
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Execution-Guided Neural Program Decoding

Anonymous Authors1

Abstract

We present a neural semantic parser that translates
natural language questions into executable SQL
queries with two key ideas. First, we develop an
encoder-decoder model, where the decoder uses
a simple type system of SQL to constraint the
output prediction, and propose a value-based loss
when copying from input tokens. Second, we ex-
plore using the execution semantics of SQL to re-
pair decoded programs that result in runtime error
or return empty result. We propose two model-
agnostics repair approaches, an ensemble model
and a local program repair, and demonstrate their
effectiveness over the original model. We evalu-
ate our model on the WikiSQL dataset and show
that our model achieves close to state-of-the-art
results with lesser model complexity.

1. Introduction
Developing effective semantic parsers to translate natural
language questions into logical programs has been a long-
standing goal (Poon, 2013; Zettlemoyer & Collins, 2005;
Pasupat & Liang, 2015; Li et al., 2005; Gulwani & Mar-
ron, 2014). Recent work has shown that recurrent neural
networks with attention and copying mechanisms (Dong &
Lapata, 2016; Neelakantan et al., 2016; Jia & Liang, 2016)
can be used to successfully build such parsers. Notably,
Zhong et al. (2017) recently introduced the Seq2SQL model
for translating questions to SQL queries using supervised
learning. The model uses separate decoders for different
parts of a query (i.e., aggregation operation, target column,
and where predicates) and reinforcement learning to learn
semantically equivalent queries beyond supervision.

In this paper, we present a new model for decoding pro-
grams that leverages one key property of programs that
programs have well-defined deterministic semantics and

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

are executable. Our model is an extension of the sequence-
to-sequence model with attention (Bahdanau et al., 2014)
for natural language to SQL program translation. Figure 1
shows an example table-question pair and how our system
generates the answer by executing the synthesized SQL pro-
gram. There are two key ideas in our model. First, instead
of designing multiple decoders (Krishnamurthy et al., 2017),
we use a simple type system to control the decoding mode
at each decoding step (cf. Sect. 2). Based on the SQL gram-
mar, a decoder cell is specialized to either select a token
from the SQL built-in vocabulary, generate a pointer over
the table header and the input question to copy a table col-
umn, or generate a pointer to copy a constant from the user’s
question. We use a value-based loss function that transfers
the distribution over the pointer locations in the input into a
distribution over the set of tokens observed in the input, by
summing up the probabilities of the same value appearing at
different input indices. Second, we use the execution seman-
tics of SQL to repair (partially) decoded programs that either
trigger runtime error or return empty result during execution.
In particular, we study two model-independent repair ap-
proaches: (1) an ensemble model approach where erroneous
programs are repaired using programs generated from other
models in a model ensemble and (2) a local program repair
approach that repairs programs on-the-fly during the decod-
ing process based on its partial evaluation result. Our study
result shows that both strategies can effectively improve the
accuracy of the base model.

We evaluate our approach on the recently released WikiSQL
dataset (Zhong et al., 2017), a corpus consisting of over
80,000 natural language question and pairs. Our results in
Sect. 3 show that our end-to-end model achieves a simi-
lar test accuracy (78.3% execution accuracy) to that of the
state-of-the-art Coarse2Fine model (Dong & Lapata, 2018b)
(78.5% execution accuracy) without needing a separate neu-
ral table encoder to encode table values or an intermediate
decoder and encoder to embed the program sketch. Using a
series of ablation experiments, we show that our model in-
dependent repair strategies can effectively boost base model
performance (with an improvement from 71.9% to 78.3%).
More importantly, the execution guided program decoding
can be composed with more advanced models for further
performance improvement and even to other neural program
synthesis domains (Parisotto et al., 2016).

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Execution-Guided Neural Program Decoding

Figure 1: Answering a table question by synthesizing a query and
executing it on the provided table.

Figure 2: Overview of the base model. The model encodes table
columns as well as the user question with a BiLSTM and then
decodes the hidden state with a typed LSTM, where the decoding
action for each cell is statically determined.

2. Model
In this section, we introduce the proposed framework, in-
cluding the base model and the execution-guided program
decoding algorithm.

2.1. Base model

We generate SQL queries from questions using an RNN-
based encoder-decoder model with attention and copying
mechanisms (Vinyals et al., 2015; Gu et al., 2016; Zhong
et al., 2017). Besides, we use the known structure of SQL
to statically determine the “type” of output of a decoding
step while generating the SQL query. For example, since
the grammar determines that the third token (after the aggre-
gation function) in any query has to be a column name (i.e.,
the aggregated column), we only need to consider column
names when decoding the hidden state at this position. To
generalize this idea, we use a static type system to restrict
decoder candidates for each decoding position: if the target
token is a column name, we enforce the use of a copying
mechanism to copy a token matching one of the table header;
if the target token a constant, we restrict the copy header
to copy from the user question; otherwise we project the
hidden state to a built-in vocabulary to obtain a built-in SQL
operator. This means that we only need to maintain a small
built-in decoder vocabulary (sized 15) for all operators.

The encoder is a bidirectional LSTM, which takes the con-
catenation of the table header (column names) of the queried
table and the question as input to learn a joint representa-
tion. The decoder is an LSTM with attention mechanism.
There are three output layers corresponding to three decod-
ing types, which restrict the vocabulary it can sample from
at each step. The three decoding types are as follows:
• τV (SQL operator): The output has to be a SQL op-

erator, i.e., a terminal from V = {Select, From,
Where, Id, Max, Min, Count, Sum, Avg, And, =,

>, <, <END>, <GO>}.
• τC (column name): The output has to be a column

name, which will be copied from either the table header
or the query section of the input sequence. Note that
the column required for the correct SQL output may or
may not be mentioned explicitly in the question.

• τQ (constant value): The output is a constant to be
copied from the question section of the input sequence.

The grammar of SQL expressions in the the WikiSQL
dataset can be described in a regex form as “Select
f c From t Where (c op v)∗” (f refers to an aggrega-
tion function, c refers to a column name, t refers to the
table name, op refers to an comparator and v refers to
a value). This can be represented by a decoding-type
sequence τV τV τCτV τCτV (τCτV τQ)∗, which ensures that
only decoding-type corrected tokens can be sampled at each
decoding step.

2.1.1. TRAINING

The model is trained from question-SQL program pairs
(X ,Y), where Y = [y(1), . . . , y(|Y |)] is a sequence repre-
senting the ground truth program for question X . Different
typed decoder cells are trained with different loss functions.

τV loss: This is the standard RNN case, i.e. the loss for an
output token is the cross-entropy of the one-hot encoding
of the target token and the distribution over the decoder
vocabulary V:

lossV(k) = − onehot(y(k)) · log(softmax(WV(α
(k)
V Oe)+bV))

where WV , bV are trainable variables, and α(k)
V Oe denotes

attention over an embedding Oe of the input sequence X .

τC , τQ loss: In this case, the objective is to copy a correct
token from the input into the output. As the original input-
output pair does not explicitly contain any pointers, we first
need to find an index λk ∈ [1, . . . , |X |] such that y(k) =
x (λk). In practice, there are often multiple such indices, i.e.,
the target token appears several times in the input query (e.g.,
both as a column name supplied from the table information
and as part of the user question). To express this, we use the
“Sum-Transfer” loss, described below.

The probability of copying a token v in the input vocabulary
is the sum of probabilities of pointers that point to the token
v:

φ
(k)
sum(v) =

∑
1≤l≤|X |

{α(k,`) | x (l) = v}

where α(k,`) denotes the attention over input embed-
dings. Based on this, the Sum-Transfer loss is defined as:

lossval
C (k) = − onehot(y(t)) · log([φ(k)(v) | v ∈ Set(X)]).

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Execution-Guided Neural Program Decoding

When training with the Sum-Transfer loss function, we
adapt the outputs of the τQ and τC decoder cells to be the
tokens with the highest transferred probabilities, computed
by argmaxv∈X (φ

(k)
sum(v)), so that decoding results are con-

sistent with the training goal.

The overall loss for a target output sequence can then be
computed as the sum of the appropriate loss functions for
each individual output token.

2.2. Execution-Guided Decoding

Since SQL programs are executable, we can use the SQL
semantics to guide the repairing of decoded programs (or
partial programs) that throw errors during execution. We
consider the following two types of errors that could be
identified by the execution engine:

• Runtime error: A program p throws a run-time error if
it has a component whose operator type mismatches
its operands type. Such an error could be caused by
the mismatch between the aggregation function and
the target column (e.g., sum over a column with string
type) or the mismatch between condition operator and
its operands (e.g., applying > to a column of float type
and a constant of string type).

• Empty output: When executed, a program p could
return a empty result if the predicate generated by the
decoder is overly restricted (e.g., a predicate c = v is
generated but the constant v in a predicate is not in a
column c).

In either case, executing the decoded program cannot yield
a valid answer to the user’s question. To repair erroneous
programs, we propose the following two repair approaches.

Ensemble Approach We first train k models
(M1, . . . ,Mk) with different random seeds and then
use ensembling to repair erroneous programs. When the
model Mi returns an erroneous program pi, we invoke the
model Mi+1 to regenerate a new program pi+1, until we
find an error-free program or finish querying all k models.

Local Repair Approach Unlike the ensemble approach
that requires the repair process to regenerate new programs
from multiple models, the local repair approach repairs
the program on-the-fly by leveraging evaluation results of
partial programs. After decoding the aggregation opera-
tor f , the aggregation column c and the table t, we run
the execution engine over the partial program “Select f
c From t Where True” to determine whether f and c
are compatible. If not, we re-generate f ′, c′ from the set
of compatible (f, c) pairs with highest joint probability ac-
cording to the token distribution produced by the decoder;
and then proceed to the decoding of predicates. Similarly,

when decoding a predicate c1 op c2, we evaluate the partial
program with the predicate to check whether the predicate
triggers a type error or results in an empty output; if so, we
compute the predicate c′1 op

′ c′2 with the highest joint prob-
ability from the set of error-free predicates (c1, op, c2). In
practice, instead of computing all possible alternative local
repairs, we parameterize the approach with a parameter k to
restrict the number of alternative tokens considered at each
decoding step (i.e., beam size k for each decoder cell). This
approach resembles a beam decoder; however, instead of
generating the top-k highest probability programs, the local
repair approach utilizes the evaluation result of the partial
program to guide the search to avoid decoding erroneous
programs.

As we will show later, these two approaches are capable of
repairing different types of errors and are both effective in
improving decoding accuracy.

3. Evaluation
We evaluate our model on WikiSQL dataset (Zhong et al.,
2017) by comparing it with prior work and our model with
different sub-components to analyze their contributions.

3.1. Experiment Setup

We use the sequence version of the WikiSQL dataset with
the default train/dev/test split. Besides question-program
pairs, we also use the tables in the dataset to preprocess the
dataset. The dataset contains 56,324 training pairs, 8,421
dev pairs, and 15,878 test pairs. The detailed data prepro-
cessing, column annotation, and model setups are described
in Appendices A.1.

In the execution-guided repair phase, we consider two in-
stances of the ensemble repair approach (one with an en-
semble size 3 and one with ensemble size 6) as well as two
instances of the repair model (one with beam size 3 and one
with beam size 5).

3.2. Overall Result

Table 1 shows the results of our model compared against
the original Seq2SQL baseline (Zhong et al., 2017) as well
as two most recent state-of-the-art models: TypeSQL (Yu
et al., 2018) and Coarse2Fine (Dong & Lapata, 2018a). We
report both the accuracy computed with exact syntax match
(Accsyn) and the accuracy based on program execution re-
sult (Accex). The execution accuracy is higher than syntax
accuracy as syntactically different programs can generate
same results (e.g., programs only differ in predicate orders).

The comparison result shows that while our base model
does not achieve a high execution accuracy compared to
the two state-of-the-art models, the repair process can effec-

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Execution-Guided Neural Program Decoding

tively boost the base model accuracy to achieve a similar
accuracy as the Coarse2Fine model (78.3% v.s. 78.5%). In
particular, since the repair approach is orthogonal to the un-
derlying base model implementation, it can also be applied
to improve other base models such as Coarse2Fine itself.

Model Dev Test
Accsyn Accex Accsyn Accex

Seq2SQL (2017) 49.5 60.8 48.3 59.4
TypeSQL (2018)1 – 74.5 – 73.5
Coarse2Fine (2018a) 72.5 79.0 71.7 78.5
Our Base Model 61.8 72.5 62.3 71.9
Base + EG Ensemble (3) 66.6 77.3 66.7 76.9
Base + EG Ensemble (6) 67.5 78.4 67.7 78.1
Base + EG Local Repair (3) 65.8 77.9 66.1 77.6
Base + EG Local Repair (5) 66.2 78.5 67.9 78.3

Table 1: Dev and test accuracy (%) of the models, where Accsyn

refers to syntax accuracy and Accex refers to execution accuracy.
“+ Ensemble (k)” indicates that model outputs are repaired using
an ensemble of k models, and “+ EG Local Repair (k)” indicates
that model outputs are repaired using the local repair strategy with
beam size k.

3.3. Repair Model
Table 2 shows the number of erroneous programs generated
by each model. The result shows that both repair approaches
can effectively reduce the number of erroneous programs.

Model Dev Test
Our Base Model 1348 2550
Base + EG Ensemble (3) 519 1063
Base + EG Ensemble (6) 304 696
Base + EG Local Repair (3) 196 379
Base + EG Local Repair (5) 109 217

Table 2: The number of erroneous programs generated by different
models.

Table 3 shows how the two repair approaches differ in their
performances with respect to program size. While both
approaches can significantly improve execution accuracies
of programs by the base model, the ensemble approach
tends to perform better in repairing programs of larger sizes
while the local repair approach performs better in shorter
programs. This difference is mainly caused by the fact that
the local repair approach only repairs program errors in
component level and lacks the ability to track full program
correctness (as different predicates may not be consistent
with each other after repairs). Instead, the ensemble model
approach keeps whole program consistency, but the size of
ensemble model limits the number of alternative programs
that can be used in repairing the original decoding result.
The two approaches can potentially be combined to further
improve decoder performance.

1TypeSQL model generates programs in canonical forms and
Accsyn does not apply to the model.

Model Ground truth predicate size
0 1 2 3 4

Base Model 57.8 77.6 63.0 57.5 42.4
Base + EG Ensemble (6) 68.8 80.5 76.3 66.1 63.6
Base + EG Local Repair (5) 71.9 82.6 71.4 64.8 51.5

Table 3: Breakdown results showing the relationship of program
size and the execution accuracy (%). Program sizes are measured
by the number of predicates in ground truth.

4. Related Work
Semantic Parsing. Nearest to our work, mapping natural
language to logic forms has been extensively studied in nat-
ural language processing research (Zettlemoyer & Collins,
2012; Artzi & Zettlemoyer, 2011; Berant et al., 2013; Wang
et al., 2015; Iyer et al., 2017; Iyyer et al., 2017). Dong &
Lapata (2016); Alvarez-Melis & Jaakkola (2017); Krish-
namurthy et al. (2017); Yin & Neubig (2017); Rabinovich
et al. (2017); Xu et al. (2017); Dong & Lapata (2018a) are
closely related neural semantic parsers adopting tree-based
decoding or canonical grammar decoding that also utilize
grammar production rules as decoding constraints. Our base
model foregoes the complexity of generating a full parse
tree and never produces non-terminal nodes. Instead, it re-
tains the simplicity and efficiency of a sequence decoder.
Furthermore, the use of the executable semantics of gen-
erated programs to guide repairing program compensates
the simplicity of the base model. As the repair approach
is orthogonal to base model design, it can potentially be
combined to boost the performance of other base models.

Orthogonal Approaches. Entity linking (Calixto et al., 2017;
Yih et al., 2015; Krishnamurthy et al., 2017; Yu et al., 2018)
is a technique used to link knowledge between the encod-
ing sequence and knowledge base (e.g., table, document)
orthogonal to the neural encoder decoder model. This tech-
nique can potentially be used to address our limitation in
our deterministic column annotation process.

5. Conclusion
We presented a new sequence-to-sequence based neural ar-
chitecture to translate natural language questions over tables
into executable SQL queries. Our approach uses a simple
type system to guide the decoder to either copy a token
from the input using a pointer-based copying mechanism
or generate a token from a finite vocabulary. It uses a sum-
transfer value based loss function that transforms a distri-
bution over pointer locations into a distribution over token
values in the input to efficiently train the architecture. We
propose two model-independent approaches, an ensemble
based approach and a local repair approach, with program
execution-based guidance to effectively eliminate programs
that cause faults or lead to empty results. Our evaluation on
the WikiSQL dataset shows that our model achieves close
to state-of-the-art results with lesser model complexity.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Execution-Guided Neural Program Decoding

References
Alvarez-Melis, D. and Jaakkola, T. S. Tree-structured de-

coding with doubly-recurrent neural networks. In ICLR,
2017.

Artzi, Y. and Zettlemoyer, L. Bootstrapping semantic
parsers from conversations. In Proceedings of the Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 421–432, 2011.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Berant, J., Chou, A., Frostig, R., and Liang, P. Seman-
tic parsing on Freebase from question-answer pairs. In
Empirical Methods in Natural Language Processing
(EMNLP), 2013.

Calixto, I., Liu, Q., and Campbell, N. Doubly-attentive de-
coder for multi-modal neural machine translation. arXiv
preprint arXiv:1702.01287, 2017.

Dong, L. and Lapata, M. Language to logical form with
neural attention. In ACL, 2016.

Dong, L. and Lapata, M. Coarse-to-fine decoding for neural
semantic parsing, 2018a.

Dong, L. and Lapata, M. Coarse-to-fine decoding for neu-
ral semantic parsing. arXiv preprint arXiv:1805.04793,
2018b.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Gu, J., Lu, Z., Li, H., and Li, V. O. K. Incorporating copying
mechanism in sequence-to-sequence learning. ArXiv e-
prints, March 2016.

Gulwani, S. and Marron, M. Nlyze: interactive program-
ming by natural language for spreadsheet data analysis
and manipulation. In SIGMOD, pp. 803–814, 2014.

Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. A
joint many-task model: Growing a neural network for
multiple NLP tasks. In EMNLP, pp. 446–456, 2017.

Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., and
Zettlemoyer, L. Learning a neural semantic parser from
user feedback. arXiv preprint arXiv:1704.08760, 2017.

Iyyer, M., tau Yih, W., and Chang, M.-W. Search-based neu-
ral structured learning for sequential question answering.
In Association for Computational Linguistics, 2017.

Jia, R. and Liang, P. Data recombination for neural semantic
parsing. In ACL, 2016.

Krishnamurthy, J., Dasigi, P., and Gardner, M. Neural
semantic parsing with type constraints for semi-structured
tables. In EMNLP, pp. 1517–1527, 2017.

Li, Y., Yang, H., and Jagadish, H. V. NaLIX: An interac-
tive natural language interface for querying XML. In
SIGMOD, pp. 900–902, 2005. ISBN 1-59593-060-4.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard,
S. J., and McClosky, D. The Stanford CoreNLP natural
language processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations, pp.
55–60, 2014.

Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I.,
Kaiser, L., Kurach, K., and Martens, J. Adding gradient
noise improves learning for very deep networks. CoRR,
abs/1511.06807, 2015.

Neelakantan, A., Le, Q. V., Abadi, M., McCallum, A., and
Amodei, D. Learning a natural language interface with
neural programmer. arXiv preprint arXiv:1611.08945,
2016.

Parisotto, E., Mohamed, A., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. CoRR,
abs/1611.01855, 2016.

Pasupat, P. and Liang, P. Compositional semantic parsing
on semi-structured tables. In ACL, pp. 1470–1480, 2015.

Pennington, J., Socher, R., and Manning, C. Glove: Global
vectors for word representation. In EMNLP, pp. 1532–
1543, 2014.

Poon, H. Grounded unsupervised semantic parsing. In ACL,
pp. 933–943, 2013.

Rabinovich, M., Stern, M., and Klein, D. Abstract syn-
tax networks for code generation and semantic parsing.
CoRR, abs/1704.07535, 2017.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
ArXiv e-prints, June 2015.

Wang, Y., Berant, J., and Liang, P. Building a semantic
parser overnight. In Association for Computational Lin-
guistics (ACL), 2015.

Xu, X., Liu, C., and Song, D. SQLNet: Generating struc-
tured queries from natural language without reinforce-
ment learning. CoRR, abs/1711.04436, 2017.

Yih, S. W.-t., Chang, M.-W., He, X., and Gao, J. Seman-
tic parsing via staged query graph generation: Question
answering with knowledge base. 2015.

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Execution-Guided Neural Program Decoding

Yin, P. and Neubig, G. A syntactic neural model for general-
purpose code generation. CoRR, abs/1704.01696, 2017.

Yu, T., Li, Z., Zhang, Z., Zhang, R., and Radev, D. R.
TypeSQL: Knowledge-based type-aware neural text-to-
SQL generation. In NAACL-HLT, pp. 588–594, 2018.

Zettlemoyer, L. S. and Collins, M. Learning to map sen-
tences to logical form: Structured classification with prob-
abilistic categorial grammars. In UAI, pp. 658–666, 2005.

Zettlemoyer, L. S. and Collins, M. Learning to map
sentences to logical form: Structured classification
with probabilistic categorial grammars. arXiv preprint
arXiv:1207.1420, 2012.

Zhong, V., Xiong, C., and Socher, R. Seq2SQL: Generating
structured queries from natural language using reinforce-
ment learning. ArXiv e-prints, August 2017.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Execution-Guided Neural Program Decoding

A. Appendix
A.1. Experiment Detail

Data preprocessing We first preprocess the WikiSQL
dataset by running both tables and question-query pairs
through Stanford Stanza (Manning et al., 2014) using the
script included with the WikiSQL dataset, which normalizes
punctuation and cases of the dataset. We further normalize
each question based on its corresponding table: for table
entries and columns occurring in questions or queries, we
normalize their format to be consistent with the table. This
process aims to eliminate inconsistencies caused by different
whitespace, e.g. for a column named “country (endonym)”
in the table, we normalize its occurrences as “country (en-
donym)” in the question to “country (endonym)” so that
they are consistent with the entity in table. Note that we
restrict our normalization to only whitespace, comma (‘,’),
period (‘.’) and word permutations to avoid over-processing.
We do not edit tokens: e.g., a phrase “office depot” occur-
ring in a question or a query will not be normalized into
“the office depot” even if the latter occurs as a table entry.
Similarly, “california district 10th” won’t be normalized to
“california 10th”, and “citv” won’t be normalized to “city”.
We also treat each occurrence of a column name or a ta-
ble entry in questions as a single word for embedding and
copying (instead of copying multiple times for multi-word
names/constants).

Column Annotation We annotate table entry mentions in
the question with their corresponding column name if the
table entry mentioned uniquely belongs to one column of
the table. The purpose of this annotation is to bridge special
column entries and their column information that cannot
be learned elsewhere. For example, if an entity “rocco
mediate” in the question only appears in the “player” column
in the table, we annotate the question by concatenating the
column name in front of the entity (resulting in “player
rocco mediate”). This process resembles the entity linking
technique used by Krishnamurthy et al. (2017); Yu et al.
(2018), but in a conservative and deterministic way.

Model Setup In our base model, we use the pre-trained
n-gram embedding by Hashimoto et al. (2017) (100 dimen-
sions) and the GloVe word embedding (100 dimension)
by Pennington et al. (2014); each token is embedded into
a 200 dimensional vector. Both the encoder and decoder
are 3-layer bidirectional LSTM RNNs with hidden states
sized 100. The model is trained with question-query pairs
with a batch size of 500 for 100 epochs. During train-
ing, we clip gradients at 10 and add gradient noise with
η = 0.3, γ = 0.55 to stabilize training (Neelakantan et al.,
2015). The model is implemented in Tensorflow and trained
using the Adagrad optimizer (Duchi et al., 2011).

A.2. Repair Model Statistics

Table 4 shows how repair models repair different parts of
generated programs. We notice that the key improvement
comes from repairing of the predicates.

Model Accagg Accsel Acccond

Base Model 88.8 85.6 78.5
Base + EG Ensemble (6) 88.9 85.7 86.2
Base + EG Local Repair (5) 88.9 85.5 84.8

Table 4: Breakdown results on WikiSQL. Accagg, Accsel,
and Acccond are the accuracies (%) of syntactical matches
on aggregation function, select column, and condition pred-
icates between the synthesized SQL and the ground truth
respectively over the dev set.

A.3. Examples of generated queries

We show a few examples wrongly generated by our base
model that are subsequently repaired.

Example 1

• Table: 2-16668557-1 [poll source, sample size, margin
of error, date, democrat, republican]

• Question: What was the date of the poll with a sample
size of 496 where republican mike huckabee was chosen?

• Solution: Select date From 2-16668557-1 Where re-
publican = mike huckabee And sample size = 496

• Prediction: Select date From 2-16668557-1 Where
sample size = 496 And republican = 496

• Ensemble Repair: Select date From 2-16668557-1
Where sample size = 496 And republican = mike huck-
abee

• Local Repair: Select date From 2-16668557-1
Where sample size = 496 And republican = mike huck-
abee

(Remarks: Both repair approaches locate and repairs the
wrong predicate republican = 496 in the initial prediction.)

Example 2

• Table:1-11336756-6 [route name, direction, termini, junc-
tions, length, population area, remarks]

• Question: Which population areas have “replaced by us
83” listed in their remarks section ?

• Solution: Select population area From 1-11336756-6
Where remarks = replaced by us 83

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Execution-Guided Neural Program Decoding

• Prediction: Select population area From 1-11336756-
6 Where remarks = remarks

• Ensemble Repair: Select route name From 1-
11336756-6 Where remarks = replaced by us 83 And
remarks = replaced by us 83

• Local Repair: Select population area From 1-
11336756-6 Where remarks = replaced by us 83

(Remarks: The ensemble approach make the output program
executable but chooses the wrong select column, which still
leads to a wrong solution.)

Example 3

• Table: 2-17287870-1 [name, built, listed, location,
county]

• Question: What bridge in sheridan county was built in
1915 ?

• Solution: Select name From 2-17287870-1 Where
county = sheridan And built = 1915

• Prediction: Select county From 2-17287870-1
Where county = 1915 And county = 1915

• Ensemble Repair: Select county From 2-17287870-1
Where built = 1915 And county = sheridan

• Local Repair: Select county From 2-17287870-1
Where county = sheridan And county = sheridan

(Remarks: In this example, while both of the repair fail
to repair the column name in the select clause, the ensem-
ble model successfully repaired the predicate. The local
repair approach’s repair result is an executable yet incorrect
program, as it ignores the second predicate.)

