds for SGD without momentum on a univariate noisy quadratic:
Theorem 3 (Optimal learning rate, univariate). For all T ∈ N, the sequence of learning rates
{α(t)∗}T−1t=1 that minimizes L(θ(T )) is given by

α(t)∗ =
A
(
θ(t)
)

h
(
A
(
θ(t)
)

+ σ2
) . (7)

Moreover, this agrees with the greedy-optimal learning rate schedule as derived by Schaul et al.
(2013).

If the Hessian and the gradient covariance are both spherical, then each dimension evolves
identically and independently according to the univariate dynamics. Of course, one is unlikely to
encounter an optimization problem where both are exactly spherical. But some approximate second-
order optimizers, such as K-FAC, can be viewed as preconditioned SGD, i.e. SGD in a transformed
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Figure 3: Comparisons of the optimized learning rates and momenta trained by gradient descent (red), greedy
learning rates and momenta (blue), and the optimized fixed learning rate and momentum (green) in both noisy
(a) and deterministic (b) quadratic settings. In the deterministic case, our optimized schedule matched the
greedy one, just as the theory predicts.

space where the Hessian and the gradient covariance are better conditioned (Martens & Grosse,
2015). In principle, with a good enough preconditioner, the Hessian and the gradient covariance
would be close enough to spherical that a greedy choice of α and µ would perform well. It will be
interesting to investigate whether any practical optimization algorithms demonstrate this behavior.

2.3 EXPERIMENTS

In this section, we compare the optimized and greedy-optimal schedules on a noisy quadratic
problem. We chose a 1000 dimensional quadratic cost function with the curvature distribution from
Li (2005), on which CG achieves its worst-case convergence rate. We assume that hi = V[ ∂L∂θi ],
and hence σ2

i = 1
hi

; this choice is motivated by the observations that under certain assumptions,
the Fisher information matrix is a good approximation to the Hessian matrix, but also reflects
the covariance structure of the gradient noise (Martens, 2014). We computed the greedy-optimal
schedules using Theorem 3. For the optimized schedules, we minimized the expected loss at
time T = 250 using Adam using Adam (Kingma & Ba, 2015), with a learning rate 0.003 and
500 steps. We set an upper bound for the learning rate which prevented the loss component for
any dimension from becoming larger than its initial value; this was needed because otherwise the
optimized schedule allowed the loss to temporarily grow very large, a pathological solution which
would be unstable on realistic problems. We also considered fixed learning rate and momentum,
with the two hyperparameters fit using Adam. The training curves and the corresponding learning
rates and momenta are shown in Figure 3(a). The optimized schedule achieved a much lower
final expected loss value (4.25) than was obtained by the greedy-optimal schedule (63.86) or fixed
schedule (42.19).

We also show the sums of the losses along the 50 highest curvature directions and 50 lowest
curvature directions. We find that under the optimized schedule, the losses along the high curvature
directions hardly decrease initially. However, because it maintains a high learning rate, the losses
along the low curvature directions decrease significantly. After 50 iterations, it begins decaying the
learning rate, at which point it achieves a large drop in both the high-curvature and total losses. On
the other hand, under the greedy-optimal schedule, the learning rates and momenta become small
very early on, which immediately reduces the losses on the high curvature directions, and hence also
the total loss. However, in the long term, since the learning rates are too small to make substantial
progress along the low curvature directions, the total loss converged to a much higher value in the
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end. This gives valuable insight into the nature of the short-horizon bias in meta-optimization: short-
horizon objectives will often encourage the learning rate and momentum to decay quickly, so as to
achieve the largest gain in the short term, but at the expense of long-run performance.

It is interesting to compare this behavior with the deterministic case. We repeated the above
experiment for a deterministic quadratic cost function (i.e. σ2

i = 0) with the same Hessian;
results are shown in Figure 3(b). The greedy schedule matches the optimized one, as predicted
by the analysis of Martens & Grosse (2015). This result illustrates that stochasticity is necessary
for short-horizon bias to manifest. Interestingly, the learning rate and momentum schedules in
the deterministic case are nearly flat, while the optimized schedules for the stochastic case are
much more complex, suggesting that stochastic optimization raises a different set of issues for
hyperparameter adaptation.

3 GRADIENT-BASED META-OPTIMIZATION

We now turn our attention to gradient-based hyperparameter optimization. A variety of approaches
have been proposed which tune hyperparameters by doing gradient descent on a meta-objective
(Schraudolph, 1999; Maclaurin et al., 2015; Andrychowicz et al., 2016). We empirically analyze
an idealized version of a gradient-based meta-optimization algorithm called stochastic meta-descent
(SMD) (Schraudolph, 1999). Our version of SMD is idealized in two ways: first, we drop the
algorithmic tricks used in prior work, and instead allow the meta-optimizer more memory and
computation than would be economical in practice. Second, we limit the representational power of
our meta-model: whereas Andrychowicz et al. (2016) aimed to learn a full optimization algorithm,
we focus on the much simpler problem of adapting learning rate and momentum hyperparameters,
or schedules thereof. The aim of these two simplifications is that we would like to do a good enough
job of optimizing the meta-objective that any base-level optimization failures can be attributed to
deficiencies in the meta-objective itself (such as short-horizon bias) rather than incomplete meta-
optimization.

Despite these simplifications, we believe our experiments are relevant to practical meta-optimization
algorithms which optimize the meta-objective less thoroughly. Since the goal of the meta-
optimizer is to adapt two hyperparameters, it’s possible that poor meta-optimization could cause
the hyperparameters to get stuck in regions that happen to perform well; indeed, we observed
this phenomenon in some of our early explorations. But it would be dangerous to rely on poor
meta-optimization, since improved meta-optimization methods would then lead to worse base-level
performance, and tuning the meta-optimizer could become a roundabout way of tuning learning
rates and momenta.

We also believe our experiments are relevant to meta-optimization methods which aim to learn entire
algorithms. Even if the learned algorithms don’t have explicit learning rate parameters, it’s possible
for a learning rate schedule to be encoded into an algorithm itself; for instance, Adagrad (Duchi
et al., 2011) implicitly uses a polynomial decay schedule because it sums rather than averages the
squared derivatives in the denominator. Hence, one would need to worry about whether the meta-
optimizer is implicitly fitting a learning rate schedule that’s optimized for short-term performance.

3.1 BACKGROUND: STOCHASTIC META-DESCENT

The high-level idea of stochastic meta-descent (SMD) (Schraudolph, 1999) is to perform gradient
descent on the learning rate, or any other differentiable hyperparameters. This is feasible since any
gradient based optimization algorithm can be unrolled as a computation graph (see Figure 4), and
automatic differentiation is readily available in most deep learning libraries.

There are two basic types of automatic differentiation (autodiff) methods: forward mode and
reverse mode. In forward mode autodiff, directional derivatives are computed alongside the forward
computation. In contrast, reverse mode autodiff (a.k.a. backpropagation) computes the gradients
moving backwards through the computation graph. Meta-optimization using reverse mode can be
computationally demanding due to memory constraints, since the parameters need to be stored at
every step. Maclaurin et al. (2015) got around this by cleverly exploiting approximate reversibility
to minimize the memory cost of activations. Since we are optimizing only two hyperparameters,
however, forward mode autodiff can be done cheaply. Here, we provide the forward differentiation
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Figure 4: Regular SGD in the form of a computation graph. The learning rate parameter α is part of the
differentiable computations.

equations for obtaining the gradient of vanilla SGD learning rate. Let dθtdα be ut, and dLt
dα be α′, and

the Hessian at step t to be Ht. By chain rule, we get,

α′ = gt · ut−1, (8)
ut = ut−1 − gt − αHtut−1. (9)

While the Hessian is infeasible to construct explicitly, the Hessian-vector product in Equation 9 can
be computed efficiently using reverse-on-reverse (Werbos, 1988) or forward-on-reverse automatic
differentiation (Pearlmutter, 1994), in time linear in the cost of the forward pass. See Schraudolph
(2002) for more details.

Algorithm 1: Stochastic Meta-Descent
Input: α0, η,θ, T,M
Output: α
θ0 ← θ;
α← α0;
for m← 1 ... M do

u← 0;
for t← 1 ... T do

X,y ← GetMiniBatch();
g ← BGrad(L(X,y,θ),θ, 1);
θnew ← Step(θ, g, α);
α′ ← g · u;
u← FGrad(θnew, [α,θ], [1,u]);
θ ← θnew;

α← MetaStep(α, α′, η);
θ ← θ0

return α

Using the gradients with respect to hyper-
parameters, as given in Eq. 9, we can ap-
ply gradient based meta-optimization, just
like optimizing regular parameters. It is
worth noting that, although SMD was orig-
inally proposed for optimizing vanilla SGD,
in practice it can be applied to other optimiza-
tion algorithms such as SGD with momentum
or Adam (Kingma & Ba, 2015). Moreover,
gradient-based optimizers other than SGD
can be used for the meta-optimization as well.

The basic SMD algorithm is given as Al-
gorithm 1. Here, α is a set of hyperpa-
rameters (e.g. learning rate), and α0 are
inital hyperparameter values; θ is a set of
optimization intermediate variables, such as
weights and velocities; η is a set of meta-
optimizer hyperparameters (e.g. meta learn-
ing rate). BGrad(y, x, dy) is the backward
gradient function that computes the gradients
of the loss function wrt. θ, and FGrad(y, x, dx) is the forward gradient function that accumulates
the gradients of θ with respect to α. Step and MetaStep optimize regular parameters and
hyperparameters, respectively, for one step using gradient-based methods. Additionally, T is the
lookahead window size, and M is the number of meta updates.

Simplifications from the original SMD algorithm. The original SMD algorithm (Schraudolph,
1999) fit coordinate-wise adaptive learning rates with intermediate gradients (ut) accumulated
throughout the process of training. Since computing separate directional derivatives for each coor-
dinate using forward mode autodiff is computationally prohibitive, the algorithm used approximate
updates. Both features introduced bias into the meta-gradients. We make several changes to the
original algorithm. First, we tune only a global learning rate parameter. Second, we use exact
forward mode accumulation because this is feasible for a single learning rate. Third, rather than
accumulate directional derivatives during training, we compute the meta-updates on separate SGD

8



Published as a conference paper at ICLR 2018

10 2 10 1 100 101 102

Decay Exponent
10 3

10 2

10 1

In
iti

al
 L

ea
rn

in
g 

Ra
te

-1.500

-1.450 -1.450

-1.400

-1
.4

00

-1.350

-1
.3

50

-1.300

-1
.3

00

-1.250

-1
.2

50

-1.200

-1
.2

00
-1.150

-1
.1

50

-1
.1

00

-1
.1

00

-1.050

-1.050

-1.000

100 steps

10 2 10 1 100 101 102

Decay Exponent

-1.100

-1
.0

00-0
.9

00 -0
.8

00

-0.
80

0

-0
.7

00

-0.700

-0.600

-0
.6

00

-0.500

-0
.5

00

-0.400

-0.400
-0.300-0

.2
00

1000 steps

10 2 10 1 100 101 102

Decay Exponent

-2.000
-1.800

-1
.6

00

-1
.4

00

-1.400

-1
.2

00

-1
.2

00

-1
.0

00

-1
.0

00

-0
.8

00

-0.800

-0.600

-0.600

-0.400

-0
.4

00-0.200 -0
.2

000.000
5000 steps

10 2 10 1 100 101 102

Decay Exponent

-4.000

-3
.6

00

-3
.2

00

-2
.8

00
-2

.4
00

-2
.0

00

-1
.6

00

-1
.6

00

-1
.2

00

-1
.2

00
-0

.8
00

-0.800

-0.400

-0
.4

00
0.

00
0

20000 steps

Figure 5: Meta-objective surfaces and SMD trajectories (red) optimizing initial effective learning rate and
decay exponent with horizons of {100, 1k, 5k, 20k} steps2. 2.5k random samples with Gaussian interpolation
are used to illustrate the meta-objective surface.

trajectories simulated using fixed network parameters. Finally, we compute multiple meta-updates in
order to ensure that the meta-objective is optimized sufficiently well. Together, these changes ensure
unbiased meta-gradients, as well as careful optimization of the meta-objective, at the cost of high
computational overhead. We do not recommend this approach as a practical SMD implementation,
but rather as a way of understanding the biases in the meta-objective itself.

3.2 OFFLINE META-OPTIMIZATION

To understand the sensitivity of the optimized hyperparameters to the horizon, we first carried
out an offline experiment on a multi-layered perceptron (MLP) on MNIST (LeCun et al., 1998).
Specifically, we fit learning rate decay schedules offline by repeatedly training the network, and a
single meta-gradient was obtained from each training run.
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Figure 6: Training curves with best learning
rate schedules from meta-objective surfaces with
{100, 1k, 5k, 20k} step horizons.

Learnable decay schedule. We used a parametric
learning rate decay schedule known as inverse time
decay (Welling & Teh, 2011): αt = α0

(1+ t
K )β

, where
α0 is the initial learning rate, t is the number of
training steps, β is the learning rate decay exponent,
and K is the time constant. We jointly optimized α0

and β. We fixed µ = 0.9, K = 5000 for simplicity.
Experimental details. The network had two lay-
ers of 100 hidden units, with ReLU activations.
Weights were initialized with a zero-mean Gaussian
with standard deviation 0.1. We used a warm start
from a network trained for 50 SGD with momentum
steps, using α = 0.1, µ = 0.9. (We used a warm
start because the dynamics are generally different at
the very start of training.) For SMD optimization,
we trained all hyperparameters in log space using
Adam optimizer, with 5k meta steps.

Figure 5 shows SMD optimization trajectories on
the meta-objective surfaces, initialized with multiple
random hyperparameter settings. The SMD trajecto-
ries appear to have converged to the global optimum.

Importantly, the meta-objectives with longer hori-
zons favored a much smaller learning rate decay exponent β, leading to a more gradual decay
schedule. The meta-objective surfaces were very different depending on the time horizon, and the
final β value differed by over two orders of magnitude between 100 and 20k step horizons.

We picked the best learning rate schedules from meta-objective surfaces (in Figure 5), and obtained
the training curves of a network shown in Figure 6. The resulting training loss at 20k steps with

2We encountered some optimization difficulties for SMD with horizon of 20k steps. Since those are not the
focus of this paper, we left out the trajectories of 20k steps to avoid confusions.
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Figure 7: Training curves and learning rates from online SMD with lookahead of 5 steps (blue), and hand-tuned
fixed learning rate (red). Each blue curve corresponds to a different initial learning rate.

the 100 step horizon was over three orders of magnitude larger than with the 20k step horizon. In
general, short horizons gave better performance initially, but were surpassed by longer horizons. The
differences in error were less drastic, but we see that the 100 step network was severely undertrained,
and the 1k step network achieved noticeably worse test error than the longer-horizon ones.

3.3 ONLINE META-OPTIMIZATION

In this section, we study whether online adaptation also suffers from short-horizon bias. Specifically,
we used Algorithm 1) to adapt the learning rate and momentum hyperparameters online while
a network is trained. We experimented with an MLP on MNIST and a CNN on CIFAR-
10 (Krizhevsky, 2009).

Experimental details. For the MNIST experiments, we used an MLP network with two hidden
layers of 100 units, with ReLU activations. Weights were initialized with a zero-mean Gaussian
with standard deviation 0.1. For CIFAR-10 experiments, we used a CNN network adapted from
Caffe (Jia et al., 2014), with 3 convolutional layers of filter size 3 × 3 and depth [32, 32, 64], and
2 × 2 max pooling with stride 2 after every convolution layer, and follwed by a fully connected
hidden layer of 100 units. Meta-optimization was done with 100 steps of Adam for every 10 steps of
regular training. We adapted the learning rate α and momentum µ. After 25k steps, adaptation was
stopped, and we trained for another 25k steps with an exponentially decaying learning rate such that
it reached 1e-4 on the last time step. We re-parameterized the learning rate with the effective learning
rate αeff = α

1−µ , and the momentum with 1−µ, so that they can be optimized more smoothly in the
log space.

Figure 7 shows training curves both with online SMD and with hand-tuned fixed learning rate
and momentum hyperparameters. We show several SMD runs initialized from widely varying
hyperparameters; all the SMD runs behaved similarly, suggesting it optimized the meta-objective
efficiently enough. Under SMD, learning rates were quickly decreased to very small values,
leading to slow progress in the long term, consistent with the noisy quadratic and offline adaptation
experiments.

As online SMD can be too conservative in the choice of learning rate, it is natural to ask whether
removing the stochasticity in the lookahead sequence can fix the problem. We therefore considered
online SMD where the entire lookahead trajectory used a single mini-batch, hence removing the
stochasticity. As shown in Figure 8, this deterministic lookahead scheme led to the opposite
problem: the adapted learning rates were very large, leading to instability. We conclude that the
stochasticity of mini-batch training cannot be simply ignored in meta-optimization.

4 CONCLUSION

In this paper, we analyzed the problem of short-horizon bias in meta-optimization. We presented
a noisy quadratic toy problem which we analyzed mathematically, and observed that the optimal
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Figure 8: Online SMD with deterministic lookahead of 5 steps (blue), compared with a manually tuned fixed
learning rate (red). Other settings are the same as Figure 7.

learning rate schedule differs greatly from a greedy schedule that minimizes training loss one step
ahead. While the greedy schedule tends to decay the learning rate drastically to reduce the loss
on high curvature directions, the optimal schedule keeps a high learning rate in order to make
steady progress on low curvature directions, and eventually achieves far lower loss. We showed
that this bias stems from the combination of stochasticity and ill-conditioning: when the problem
is either deterministic or spherical, the greedy learning rate schedule is globally optimal; however,
when the problem is both stochastic and ill-conditioned (as is most neural net training), the greedy
schedule performs poorly. We empirially verified the short-horizon bias in the context of neural
net training by applying gradient based meta-optimization, both offline and online. We found the
same pathological behaviors as in the noisy quadratic problem — a fast learning rate decay and poor
long-run performance.

While our results suggest that meta-optimization should not be applied blindly, our noisy quadratic
analysis also provides grounds for optimism: by removing ill-conditioning (by using a good
preconditioner) and/or stochasticity (with large batch sizes or variance reduction techniques), it may
be possible to enter the regime where short-horizon meta-optimization works well. It remains to be
seen whether this is achievable with existing optimization algorithms.
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A PROOFS OF THEOREMS

The proofs are organized as follows; we provide a proof to Theorem 1 in A.1, a proof to Theorem 2
in A.2 and a proof to Theorem 3 in A.3.

A.1 MODEL DYNAMICS

Recall the stochastic gradient descent with momentum is defined as follows,

v(t+1) = µ(t)v(t) − α(t)(hθ(t) + hσξ), ξ ∼ N (0, 1)

θ(t+1) = θ(t) + v(t+1) = θ(t) + µ(t)v(t) − α(t)(hθ(t) + hσξ)

= (1− α(t)h)θ(t) + µ(t)v(t) + hσξ.

A.1.1 DYNAMICS OF THE EXPECTATION

We calculate the mean of the velocity v(t+1),

E
[
v(t+1)

]
= E

[
µ(t)v(t) − α(t)hθ(t)

]
= µ(t)E

[
v(t)
]
− α(t)hE

[
θ(t)
]
. (10)

13
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We calculate the mean of the parameter θ(t+1),

E
[
θ(t+1)

]
= E

[
θ(t)
]

+ E
[
v(t+1)

]
. (11)

Let’s assume the following initial conditions:

E
[
v(0)

]
= 0

E
[
θ(0)
]

= E0.

Then Eq.(10) and Eq.(11) describes how E
[
θ(t)
]
,E
[
v(t)
]

changes over time t.

A.1.2 DYNAMICS OF THE VARIANCE

We calculate the variance of the velocity v(t+1),

V
[
v(t+1)

]
= V

[
µ(t)v(t) − α(t)hθ(t)

]
+ (α(t)hσ)2

= (µ(t))2V
[
v(t)
]

+ (α(t)h)2V
[
θ(t)
]
− 2µ(t)α(t)h · Cov

(
θ(t), v(t)

)
+ (α(t)hσ)2.

(12)

The variance of the parameter θ(t+1) is given by,

V
[
θ(t+1)

]
= V

[
θ(t)
]

+ V
[
v(t+1)

]
+ 2

(
µ(t)Cov

(
θ(t), v(t)

)
− α(t)hV

[
θ(t)
])
. (13)

We also need to derive how the covariance of θ and v changes over time:

Cov
(
θ(t+1), v(t+1)

)
= Cov

(
(θ(t) + v(t+1)), v(t+1)

)
= Cov

(
θ(t), v(t+1)

)
+ V

[
v(t+1)

]
= µ(t)Cov

(
θ(t), v(t)

)
− α(t)hV

[
θ(t)
]

+ V
[
v(t+1)

]
. (14)

Let’s assume the following initial conditions:

V
[
v(0)

]
= 0

V
[
θ(0)
]

= V0

Cov
(
θ(0), v(0)

)
= 0.

Combining Eq.(12-14), we obtain the following dynamics (from t = 0, . . . , T − 1):

V
[
v(t+1)

]
= (µ(t))2V

[
v(t)
]

+ (α(t)h)2V
[
θ(t)
]
− 2µ(t)α(t)h · Cov

(
θ(t), v(t)

)
+ (α(t)hσ)2

V
[
θ(t+1)

]
= V

[
θ(t)
]

+ V
[
v(t+1)

]
+ 2

(
µ(t)Cov

(
θ(t), v(t)

)
− α(t)hV

[
θ(t)
])

Cov
(
θ(t+1), v(t+1)

)
= µ(t)Cov

(
θ(t), v(t)

)
− α(t)hV

[
θ(t)
]

+ V
[
v(t+1)

]
.
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A.2 GREEDY OPTIMALITY

A.2.1 UNIVARIATE CASE

The loss at time step t is,

L(t+1) =
1

2
h

(
E
[
θ(t+1)

]2
+ V

[
θ(t+1)

])
=

1

2
h
[ (

E
[
θ(t)
]

+ µ(t)E
[
v(t)
]
− (α(t)h)E

[
θ(t)
])2

+ V
[
θ(t)
]

+ (µ(t))2V
[
v(t)
]

+ (α(t)h)2V
[
θ(t)
]

− 2µ(t)α(t)h · Cov
(
θ(t), v(t)

)
+ (α(t)hσ)2 + 2

(
µ(t)Cov

(
θ(t), v(t)

)
− α(t)hV

[
θ(t)
]) ]

=
1

2
h
[ (

(1− α(t)h)E
[
θ(t)
]

+ µ(t)E
[
v(t)
])2

+ (1− α(t)h)2V
[
θ(t)
]

+ (µ(t))2V
[
v(t)
]

+ 2µ(t)(1− α(t)h)Cov
(
θ(t), v(t)

)
+ (α(t)hσ)2

]
=

1

2
h
[
(1− α(t)h)2

(
E
[
θ(t)
]2

+ V
[
θ(t)
])

+ (µ(t))2
(
E
[
v(t)
]2

+ V
[
v(t)
])

+ 2µ(t)(1− α(t)h)
(
E
[
θ(t)
]
E
[
v(t)
]

+ Cov
(
θ(t), v(t)

))
+ (α(t)hσ)2

]
.

For simplicity, we denote A(·) = E [·]2 + V [·], and notice that E
[
θ(t)v(t)

]
= E

[
θ(t)
]
E
[
v(t)
]

+

Cov
(
θ(t), v(t)

)
, hence,

L(t+1) =
1

2
h
[
(1− α(t)h)2A(θ(t)) + (µ(t))2A(v(t)) + 2µ(t)(1− α(t)h)E

[
θ(t)v(t)

]
+ (α(t)hσ)2

]
.

(15)
In order to find the optimal learning rate and momentum for minimizing L(t+1), we take the
derivative with respect to α(t) and µ(t), and set it to 0:

∇α(t)L(t+1) = (1− α(t)h)A(θ(t)) · (−h)− µ(t)hE
[
θ(t)v(t)

]
+ α(t)(hσ)2 = 0

α(t)h(A(θ(t)) + σ2) = A(θ(t)) + µ(t)E
[
θ(t)v(t)

]
∇µ(t)L(t+1) = µ(t)A(v(t)) + (1− α(t)h)E

[
θ(t)v(t)

]
= 0

µ(t)∗ = − (1− α(t)h)E
[
θ(t)v(t)

]
A(v(t))

α(t)h(A(θ(t)) + σ2) = A(θ(t))− (1− α(t)h)E
[
θ(t)v(t)

]
A(v(t))

E
[
θ(t)v(t)

]
α(t)∗ =

A(θ(t))A(v(t))− E
[
θ(t)v(t)

]2
h
(
A(v(t))(A(θ(t)) + σ2)− E

[
θ(t)v(t)

]2) .

A.2.2 HIGH DIMENSION CASE

The loss is the sum of losses along all directions:

L(t+1) =
∑
i

1

2
hi

[
(1−α(t)hi)

2A(θ
(t)
i )+(µ(t))2A(v

(t)
i )+2µ(t)(1−α(t)hi)E

[
θ
(t)
i v

(t)
i

]
+(α(t)hiσi)

2
]
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Now we obtain optimal learning rate and momentum by setting the derivative to 0,

∇α(t)L(t+1) =
∑
i

hi

[
(1− α(t)hi)A(θ

(t)
i ) · (−hi)− µ(t)hiE

[
θ
(t)
i v

(t)
i

]
+ α(t)(hiσi)

2
]

= 0

α(t)
∑
i

(
(hi)

3(A(θ
(t)
i ) + (σi)

2)
)

=
∑
i

(
(hi)

2A(θ
(t)
i ) + µ(t)(hi)

2E
[
θ
(t)
i v

(t)
i

])
∇µ(t)L(t+1) =

∑
i

hiµ
(t)A(v

(t)
i ) + hi(1− α(t)hi)E

[
θ
(t)
i v

(t)
i

]
= 0

µ(t)∗ = −
∑
i hi(1− α(t)hi)E

[
θ
(t)
i v

(t)
i

]
∑
i hiA(v

(t)
i )

α(t)
∑
i

((hi)
3(A(θ

(t)
i ) + (σi)

2)
)(∑

j

hjA(v
(t)
j )
)
−
(∑

j

(hj)
2E
[
θ
(t)
j v

(t)
j

] )
(hi)

2E
[
θ
(t)
i v

(t)
i

] =

∑
i

(hi)
2A(θ

(t)
i )
(∑

j

hjA(v
(t)
j )
)
−
(∑

j

hjE
[
θ
(t)
j v

(t)
j

] )
(hi)

2E
[
θ
(t)
i v

(t)
i

]
α(t)∗ =

∑
i

(
(hi)

2A(θ
(t)
i )
(∑

j hjA(v
(t)
j )
)
−
(∑

j hjE
[
θ
(t)
j v

(t)
j

] )
(hi)

2E
[
θ
(t)
i v

(t)
i

])
∑
i

((
(hi)3(A(θ

(t)
i ) + (σi)2)

)(∑
j hjA(v

(t)
j )
)
−
(∑

j(hj)
2E
[
θ
(t)
j v

(t)
j

] )
(hi)2E

[
θ
(t)
i v

(t)
i

]) .
A.3 UNIVARIATE OPTIMALITY IN SGD

We now consider a dynamic programming approach to solve the problem. We formalize the
optimization problem of {αi} as follows. We first denote Lmin as the minimum expected loss at
the last time step T (i.e., under the optimal learning rate).

Lmin = min
α(t),α(t+1),...,α(T−1)

Eξ(t),ξ(t+1),...,ξ(T−1)

[
L(θ(T ))

]
.

Recall that the loss can be expressed in terms of the expectation and variance of θ. Denote A(t) =

(E
[
θ(t)
]
)2 + V

[
θ(t)
]
. The final loss can be expressed in terms of A(T )

min, obtained by using optimal
learning rate schedule:

Lmin =
1

2
hA

(T )
min + σ2.

As in Theorem 1, we derive the dynamics for SGD without momentum:

θ(t) = (1− α(t−1)h)θ(t−1) + α(t−1)hσξ(t−1)

⇒
(
E
[
θ(t)
]
,V
[
θ(t)
])

=
(

(1− α(t−1)h)E
[
θ(t−1)

]
, (1− α(t−1)h)2V

[
θ(t−1)

]
+ (α(t−1)hσ)2

)
.

Thus, we can find a recurrence relation of the sequence A(t):

A(t) = (1−α(t−1)h)2
(

(E
[
θ(t−1)

]
)2 + V

[
θ(t−1)

]2)
+(α(t−1)hσ)2 = (1−α(t−1)h)2A

(T−1)
min +(α(t−1)hσ)2.

Since A(T )
min is a function of α(T−1)∗. We can obtain optimal learning rate α(T−1)∗ by taking the

derivative of Lmin w.r.t. α(T−1) and setting it to zero:

dLmin

dα(T−1) =
1

2
h
dA

(T−1)
min

dα(T−2) = 0

⇒ dA
(T )
min

dα(T−1) = 0

⇒ α(T−1)∗ =
A

(T−1)
min

h(A
(T−1)
min + σ2)

.
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Thus we can write A(T )
min in terms of A(T−1)

min and the optimal α(T−1)∗:

A
(T )
min =

(
1− A

(T−1)
min

A
(T−1)
min + σ2

)2

A
(T−1)
min +

(
A

(T−1)
min

A
(T−1)
min + σ2

σ

)2

=

(
σ2

A
(T−1)
min + σ2

)2

A
(T−1)
min +

(
A

(T−1)
min

A
(T−1)
min + σ2

σ

)2

=
A

(T−1)
min σ2

A
(T−1)
min + σ2

.

Therefore,

Lmin =
1

2
hA

(T )
min + σ2

=
1

2
h

(
A

(T−1)
min σ2

A
(T−1)
min + σ2

)
+ σ2.

We now generalize the above derivation. First rewrite Lmin in terms of AT−kmin and calculate the
optimal learning rate at time step T − k.
Theorem 4. For all T ∈ N, and k ∈ N, 1 ≤ k ≤ T , we have,

Lmin =
1

2
h

(
A

(T−k)
min σ2

kA
(T−k)
min + σ2

)
+ σ2. (16)

Therefore, the optimal learning α(t) at timestep t is given as,

α(t)∗ =
A(t)

h(A(t) + σ2)
. (17)

Proof. The form of Lmin can be easily proven by induction on k, and use the identity that,

( ab
a+b )b

k( ab
a+b ) + b

=
ab

(k + 1)a+ b
.

The optimal learning rate then follows immediately by taking the derivative of Lmin w.r.t. α(T−k−1)

and setting it to zero. Note that the subscript min is omitted from A(t) in Eq.(17) as we assume all
A(t) are obtained using optimal α∗, and hence minimum.
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