
Inverting Deep Generative models,
One layer at a time

Qi Lei†, Ajil Jalal†, Inderjit S. Dhillon†‡, and Alexandros G. Dimakis†

† UT Austin ‡ Amazon
{leiqi@oden., ajiljalal@, inderjit@cs.,

dimakis@austin.}utexas.edu

Abstract

We study the problem of inverting a deep generative model with ReLU activations.
Inversion corresponds to finding a latent code vector that explains observed mea-
surements as much as possible. In most prior works this is performed by attempting
to solve a non-convex optimization problem involving the generator. In this paper
we obtain several novel theoretical results for the inversion problem.
We show that for the realizable case, single layer inversion can be performed
exactly in polynomial time, by solving a linear program. Further, we show that for
multiple layers, inversion is NP-hard and the pre-image set can be non-convex.
For generative models of arbitrary depth, we show that exact recovery is possible
in polynomial time with high probability, if the layers are expanding and the
weights are randomly selected. Very recent work analyzed the same problem for
gradient descent inversion. Their analysis requires significantly higher expansion
(logarithmic in the latent dimension) while our proposed algorithm can provably
reconstruct even with constant factor expansion. We also provide provable error
bounds for different norms for reconstructing noisy observations. Our empirical
validation demonstrates that we obtain better reconstructions when the latent
dimension is large.

1 Introduction
Modern deep generative models are demonstrating excellent performance as signal priors, frequently
outperforming the previous state of the art for various inverse problems including denoising, inpaint-
ing, reconstruction from Gaussian projections and phase retrieval (see e.g. [4, 6, 10, 5, 11, 25] and
references therein). Consequently, there is substantial work on improving compressed sensing with
generative adversarial network (GANs) [9, 17, 13, 18, 20]. Similar ideas have been recently applied
also for sparse PCA with a generative prior [2].

A central problem that appears when trying to solve inverse problems using deep generative models
is inverting a generator [4, 12, 24]. We are interested in deep generative models, parameterized
as feed-forward neural networks with ReLU/LeakyReLU activations. For a generator G(z) that
maps low-dimensional vectors in Rk to high dimensional vectors (e.g. images) in Rn, we want to
reconstruct the latent code z∗ if we can observe x = G(z∗) (realizable case) or a noisy version
x = G(z∗) + e where e denotes some measurement noise. We are therefore interested in the
optimization problem

arg min
z

‖x−G(z)‖p, (1)

for some p norm. With this procedure, we learn a concise image representation of a given image
x ∈ Rn as z ∈ Rk, k � n. This applies to image compressions and denoising tasks as studied in

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

[14, 13]. Meanwhile, this problem is a starting point for general linear inverse problems:
arg min

z
‖x−AG(z)‖p, (2)

since several recent works leverage inversion as a key step in solving more general inverse problems,
see e.g. [24, 22]. Specifically, Shah et al. [24] provide theoretical guarantees on obtaining the optimal
solution for (2) with projected gradient descent, provided one could solve (1) exactly. This work
provides a provable algorithm to perform this projection step under some assumptions.

Previous work focuses on the `2 norm that works slowly with gradient descent [4, 15]. In this work,
we focus on direct solvers and error bound analysis for `∞ and `1 norm instead.1 Note that this is a
non-convex optimization problem even for a single-layer network with ReLU activations. Therefore
gradient descent may get stuck at local minimima or require a long time to converge. For example,
for MNIST, compressing a single image by optimizing (1) takes on average several minutes and may
need multiple restarts.

Our Contributions: For the realizable case we show that for a single layer solving (1) is equivalent
to solving a linear program. For networks more than one layer, however, we show it is NP-hard to
simply determine whether exact recovery exists. For a two-layer network we show that the pre-image
in the latent space can be a non-convex set.

For realizable inputs and arbitrary depth we show that inversion is possible in polynomial time if the
network layers have sufficient expansion and the weights are randomly selected. A similar result
was established very recently for gradient descent [15]. We instead propose inversion by layer-wise
Gaussian elimination. Our result holds even if each layer is expanding by a constant factor while [15]
requires a logarithmic multiplicative expansion in each layer.

For noisy inputs and arbitrary depth we propose two algorithms that rely on iteratively solving linear
programs to reconstruct each layer. We establish provable error bounds on the reconstruction error
when the weights are random and have constant expansion. We also show empirically that our
method matches and sometimes outperforms gradient descent for inversion, especially when the
latent dimension becomes larger.

2 Setup
We consider deep generative models G : Rk → Rn with the latent dimension k being smaller than
the signal dimension n, parameterized by a d-layer feed-forward network of the form

G(z) = φd(φd−1(· · ·φ2(φ1(z)) · · ·)), (3)
where each layer φi(a) is defined as a composition of activations and linear maps: ReLU(Wia+ bi).
We focus on the ReLU activations ReLU(a) = max{a,0} applied coordinate-wise, and we will
also consider the activation as LeakyReLU(a) = ReLU(a) + cReLU(−a), where the scaling factor
c ∈ (0, 1) is typically 0.12. Wi ∈ Rni×ni−1 are the weights of the network, and bi ∈ Rni are the
bias terms. Therefore, n0 = k and nd = n indicate the dimensionality of the input and output of the
generator G. We use zi to denote the output of the i-th layer. Note that one can absorb the bias term
bi, i = 1, 2, · · · d into Wi by adding one more dimension with a constant input. Therefore, without
loss of generality, we sometimes omit bi when writing the equation, unless we explicitly needed it.

We use bold lower-case symbols for vectors, e.g. x, and xi for its coordinates. We use upper-case
symbols for denote matrices, e.g. W , where wi is its i-th row vector. For a indexed set I , WI,:

represents the submatrix of W consisting of each i-th row of W for any i ∈ I .

The central challenge is to determine the signs for the intermediate variables of the hidden layers. We
refer to these sign patterns as "ReLU configurations" throughout the paper, indicating which neurons
are ‘on’ and which are ‘off’.

3 Invertibility for ReLU Realizable Networks
In this section we study the realizable case, i.e., when we are given an observation vector x for which
there exists z∗ such that x = G(z∗). In particular, we show that the problem is NP-hard for ReLU

1Notice the relation between `p norm guarantees `p ≥ `q, 1 ≤ p ≤ q ≤ ∞. Therefore the studies on `1 and
`∞ is enough to bound all intermediate `p norms for p ∈ [1,∞).

2The inversion of LeakyReLU networks is much easier than ReLU networks and we therefore only mention
it when needed.

2

activations in general, but could be solved in polynomial time with some mild assumptions with high
probability. We present our theoretical findings first and all proofs of the paper are presented later in
the Appendix.

Inverting a Single Layer. We start with the simplest one-layer case to find if minz ‖x−G(z)‖p = 0,
for any p-norm. Since the problem is non-convex, further assumptions of W are required [15] for
gradient descent to work. When the problem is realizable, however, to find feasible z such that
x = φ(z) ≡ ReLU(Wz + b), one could invert the function by solving a linear programming:

w>i z + bi = xi, ∀i s.t. xi > 0

w>i z + bi ≤ 0, ∀i s.t. xi = 0 (4)
Its solution set is convex and forms a polytope, but possibly includes uncountable feasible points.
Therefore, it becomes unclear how to continue the process of layer-wise inversion unless further
assumptions are made. To demonstrate the challenges to generalize the result to deeper nets, we
show that the solution set becomes non-convex, and to determine whether there exists any solution is
NP-complete.

Challenges to Invert a Two or More Layered ReLU Network.
We would like to study the complexity of inverting deep ReLU networks in general. We do this by
constructing a 4-layer network and prove the following statement:

Theorem 1 (NP-hardness to Recover ReLU Networks with Real Domain). Given a four-layered
ReLU neural network G(x) : Rk → R2 where weights are all fixed, and an observation vector
x ∈ R2, the problem to determine whether there exists z ∈ Rk such that G(z) = x is NP-complete.

The conclusion holds naturally for generative models with deeper architecture. We defer the proof to
the Appendix, which is constructive and shows the 3SAT problem is reducible to the above four-layer
network recovery problem. Meanwhile, when the ReLU configuration for each layer is given, the
recovery problem becomes to solve a simple linear system. Therefore the problem lies in NP, and
together we have NP-completeness.

Meanwhile, although the pre-image for a single layer is a polytope thus convex, it doesn’t continue
to hold for more than one layers, see Example 1. Fortunately, we present next that some moderate
conditions guarantee a polynomial time solution with high probability.

Inverting Expansive Random Network in Polynomial Time.

Assumption 1. For a weight matrix W ∈ Rn×k, we assume 1) its entries are sampled i.i.d Gaussian,
and 2) the weight matrix is tall: n = c0k for some constant c0 ≥ 2.1.

In the previous section, we indicate that the per layer inversion can be achieved through linear
programming (4). With Assumption 1 we will be able to prove that the solution is unique with high
probability, and thus Theorem 2 holds for ReLU networks with arbitrary depth.

Theorem 2. Let G ∈ Rk → Rn be a generative model from a d-layer neural network using ReLU
activations. If for each layer, the weight matrixWi satisfies Assumption 1, then for any prior z∗ ∈ Rk
and observation x = G(z∗), with probability 1− e−Ω(k), z∗ could be achieved from x by solving
layer-wise linear equations. Namely, a random, expansive and realizable generative model could be
inverted in polynomial time with high probability.

In our proof, we show that with high probability the observation x ∈ Rn has at least k non-zero
entries, which forms k equalities and the coefficient matrix is invertible with probability 1. Therefore
the time complexity of exact recovery is no worse than

∑d−1
i=0 n

2.376
i [7] since the recovery simply

requires solving d linear equations with dimension ni−1, i ∈ [d].

Inverting LeakyReLU Network: On the other hand, inversion of LeakyReLU layers are sig-
nificantly easier for the realizable case. Unlike ReLU, LeakyReLU is a bijective map, i.e., each
observation corresponds to a unique preimage:

LeakyReLU−1(x) =

{
x if x ≥ 0

1/cx otherwise. (5)

Therefore, as long as each Wi ∈ Rni×ni−1 is of rank ni−1, each layer map φi is also bijective and
could be computed by the inverse of LeakyReLU (5) and linear regression.

3

4 Invertibility for Noisy ReLU Networks
Besides the realizable case, the study of noise tolerance is essential for many real applications. In
this section, we thus consider the noisy setting with observation x = G(z∗) + e, and investigate the
approximate recovery for z∗ by relaxing some equalities in (4). We also analyze the problem with
both `∞ and `1 error bound, in favor of different types of random noise distribution. In this section,
all generators are without the bias term.

4.1 `∞ Norm Error Bound
Again we start with a single layer, i.e. we observe x = φ(z∗) + e = ReLU(Wz∗) + e. Depending
on the distribution over the measurement noise e, different norm in the objective ‖G(z)− x‖ should
be used, with corresponding error bound analysis. We first look at the case where the entries of e are
uniformly bounded and the approximation of arg minz ‖φ(z)− x‖∞.

Note that for an error ‖e‖∞ ≤ ε, the true prior z∗ that produces the observation x = φ(z∗) + e falls
into the following constraints:

xj − ε ≤ w>j z ≤ xj + ε if xj > ε, j ∈ [n]

w>j z ≤ xj + ε if xj ≤ ε, j ∈ [n], (6)

which is also equivalent to the set {z
∣∣‖φ(z)− x‖∞ ≤ ε}. Therefore a natural way to approximate

the prior is to use linear programming to solve the above constraints.

If ε is known, inversion is straightforward from constraints (6). However, suppose we don’t want to
use a loose guess, we could start from a small estimation and gradually increase the tolerance until
feasibility is achieved. A layer-wise inversion is formally presented in Algorithm 13.

A key assumption that possibly conveys the error bound from the output to the solution is the
following assumption:

Assumption 2 (Submatrix Extends `∞ Norm). For the weight matrix W ∈ Rn×k, there exists an
integer m > k and a constant c∞, such that for any I ⊂ [n] := {1, 2, · · ·n}, |I| ≥ m, WI,: satisfies

‖WI,:x‖∞ ≥ c∞‖x‖∞,
with high probability 1 − exp(−Ω(k)) for any x, and c∞ is a constant. Recall that WI,: is the
sub-rows of W confined to I .

With this assumption, we are able to show the following theorem that bounds the recovery error.

Theorem 3. Let x = G(z∗) + e be a noisy observation produced by the generator G, a d-layer
ReLU network mapping from Rk → Rn. Let each weight matrixWi ∈ Rni−1×ni satisfies Assumption
2 with the integer mi > ni−1 and constant c∞. Let the error e satisfies ‖e‖∞ ≤ ε, and for each
zi = φi(φi−1(· · ·φ(z∗) · · ·)), at least mi coordinates are larger than 2(2/c∞)d−iε. Then by
recursively applying Algorithm 1 backwards, it produces a z that satisfies ‖z − z∗‖∞ ≤ (2/c∞)dε
with high probability.

We argue that the assumptions required are satisfied by random weight matrices sampled from an
i.i.d Gaussian distribution, and present the following corollary.

Corollary 1. Let x = G(z∗) + e be a noisy observation produced by the generator G, a d-layer
ReLU network mapping from Rk → Rn. Let each weight matrixWi ∈ Rni−1×ni (ni ≥ 5ni−1,∀i) be
sampled from i.i.d Gaussian distribution ∼ N (0, 1), then Wi satisfies Assumption 2 for a universal

constant constant c2 ∈ (0, 2]. Let the error e satisfy ‖e‖∞ = ε, where ε < cd2
2d+4 ‖z∗‖2

√
k. By

recursively applying Algorithm 1, it produces z that satisfies ‖z− z∗‖∞ ≤ 2dε
cd2

with high probability.

Remark 1. For LeakyReLU, we could do at least as good as ReLU, since we could simply view all
negative coordinates as inactive coordinates of ReLU, and each observation will produce a loose
bound. On the other hand, if there are significant number of negative entries, we can also change the

3For practical use, we introduce a factor α to gradually increase the error estimation. In our theorem, it
assumed we expicitly set ε to invert the i-th layer as the error estimation ‖e‖0(1/c2)d−i.

4

linear programming constraints of Algorithm 1 as follows:

arg min
z,δ

δ, s.t.


xj − δ ≤ w>j z ≤ xj + δ if xj > ε
1/c(xj − δ) ≤ w>j z ≤ xj + δ if − ε < xj ≤ ε
xj − δ ≤ cw>j z ≤ xj + δ if xj ≤ −ε
δ ≤ ε.

4.2 `1 Norm Error Bound
In this section we develop a generative model inversion framework using the `1 norm. We introduce
Algorithm 2 that tolerates error in different level for each output coordinate and intends to minimize
the `1 norm error bound.

Algorithm 1 Linear programming to invert a sin-
gle layer with `∞ error bound (`∞ LP)

Input: Observation x ∈ Rn, weight matrix W =
[w1|w2| · · · |wn]

>, initial error bound guess ε > 0,
scaling factor α > 1.
repeat

Find argminz,δ δ, s.t. xj − δ ≤ w>j z ≤ xj + δ if xj > ε
w>j z ≤ xj + δ if xj ≤ ε
δ ≤ ε

ε← εα
until z infeasible
Output: z

Algorithm 2 Linear programming to invert a sin-
gle layer with `1 error bound (`1 LP)

Input: Observation x ∈ Rn, weight matrix W =
[w1|w2| · · · |wn]

>, initial error bound guess ε > 0,
scaling factor α > 1.
for t = 1, 2, · · · do

z(t), e(t) ← argminz,e

∑
i ei, s.t. xj − ej ≤ w>j z ≤ xj + ej if xj > ε

w>j z ≤ xj + ej if xj ≤ ε
ej ≥ 0 ∀j ∈ [n]

ε← εα
if ‖φ(z(t))− x‖1 ≥ ‖φ(z(t−1))− x‖1 then

return z(t−1)

end if
end for

Different from Algorithm 1, the deviating error allowed on each observation is no longer uniform and
the new algorithm is actually optimizing over the `1 error. Similar to the error bound analysis with
`∞ norm we are able to get a tight approximation guarantee under some mild assumption related to
Restricted Isometry Property for `1 norm:

Assumption 3 (Submatrix Extends `1 Norm). For a weight matrix W ∈ Rn×k, there exists an
integer m > k and a constant c1, such that for any I ⊂ [n], |I| ≥ m, WI,: satisfies

‖WI,:x‖1 ≥ c1‖x‖1, (7)
with high probability 1− exp(−Ω(k)) for any x.

This assumption is a special case of the lower bound of the well-studied Restricted Isometry Property,
for `1-norm and sparsity k, i.e., (k,∞)-RIP-1. Similar to the `∞ analysis, we are able to get recovery
guarantees for generators with arbitary depth.

Theorem 4. Let x = G(z∗) + e be a noisy observation produced by the generator G, a d-layer
ReLU network mapping from Rk → Rn. Let each weight matrix Wi ∈ Rni−1×ni satisfy Assumption
3 with the integer mi > ni−1 and constant c1. Let the error e satisfy ‖e‖1 ≤ ε, and for each
zi = φi(φi−1(· · ·φ(z∗) · · ·)), at least mi coordinates are larger than 2d+1−iε

cd−i1

. Then by recursively

applying Algorithm 2, it produces a z that satisfies ‖z − z∗‖1 ≤ 2dε
cd1

with high probability.

There is a significant volume of prior work on the RIP-1 condition. For instance, studies in [3] showed
that a (scaled) random sparse binary matrix with m = O(s log(k/s)/ε2) rows is (s, 1 + ε)-RIP-1
with high probability. In our case s = k and ε could be arbitrarily large, therefore again we only
require the expansion factor to be constant. Similar results with different weight matrices are also
shown in [19, 16, 1].

4.3 Relaxation on the ReLU Configuration Estimation
Our previous methods critically depend on the correct estimation of the ReLU configurations. In
both Algorithm 1 and 2, we require the ground truth of all intermediate layer outputs to have many
coordinates with large magnitude so that they can be distinguished from noise. An incorrect estimate

5

Random Net MNIST Net

(a) Uniform Noise (b) Gaussian Noise (c) Uniform Noise (d) Gaussian Noise

Figure 1: Comparison of our proposed methods (`∞ LP and `1 LP) versus gradient descent. On the horizontal
axis we plot the relative noise level while on the vertical axis the relative recovery error. In experiments (a)(b)
the network is randomly generated and fully connected, with 20 input neurons, 100 hidden neurons and 500
output neurons. This corresponds to an expansion factor of 5. Each dot represents a recovery experiment (we
have 200 for each noise level). Each line connects the median of the 200 runs for each noise level. As can be
seen, our algorithm (Blue and Orange) has very similar performance to gradient descent, except at low noise
levels where it is slightly more robust.
In experiments (c)(d) the network is generative model for the MNIST dataset. In this case, gradient descent fails
to find global minimum in almost all the cases.

from an "off" configuration to an "on" condition will possibly cause primal infeasibility when solving
the LP. Increasing ε ameliorates this problem but also increases the recovery error.

With this intuition, a natural workaround is to perform some relaxation to tolerate incorrectly estimated
signs of the observations.

max
z

∑
i

max{0, xi}w>i z, s.t, w>i z ≤ xi + ε. (8)

Here the ReLU configuration is no longer explicitly reflected in the constraints. Instead, we only
include the upper bound for each inner product w>i z, which is always valid whether the ReLU is on
or off. The previous requirement for the lower bound w>i z ≥ xi − ε is now relaxed and hidden in
the objective part. When the value of xi is relatively large, the solver will produce a larger value of
w>i z to achieve optimality. Since this value is also upper bounded by xi + ε, the optimal solution
would be approaching to xi if possible. On the other hand, when the value of xi is close to 0, the
objective dependence on w>i z is almost negligible.

Meanwhile, in the realizable case when ∃z∗ such that ReLU(Wz∗) = x, and ε = 0, it is easy to
show that the solution set for (8) is exactly the preimage of ReLU(Wz). This also trivially holds for
Algorithm 1 and 2.

5 Experiments
In this section, we describe our experimental setup and report the performance comparisons of our
algorithms with the gradient descent method [15, 12]4. We conduct simulations in various aspects
with Gaussian random weights, and a simple GAN architecture with MNIST dataset to show that our
approach can work in practice for the denoising problem. We refer to our Algorithm 1 as `∞ LP and
Algorithm 2 as `1 LP. We focus in the main text the experiments with these two proposals and also
include some more empirical findings with the relaxed version described in (8) in the Appendix.

5.1 Synthetic Data
We validate our algorithms on synthetic data at various noise levels and verify Theorem 3 and 4
numerically. For our methods, we choose the scaling factor α = 1.2. With gradient descent, we use
learning rate of 1 and up to 1,000 iterations or until the gradient norm is no more than 10−9.

Model architecture: The architecture we choose in the simulation aligns with our theoretical
findings. We choose a two layer network with constant expansion factor 5: latent dimension k = 20,
hidden neurons of size 100 and observation dimension n = 500. The entries in the weight matrix are
independently drawn from N (0, 1/ni).

4The code to reproduce our results could be found here: https://github.com/cecilialeiqi/
InvertGAN_LP.

6

https://github.com/cecilialeiqi/InvertGAN_LP
https://github.com/cecilialeiqi/InvertGAN_LP

(a) ReLU (b) LeakyReLU

Figure 2: Comparison of our method and gradient descent on the empirical success rate of recovery (200 runs
on random networks) versus the number of input neurons k for the noiseless problem. The architecture chosen
here is a 2 layer fully connected ReLU network, with 250 hidden nodes, and 600 output neurons. Left figure is
with ReLU activation and right one is with LeakyReLU. Our algorithms are significantly outpeforming gradient
descent for higher latent dimensions k.

Observation Ground Truth

Ours (`∞ LP) Gradient Descent [15]

0 3 7 8 9 0 3 7 8 9

Figure 3: Recovery comparison using our algorithm `∞ LP versus GD for an MNIST generative model. Notice
that `∞ LP produces reconstructions that are clearly closer to the ground truth.

Noise generation: We use two kinds of random distribution to generate the noise, i.e., uniform
distribution U(−a, a) and Gaussian random noise N (0, a), in favor of the `∞ and `1 error bound
analysis respectively. We choose a ∈ {10−i|i = 1, 2, · · · 6} for both noise types.

Recovery with Various Observation Noise: In Figure 1(a)(b) we plot the relative recovery error
‖z − z∗‖2/‖z∗‖2 at different noise levels. It supports our theoretical findings that with other
parameters fixed, the recovery error grows almost linearly to the observation noise. Meanwhile, we
observe in both cases, our methods perform similarly to gradient descent on average, while gradient
descent is less robust and produces more outlier points. As expected, our `∞ LP performs slightly
better than gradient descent when the input error is uniformly bounded; see Figure 1(a). However,
with a large variance in the observation error, as seen in Figure 1(b), `∞ LP is not as robust as `1 LP
or gradient descent.

Additional experiments can be found in the Appendix including the performance of the LP relaxation
that mimics `1 LP but is more efficient and robust.

Recovery with Various Input Neurons: According to the theoretical result, one advantage of our
proposals is the much smaller expansion requirement than gradient descent [12] (constant vs log k
factors). Therefore we conduct the experiments to verify this point. We follow the exact setting as
[15]; we fix the hidden layer and output sizes as 250 and 600 and vary the input size k to measure the
empirical success rate of recovery influenced by the input size.

In Figure 2 we report the empirical success rate of recovery for our proposals and gradient descent.
With exact setting as in [15], a run is considered successful when ‖z∗ − z‖2/‖z∗‖2 ≤ 10−3. We
observe that when input width k is small, both gradient descent and our methods grant 100% success
rate. However, as the input neurons grows, gradient descent drops to complete failure when k ≥60,
while our algorithms continue to present 100% success rate until k = 109. The performance of
gradient descent is slightly worse than reported in [15] since they have conducted 150 number of
measurements for each run while we only considered the measurement matrix as identity matrix.

5.2 Experiments on Generative Model for MNIST Dataset
To verify the practical contribution of our model, we conduct experiments on a real generative network
with the MNIST dataset. We set a simple fully-connected architecture with latent dimension k = 20,

7

Observation Ground Truth

Ours (`∞ LP) Gradient Descent [15]

7 1 5 6 9 7 1 5 6 9

Figure 4: Recovery comparison with non-identity sensing matrix using our algorithm `∞ LP versus GD, for an
MNIST generative model. The black region denotes unobserved pixels. Our algorithm always finds reasonable
results while GD sometimes gets stuck at local minimum (See cases with number 1 and 5).

hidden neurons of size n1 = 60 and output size n = 784. The network has a single channel. We train
the network using the original Generative Adversarial Network [8]. We set n1 to be small since the
output usually only has around 70 to 100 non-zero pixels.

Similar to the simulation part, we compared our methods with gradient descent [12, 15]. Under
this setting, we choose the learning rate to be 10−3 and number of iterations up to 10,000 (or until
gradient norm is below 10−9).

We first randomly select some empirical examples to visually show performance comparison in
Figure 3. In these examples, observations are perturbed with some Gaussian random noise with
variance 0.3 and we use `∞ LP as our algorithm to invert the network. From the figures, we see that
our method can almost perfectly denoise and reconstruct the input image, while gradient descent
impairs the completeness of the original images to some extent.

We also compare the distribution of relative recovery error with respect to different input noise levels,
as ploted in Figure 1(c)(d). From the figures, we observe that for this real network, our proposals still
successfully recover the ground truth with good accuracy most of the time, while gradient descent
usually gets stuck in local minimum. This explains why it produces defective image reconstructions
as shown in 3.

Finally, we presented some sensing results when we mask part of the observations using PGD with
our inverting procedure. As shown in Figure 4, our algorithm always show reliable recovery while
gradient descent sometimes fails to output reasonable result. More experiments are presented in the
Appendix.

6 Conclusion and Future Work
We introduced a novel algorithm to invert a generative model through linear programming, one layer
at a time, given (noisy) observations of its output. We prove that for expansive and random Gaussian
networks, we can exactly recover the true latent code in the noiseless setting. For noisy observations
we also establish provable performance bounds. Our work is different from the closely related [15]
since we require less expansion, we bound for `1 and `∞ norm (as opposed to `2), and we also
only focus on inversion, i.e., without a forward operator. Our method can be used as a projection
step to solve general linear inverse problems with projected gradient descent [24]. Empirically we
demonstrate good performance, sometimes outperforming gradient descent when the latent vectors
are high dimensional.

One message we want to convey in the paper is that it is always easier to invert to the intermediate
layer than directly to the input layer. As an extreme case, we invert one layer at a time, assuming
that each inversion is uniquely determined. To the best of our knowledge, all existing theoretical
guarantees for inversion of deep generative models require expansion at each layer; however, models
like DCGAN[21] are expansive at all layers except the output layer. In future work, we will blend
our algorithms with gradient descent and propose more practical inversion algorithms.

Acknowledgements. This research has been supported by NSF Grants 1618689, IIS-1546452, CCF-
1564000, DMS 1723052, CCF 1763702, AF 1901292 and research gifts by Google, Western Digital
and NVIDIA.

8

References
[1] Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn. Restricted isometry property for

general p-norms. IEEE Transactions on Information Theory, 62(10):5839–5854, 2016.

[2] Benjamin Aubin, Bruno Loureiro, Antoine Maillard, Florent Krzakala, and Lenka Zdeborová.
The spiked matrix model with generative priors. arXiv preprint arXiv:1905.12385, 2019.

[3] Radu Berinde, Anna C Gilbert, Piotr Indyk, Howard Karloff, and Martin J Strauss. Combining
geometry and combinatorics: A unified approach to sparse signal recovery. In Communication,
Control, and Computing, 2008 46th Annual Allerton Conference on, pages 798–805. IEEE,
2008.

[4] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using
generative models. arXiv preprint arXiv:1703.03208, 2017.

[5] Manik Dhar, Aditya Grover, and Stefano Ermon. Modeling sparse deviations for compressed
sensing using generative models. arXiv preprint arXiv:1807.01442, 2018.

[6] Alyson K Fletcher and Sundeep Rangan. Inference in deep networks in high dimensions. arXiv
preprint arXiv:1706.06549, 2017.

[7] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[9] Aditya Grover and Stefano Ermon. Uncertainty autoencoders: Learning compressed representa-
tions via variational information maximization. arXiv preprint arXiv:1812.10539, 2018.

[10] Sidharth Gupta, Konik Kothari, Maarten V de Hoop, and Ivan Dokmanić. Deep mesh projectors
for inverse problems. arXiv preprint arXiv:1805.11718, 2018.

[11] Paul Hand, Oscar Leong, and Vlad Voroninski. Phase retrieval under a generative prior. In
Advances in Neural Information Processing Systems, pages 9154–9164, 2018.

[12] Paul Hand and Vladislav Voroninski. Global guarantees for enforcing deep generative priors by
empirical risk. arXiv preprint arXiv:1705.07576, 2017.

[13] Reinhard Heckel and Paul Hand. Deep decoder: Concise image representations from untrained
non-convolutional networks. arXiv preprint arXiv:1810.03982, 2018.

[14] Reinhard Heckel, Wen Huang, Paul Hand, and Vladislav Voroninski. Deep denoising: Rate-
optimal recovery of structured signals with a deep prior. arXiv preprint arXiv:1805.08855,
2018.

[15] Wen Huang, Paul Hand, Reinhard Heckel, and Vladislav Voroninski. A provably con-
vergent scheme for compressive sensing under random generative priors. arXiv preprint
arXiv:1812.04176, 2018.

[16] Piotr Indyk and Ilya Razenshteyn. On model-based rip-1 matrices. In International Colloquium
on Automata, Languages, and Programming, pages 564–575. Springer, 2013.

[17] Morteza Mardani, Qingyun Sun, Shreyas Vasawanala, Vardan Papyan, Hatef Monajemi, John
Pauly, and David Donoho. Neural proximal gradient descent for compressive imaging. arXiv
preprint arXiv:1806.03963, 2018.

[18] Dustin G Mixon and Soledad Villar. Sunlayer: Stable denoising with generative networks.
arXiv preprint arXiv:1803.09319, 2018.

[19] Mergen Nachin. Lower bounds on the column sparsity of sparse recovery matrices. UAP: MIT
Undergraduate Thesis, 2010.

[20] Parthe Pandit, Mojtaba Sahraee, Sundeep Rangan, and Alyson K Fletcher. Asymptotics of map
inference in deep networks. arXiv preprint arXiv:1903.01293, 2019.

9

[21] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[22] Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization
by denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

[23] Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular matrix.
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences 62.12, pages 1707–1739, 2009.

[24] Viraj Shah and Chinmay Hegde. Solving linear inverse problems using gan priors: An algorithm
with provable guarantees. arXiv preprint arXiv:1802.08406, 2018.

[25] Subarna Tripathi, Zachary C Lipton, and Truong Q Nguyen. Correction by projection: Denoising
images with generative adversarial networks. arXiv preprint arXiv:1803.04477, 2018.

10

	Introduction
	Setup
	Invertibility for ReLU Realizable Networks
	Invertibility for Noisy ReLU Networks
	 Norm Error Bound
	1 Norm Error Bound
	Relaxation on the ReLU Configuration Estimation

	Experiments
	Synthetic Data
	Experiments on Generative Model for MNIST Dataset

	Conclusion and Future Work

