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Abstract

Uncertainty quantification for Large Language Models (LLMs) encompasses a
diverse range of approaches, with two major families being particularly prominent:
(1) information-based, which estimate model confidence from token-level proba-
bilities, and (ii) consistency-based, which assess the semantic agreement among
multiple outputs generated using repeated sampling. While several recent methods
have sought to combine these two paradigms to improve uncertainty quantification
performance, they often fail to consistently outperform simpler baselines. In this
work, we revisit the foundations of uncertainty estimation through the lens of
Minimum Bayes Risk decoding, establishing a direct link between uncertainty and
the optimal decision-making process of LLMs. Building on these findings, we
propose CoCoA, a unified framework that integrates model confidence with output
consistency, yielding a family of efficient and robust uncertainty quantification
methods. We evaluate CoCoA across diverse tasks, including question answering,
abstractive text summarization, and machine translation, and demonstrate sizable
improvements over state-of-the-art uncertainty quantification approaches.

1 Introduction

Large Language Models (LLMs) have rev-
olutionized natural language processing

(NLP)’ enabling advances in information Tybalt is a character in which of Shakespeare's plays?
retrieval [Zhu et al. [2025]], question an-

swering [Kwiatkowski et al., 2019]], ma- Sampled answers Probability

chine translation [[Kocmi and Federmann, romeo and juliet 0.687
2023|], and a broad range of other NLP ap-

plications. As these models become an inte- & romeo & juliet 0.045

gral part of our everyday life, ensuring the
reliability of their outputs is crucial, espe-
cially in high-stakes scenarios where errors

can have serious consequences. One way Figure 1: Example of inconsistent probabilities assigned
to address this challenge is through uncer- o semantically identical answers by an LLM, demon-

tainty‘quar.ltiﬁcation (UQ), which focuses  gtrating the limitation of relying solely on sequence-
on estimating the confidence of model pre- |evel information.

dictions.

romeo and juliet, 0.030
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Figure 2: Illustration of our method: the LLM generates a response, evaluates the similarity to
alternatives, computes the confidence, and finally combines the confidence with the similarity
measure. High similarity to alternatives reduces the uncertainty, while low similarity keeps it high.

UQ for LLMs is a rapidly advancing research area, with new UQ methods emerging each year. Most
novel techniques are based on two fundamental approaches: (a) information-theoretic analysis or
(b) assessment of output consistency.

Information-theoretic methods quantify the confidence of a model by analyzing the probability
distributions it induces for predictions [Malinin and Gales} 2021} [Fomicheva et al., [2020]]. A key
limitation of these methods is that they cannot account for semantic variability across multiple
possible responses for the same input. Specifically, the model may generate answers with the same
meaning but with very different assigned probabilities; see Figure|l| LLMs are trained to predict the
next token in a sequence based on patterns observed in vast amounts of data, resulting in varying
probabilities for semantically equivalent output sequences.

In contrast, consistency-based methods directly analyze the semantic relationship between the sampled
outputs [Fomicheva et al.,[2020, [Lin et al., |2024]], capturing uncertainty as objective variability of
meaning among the sampled outputs.

Information-theoretic and consistency-based methods have complementary strengths. For this reason,
recent state-of-the-art methods aimed to unify these approaches [Kuhn et al., |2023| |Duan et al.,
2024]). We follow this direction and propose a way of quantifying risk as a combination of these basic
measures. This results in a family of efficient and robust UQ techniques. Our approach, illustrated in
Figure[2] combines the strengths of both information-based and consistency-based methods, providing
a more comprehensive and accurate assessment of uncertainty.

Recently, it has been argued [Wang and Holmes| 2025, |Daheim et al.| 2025] that UQ in NLP tasks
can be viewed through the lens of the Minimum Bayes Risk (MBR) framework. Following this, we
formulate our methods as particular forms of risk functions under the MBR approach.

Our main contributions can be summarized as follows:

* We propose a new way of quantifying risk that combines information-theoretic and
consistency-based measures, and derive a family of Confidence and Consistency-based
Approaches (CoCoA) to uncertainty quantification in LLM

* We show that the consistency component can be approximated by a learned function trained
on unlabeled held-out set with a negligible loss of performance, eliminating the need for
costly repeated sampling from the LLM. We call this variation of our method CoCoA Light.

* We evaluate our approaches across a variety of NLP tasks, including question answering,
summarization, and machine translation. Our experiments demonstrate sizable improve-
ments in the reliability and the robustness of UQ compared to state-of-the-art methods.

20ur code is available publicly at https:/github.com/stat-ml/llm_uncertainty_cocoa


https://github.com/stat-ml/llm_uncertainty_cocoa

2 Background

2.1 Language Model Decoding

LLM:s define a probabilistic output distribution p(y | x) for a given input sequence x. The standard
ways to obtain a particular output y, given p(y | x) include various variants of sampling y. ~ p(y |
x) and greedy decoding, where

Vi = argm;txp(y | ). (1)

An alternative approach is to use Minimum Bayes Risk (MBR) decoding [Kumar and Byrnel 2004a]:
» =argmin R x), 2
y gmin R(y | x) )
where ) is the set of candidate sequences and R(y | x) is a risk function:
R(y | x) = Ey/piyix) r(y,y') 3
with r(y, y’) being a pairwise loss function.

The standard choice in the MBR literature is to take r(y,y’) o< —s(y,y’), where the so-called urility
Sunction s(y,y’) represents some notion of similarity between generated sequences y and y’. Below
we discuss how various decoding strategies and corresponding risk functions lead to well-grounded
definitions of uncertainty.

2.2 From Risk to Uncertainty

Generally, an uncertainty function U is a mapping that quantifies the level of uncertainty associated
with the output of a model y, conditioned on the input sequence x, which we denote as U(y | x).

Bayesian uncertainty measures are well known to be strongly connected with minimum risks of
various kinds [Xu and Raginskyl, 2022| [Kotelevskii et al., 2025]]. Recently, this connection was
revisited in the context of natural language generation [Wang and Holmes}, 2025, Daheim et al., 2025]],
leading to the development of new MBR-based UQ methods. More precisely, one can consider the
smallest achievable risk within ) or, equivalently, to maximum expected utility:

Umer(¥+ | X) = min R(y | x) = R(y« | x), )
yey

where y .. is given by (). Interestingly, MBR-based uncertainty (@) is applicable even to ) consisting
of a single sequence y..

Below, we discuss how various existing uncertainty measures can be seen as particular approximations
of minimum Bayes risks for various choices of utility functions. We also derive new uncertainty
measures based on the MBR framework.

Single Sequence Information-Based Methods. Information-based methods estimate the uncertainty
of the generated sequence by aggregating the uncertainty scores of individual tokens. Within
the framework of MBR decoding, consider r(y,y’) = 1{y’ # y}. In this case, the Bayes risk
corresponds to the expected zero-one loss of decoding:

Roj1(y | x) =By py My #y} =1-p(y | x). (5)
This leads to one of the simplest information-based uncertainty measures, Sequence Probability (SP):
Use(y« | x) =1—p(y. | x). (6)

Although widely used as an uncertainty measure across various applications, including natural
language generation, its connection to statistical risk has only recently been explored in the UQ
literature [Kotelevskii et al., 2022, 2025, |Aichberger et al., 2024].

Several other measures fall into this category, including Perplexity and Mean Token En-
tropy [Fomicheva et all 2020]; see Appendix D.1]for details. While using only a single sample makes
them computationally efficient, these techniques face three major challenges:

1. LLMs only give the probability of a specific answer, even though the same meaning can
often be conveyed in multiple ways. To obtain a proper probability for the meaning of an
answer, we need to marginalize over its various possible rephrasings. However, this is not
feasible if we generate only a single sample.



2. The reliability of such methods depends heavily on the underlying LLM being well-
calibrated, which is a quality that is hard to define and harder to ensure.

3. These methods are point estimates that do not provide information about the shape of the
output distribution.

Semantic Consistency-Based Methods. The aforementioned issues lead to the development of
consistency-based methods based on repetitive sampling from the LLM. Consider that we have

sampled a set of outputs {y(i) }?il where y(*) ~ p(y | x). Consistency-based UQ methods rely on

the diversity of the answers y(*) sampled from the LLM. The idea is that if the model outputs similar
answers for the same prompt over and over again, it is confident in its predictions; otherwise, it is
uncertain. These techniques do not require a probability distribution estimated by an LLM and can
be applied in a black-box setting, where only the generated tokens are available. This case is quite
common when LLMs are deployed as a service and are accessible through a limited API.

Formally, consistency-based methods start from defining some similarity function s (y, y ) € [0,1]
between arbitrary LLM generations y and y’. The value s(y7 y ) = 1 indicates the complete
equivalence between y and y’, and s(y, y' ) = 0 indicates that there is no similarity. The similarity
could be computed in various ways. For instance, the Lexical Similarity method [Fomicheva et al.,
2020] relies on surface-form similarity, measuring the degree of word-level or phrase-level overlap
between the generated texts. More advanced techniques propose various methods for taking into
account the semantic similarity between the generated answers by means of hard or soft clustering [Lin
et al.| 2024].

Finally, given M samples from the model, standard consistency-based methods compute a similarity
matrix S, where s;; = s(y(i), yU )). Then, various statistics of S are computed in order to estimate
the uncertainty [Lin et al.| 2024]; see Appendix [D.2]for more detail. Alternatively, one can focus on a
particular output y, and compute uncertainty measures based on its similarity s,; = s(y*7 y(i)) with

other samples y(i); see [Lin et al., {2024 for more detail.

Interestingly, it was recently shown [Wang and Holmes)} [2025 |[Daheim et al., |2025] that the latter
approach has direct relation to MBR decoding. Building on the MBR framework, one can define the
utility function as r(y,y’) = 1 — s(y,y’) and derive the following consistency-based uncertainty
score:

Uns(y+ | %) = Eyropiypo [1 = 5(yery")]- ™

Then the Monte Carlo approximation of the minimum Bayes risk is given by

~ 1 M
Ucons(Y* | X) = M Zi:l(l - S*i)a (8)

where s,; = s(y.,y®).

In our ablation study below, we show that such an uncertainty measure reliably outperforms
consistency-based measures that aggregate the pairwise similarities of all samples (see Appendix|[C.2).

A key strength of consistency-based techniques is that, by generating multiple samples and analyzing
their semantic similarity, they can estimate empirical probabilities over meanings rather than over
individual answers. Their main drawback is that they discard the useful information that comes from
the probability distribution represented by the LLM, including estimates of the probabilities of the
specific answers.

3 CoCoA: Bridging Confidence and Consistency for Better Uncertainty
Quantification

Both information-based and (semantic) consistency-based methods provide grounded and useful
uncertainty quantification measures. There exist approaches that bridge the gap between information-
based and consistency-based methods that show great promise but lack the fundamental base; see
discussion in Section[d} In what follows, we present a family of Confidence and Consistency-based
Approaches (CoCoA) for UQ, offering a new way to merge information- and consistency-based
measures for uncertainty quantification in LLMs via the unifying MBR-based framework.



If we only consider the consistency measure, e.g., as given in (8), we miss the information that is
contained in the model confidence. Thus, we want the resulting uncertainty measure to explicitly
consider both the semantic consistency and the model-based uncertainty. Let us consider a risk of the
following form:

r(y,y' [ x) =uly [x) (1-s(y,5)), ©)

where

* s(y,y’) € [0,1] is any utility function used in the standard MBR decoding (usually repre-
senting semantic similarity);

* u(y | x) > 0is the model-based uncertainty measure for the output sequence y. For
example, we can use u(y | x) = 1—p(y | x) (similarly to (6)) or u(y | x) = —log p(y | x).

Then, the corresponding Bayes risk is Rcocoa (¥ | X) = u(y | X) - Ey/ op(yix) (1 — s(y,y’)) and for
an output sequence y., the resulting uncertainty measure becomes

UCOCOA(y* | X) = U(y* | X) : IE'y’wp(y|x) (1 - S(y*ay/)) (10)

Finally, given a set of samples {y(’) }1:1 we obtain an empirical uncertainty estimate:

~

_ 1 =M
Ucocoa (¥« | x) = ulys | x) - o7 Yo (= sa) = ulys [ %) Uoons(ys [ %), (11)

where s,; = s(y.,y?).

The resulting uncertainty measure integrates both global (semantic) and local (model-specific)
uncertainty signals. It ensures that uncertainty is amplified for sequences y, that are both intrinsically
uncertain (high u(y. | x)) and semantically inconsistent with respect to the other samples (high

ﬁ Zf\il (1 — s4;)), while keeping it low for the opposite scenario; see Figure [2[for an example.

CoCoA Light. Computing the consistency-based uncertainty measure ﬁcons(y* | x) within
Ucocoa (¥« | x) requires multiple samples, whoch poses significant computational overhead. To

address this, we propose to approximate the behavior of Ucons(x) with a learned function. Our
method closely matches the original sampling-based measure in quality while requiring only greedy
output generation during inference, eliminating the need for additional sampling. Notably, this
approximation can be learned without access to ground-truth labels, relying solely on the input data
and the associated uncertainty values.

Thus, the CoCoA uncertainty measure that incorporates an approximation of the consistency uncer-

tainty UL (v, | X) ~ Usons(y+ | X) can be defined as follows:

Ulacon ¥+ | %) = u(y. | %) - Ul (v+ | %), (12)
We name this approach CoCoA Light. Below, we describe how this approximation can be obtained.

Assume access to a held-out set of input sequences x;, 7 = 1,...,n. We emphasize that this held-out
setis not labeled. For each sequence, we extract the embeddings {e(y; | x;)}}_; of the corresponding
greedy model generations y;. The corresponding targets are the consistency uncertainty scores

-~

Ucons(¥; | %5),5 =1,...,n, computed via Monte Carlo estimation of the minimum Bayes risk; see
equation (g).

A lightweight auxiliary model, g(e(y. | x)), is trained in a supervised fashion to map model
embeddings to uncertainty scores. During inference, the model generates a greedy output ys for a
test input Xees, from which the embeddings e(yiest | Xeest) are obtained and passed to the auxiliary
model to predict the uncertainty score:

Uc%ns(ytest | Xtest) = g(e(ytest | Xtesl)>~ (13)

We note that a similar approach [Kossen et al., 2024]] has been previously proposed to approximate
semantic entropy using the hidden states from the model.



4 Related Work

In this section, we review existing approaches to uncertainty quantification, as well as prior work on
Minimum Bayes Risk in application to natural language generation.

Information-based methods. These methods are one of the most commonly used. They quantify
uncertainty by analyzing the probability distributions of the tokens within a given output. The
simplest of these methods, Sequence Probability (SP), measures the probability of the sequence given
a specific input. Perplexity is another common uncertainty measure: it gauges how well the model
predicts each token in a sequence and is formally defined as the exponential of the mean negative
log-likelihood of those tokens [[Fomicheva et al.,|2020]. The Mean Token Entropy method evaluates
the token-level predictions across the entire sequence by computing the average entropy of the token
probability distributions at each position [Fomicheva et al.,|2020]. While these methods provide
useful uncertainty estimates, they do not address the broader uncertainty inherent in the generative
tasks, as they rely on a single sequence and fail to capture the diversity of the possible outputs that
the model could generate for the same input.

Consistency-Based Methods. These methods estimate uncertainty by generating multiple se-
quences from the model’s output distribution and analyzing the variability among the sampled outputs.
These methods are particularly relevant to NLP tasks, as they account for scenarios in which multiple
plausible outputs may exist for a given input. Among the simplest consistency-based methods are
the Number of Semantic Sets and the Sum of Eigenvalues of the Graph Laplacian [[Lin et al.| 2024]],
which quantify uncertainty by how many distinct “meanings” the model produces. While effective at
capturing global variation, they do not yield uncertainty scores for individual responses. To overcome
this, the diagonal of the Degree Matrix was proposed to assess how similar each output is to the
rest, enabling per-response uncertainty quantification [Lin et al.| [2024]]. A related approach, Lexical
Similarity, operates by calculating the average similarity of words or phrases across every pair of
responses in the sample [[Fomicheva et al., 2020].

Information-Based Methods with Repeated Sampling. More recent methods attempt to reconcile
output consistency with information-based signals—i.e., they not only look at how varied outputs are,
but also how probable each output is under the model’s own generation process. For instance, Semantic
Entropy [Kuhn et al.l 2023]] groups outputs into semantically homogeneous clusters—capturing
distinct “meanings” that might just differ in phrasing—and calculates entropy across these clusters.
SentenceSAR refines this idea by defining “relevance” as the sum of pairwise similarities between a
given sentence and others weighted by each sentence’s model-assigned generation probability [Duan
et al.,|2024]]. SAR combines the sentence-level relevance of SentenceSAR with token-level probability
adjustments, attempting a more fine-grained balance of semantic and token-level uncertainty [Duan
et al.,2024]. Semantic Density [|Qiu and Miikkulainen) 2024 evaluates uncertainty by evaluating how
densely a model’s generated response is situated within the semantic space of all possible outputs,
with lower density indicating higher uncertainty. One limitation of sampling-based approaches is
their computational cost: generating multiple outputs from the model can be expensive. Recent work
has sought to address this by learning to predict semantic uncertainty directly from hidden states,
allowing for the approximation of semantic entropy without repeated sampling [Kossen et al.| [2024].
Finally, BSDetector [Chen and Mueller, [2024]] proposes an additive composition of self-reported
confidence with observed consistency, however, it relies on ability of the model to assess its own
confidence in text form. Another limitation is that it requires selection of a trade-off coefficient
between confidence and consistency parts.

While these probability-weighted measures can provide deeper insights, they also sometimes under-
perform in practice [[Vashurin et al., [2025]], especially when the model’s probability estimates are
unreliable, or when important nuances of semantic diversity are lost in the weighting process. Proper
balancing raw output consistency with generation likelihood remains an open problem.

Minimum Bayes Risk for LLMs. Minimum Bayes Risk (MBR) decoding, originally used in
machine translation [Kumar and Byrne, [2004b]], has recently been applied to LLMs by incorporating
a posterior over model parameters to enable uncertainty-aware generation [Daheim et al., |2025].
Complementing this, a Bayesian framework for subjective uncertainty quantification was developed
yielding improved calibration in generation tasks [Wang and Holmes|, 2025]].



5 Experiments

In this section, we present the experimental setup, the results, and the ablations.

5.1 Experimental Setup

To evaluate the effectiveness of our proposed framework, we extended the LM-Polygraph li-
brary [Vashurin et al., | 2025] |[Fadeeva et al., 2023|]. Since it already includes tools for calculating other
uncertainty scores, it provided a convenient and efficient environment for setting up and running
experiments. The primary objective of our experiments is to evaluate whether our method offers
improved performance in key tasks such as question answering (QA), text summarization (SUM),
and machine translation (MT), compared to existing baselines.

Datasets. For QA, we selected diverse datasets to capture a variety of challenges: TriviaQA [Joshi
et al.| 2017], an open-domain factual QA dataset; CoQA [Reddy et al.,2019], a conversational QA
benchmark requiring multi-turn contextual understanding; MMLU [Hendrycks et al.,[2021], a multi-
task dataset spanning 57 topics to test broad knowledge; and GSM8k [Cobbe et al.,2021]], which
focuses on grade-school math problems requiring logical reasoning. For translation, we evaluated
our method on WMT 14 French-English [Bojar et al.| 2014]] and WMT19 German-English [Barrault
et al., 2019]]. Finally, for summarization, we used XSUM [Narayan et al.,[2018]], a dataset of complex
documents paired with concise abstractive summaries. For all datasets, we follow [Vashurin et al.,
2025] in subset selection, prompt formatting, and few-shot example sourcing.

Models. We evaluated our method on the
base versions of three open-weight language
models: LLaMA 3.1 8B [Touvron et al.
2023|], Mistral 7B [Jiang et al.,|2023]], and Fal-
con 3 7B [Team) 2024]. The open-weight nature
of these models enables direct access to token
probabilities, which is crucial for implement-
ing our UQ method. All experiments were con-
ducted using the base (non—instruction-tuned)
variants. We additionally report results on the
larger Gemma 3 12B-Base model [[Team et al.}
2025]], with detailed analysis provided in Ap-

pendix I}
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Figure 3: Prediction-Rejection Ratio (PRR) Curve
illustrating the quality of the non-rejected predic-
tions as a function of the rejection rate. Oracle
represents the optimal rejection strategy, Random
is a random rejection, and UQ is rejection based on
the evaluated uncertainty quantification method.

Similarity Function. To measure the simi-
larity between two generations, we use the
RoBERTa-large cross-encoder model, fine-
tuned on the Semantic Textual Similarity bench-
mark dataset [Liu et al., 2019, [Reimers and
Gurevych, 2019, [Cer et al., 2017]. This model
is widely regarded as one of the most reliable
and commonly used approaches for evaluating sentence similarity. The cross-encoder processes two
sequences jointly and directly outputs a similarity score ranging from 0O to 1, providing a nuanced
measure. Appendix [C.I|contains comparative experiments with cross-encoder and other choices of
the similarity function, substantiating this choice.

Baselines. We compare the performance of the proposed method against a diverse set of baselines
and state-of-the-art UQ scores, including confidence-based, consistency-based, and hybrid approaches.
For information-based approaches, we evaluate Sequence Probability (SP), Perplexity (PPL), Mean
Token Entropy (MTE), Monte Carlo Sequence Entropy (MCSE), and Monte Carlo Normalized
Sequence Entropy (MCNSE). In the consistency-based category, we consider the Degree Matrix
(DegMat) and the Sum of Eigenvalues of the Graph Laplacian (EigValLaplacian). Finally, we
include hybrid methods Semantic Entropy and SAR, as well as verbalized confidence method
P(true) [[Kadavath et al., 2022]. All formulations for these baselines can be found in Appendix

Finally, we evaluate the performance of ﬁcons (Consistency) and ﬁcﬁns (Consistency Light) as an
uncertainty measure.



Evaluation Measure. As our evaluation measure, we chose the Prediction Rejection Ratio (PRR),
which measures the effectiveness of the uncertainty scores for identifying high-quality predic-
tions [Malinin and Gales|,[2021]]. PRR operates by progressively rejecting predictions with uncertainty
scores above a threshold a and observing how the average quality of the remaining predictions
changes (see Figure[3). It is calculated as the ratio of two areas: the area between the Prediction
Rejection (PR) curves for the evaluated uncertainty score and a random baseline, and the area be-
tween the oracle (the ideal uncertainty score that perfectly ranks instances by quality) and the random
baseline. Formally, PRR is defined as follows:

AUCunc - AUCrnd
PRR = . (14)
AUCoracle - AUCmd

Higher PRR values indicate better alignment of uncertainty scores with prediction quality, approaching
the performance of an oracle. To ensure practical applicability, we compute PRR only up to a rejection
threshold of 50%, preventing cases where excessive rejection artificially inflates the quality measures.

For the QA datasets, we further report AUROC (see Appendix [G).

Quality Measures. PRR requires an appropriate quality measure for each specific task to effectively
evaluate the model output. For question—answering tasks, we use Accuracy to directly evaluate
whether the generated answers match the ground truth in short-form QA tasks (e.g., MMLU), and we
use the AlignScore between the correct answer and generated sequence for assessing the performance
for long-form QA tasks [Zha et al.,2023|. For summarization tasks, we use AlignScore to measure
the alignment between the output summary and the input document. It serves as a quality indicator
by evaluating the relevance and the overlap between the generated content and the source text. For
translation tasks, we use COMET, as it captures both semantic adequacy and fluency, ensuring that
translations are accurate and linguistically appropriate [Rei et al., 2020].

To further improve the comprehensiveness of the reported results, we considered alternative choices
of quality measures, and report the corresponding PRR scores in Appendix [F}

Generation Setup. We discuss the generation parameters, the decoding strategy, and the sample
selection procedure in depth in Appendix [A] In short, we report the evaluation results in two distinct
setups: greedy decoding and stochastic sampling with focus on the most probable sequence among
the generated outputs (best-sample). These two setups offer the highest-quality outputs and are the
most reasonable generation approaches in practice.

CoCoA Light Details. We use a multilayer perceptron network as an auxiliary model. The features
used are embeddings from the middle layers of the base LLM, which are the most informative
according to recent work [Chen et al.,[2024]. In particular, for Llama 3.1 8B and Mistral 7B models,
we take embeddings from the 16th layer, and for Falcon 3 7B from the 14th layer. More details on
the training are available in Appendix[l]

5.2 Results

Table[T|shows the PRR scores under the greedy generation setup (See Appendix [B]for Best Sample
and MBR Sample). We report aggregated PRR for each type of task — question answering, neural
machine translation (NMT), and summarization (SUM) — by averaging the results across all relevant
datasets (e.g., TriviaQA, MMLU, CoQA, GSMS8k for QA). This aggregated score provides a concise
measure of the performance for each model for each task. Detailed results for each dataset separately
can be found in Appendix

We can see that our CoCoA methods are the best across all tasks and models. They outperform
existing consistency-based and hybrid state-of-the-art approaches, like Semantic Entropy and SAR.
In addition, the proposed CoCoA approach consistently surpasses the baseline UQ measures: for
example, CoCoAppy, outperforms standard Perplexity, illustrating the advantage of combining token-
level confidence with semantic consistency. This pattern holds for other information-based metrics as
well, demonstrating that using the consistency between multiple sampled outputs reliably enhances
uncertainty quantification.



Metric Llama8b-Base Mistral7b-Base Falcon7b-Base
QA NMT SUM QA NMT SUM QA NMT SUM

MCSE 0310 0323 0033 038 0304 0007 0414 0317  0.159
MCNSE 0309 0393 0022 038 0410 0009 0405 0422  0.108
Semantic Entropy ~ 0.356 0343 0.033 0423 0327 0008 0439 0348  0.164
DegMat 0406 0302 0081 0423 0305 0137 0483 0353  0.201
EigValLaplacian 0375 0238 0079 0391 0267 0.132 0459 0312  0.201
SAR 0414 0455 0077 0462 0435 0094 0481 0458  0.144
P(True) 0.064 0042 0058 0029 0075 0.179 0118  0.155  -0.159
Consistency 0437 0421 0024 0471 0392 0051 0494 0416 0226
Consistency Light 0390 0458  -0.022 0444 0387 -0.006 0427 0476 0232
SP 0409 0399 0328 0475 0383 0287 0475 0356  0.201
CoCoAgp 04511 0519+ 03781 0.509+ 04971 0330+ 05111 0505+ 02571
CoCoAgp Light 04494 0.5021 0358+ 0.5031 04801 03091 04921 05141 02421
PPL 0381 038 0369 0424 0427 0204 0456 0450  0.155
CoCoAppr 04541 04811 03871 04941 04721 02861 0523+ 05081 02294
CoCoAppr, Light 04451 04871 03824 04791 04801 02601 05121 05281 02344
MTE 0353 0382 0357 0417 0438 0182 0456 0473  0.152
CoCoAnrE 04471 04781 03801 04921 04691 02881 0.527+ 05081 0228+

CoCoApyrp Light 04281 04941 03721 047517 04821 0.2541 05071 053317 0.2341

Table 1: Results for Evaluated Sequence — Greedy Sample: Mean PRR across datasets for each
task. The best-performing method is shown in bold, and the second-best is underscored. The arrows
indicate improvement in CoCoA over the base version.

5.3 Ablations

Similarity Function. We investigate the impact of different similarity measures (see Appendix|[C.I)).
On average, the cross-encoder provides strong performance. However, for summarization tasks,
AlignScore yields better results, while in long-form QA, similarity based on Natural Language
Inference (NLI) sometimes outperforms the cross-encoder. We hypothesize that for generation
with shorter outputs (1-2 sentences), any capable NLI or cross-encoder model is sufficient. For
longer generations, approaches that estimate similarity over chunks and then aggregate scores (e.g.,
AlignScore) may be more effective. Nevertheless, across all tasks, the cross-encoder achieves the best
overall performance and, in scenarios where tuning is not feasible, serves as a strong default choice.

Alternative Formulations. The next section of our ablation study focuses on alternative forms of

combining model confidence u(y, | x) and consistency Ueons (¥ | X); see Appendix First, we
consider an additive form of combining them:

ﬁAdditiveCoCoA(Y* ‘ X) = U(y* | X) + ﬁcons()’* | X)' (15)

The results show that this additive formulation does not perform as well as the multiplicative one.
The additive form tends to underemphasize the interaction between the two components, which is
critical for capturing the nuanced relationships between confidence and consistency.

We also consider an alternative formulation of the consistency term Ugons (¥« | X), as the average of

the full pairwise dissimilarity. In this formulation, Ugens (¥« | X) represents the average inconsistency
across all samples rather than focusing solely on the dissimilarity of the evaluated sequence with the
other samples. Our experiments demonstrate that this formulation is not very strong. By distributing
the consistency computation across all samples, it loses focus on the specific sequence being evaluated.

Lastly, in Appendix[C.2} we also consider alternative formulations of the information-based metric
that do not rely on logarithmic transformations. While we primarily use logarithms due to their
numerical stability, we explore an alternative approach by converting these values back to probabilities
and analyzing their impact on uncertainty quantification. Our findings indicate that both formulations
exhibit consistent performance and yield similar results. This suggests that while logarithmic
transformations enhance numerical stability, the choice between log-based and probability-based
formulations does not affect much the overall performance.



6 Limitations

While our proposed CoCoA approach demonstrates robust empirical performance, several important
considerations remain.

Task and Domain Dependency. CoCoA relies on an information-based confidence score and a
semantic similarity function, whose effectiveness can vary across models, tasks, and domains. In
open-ended tasks like creative generation, producing diverse outputs is expected; on the other hand,
tasks requiring precise reasoning can be sensitive to subtle errors that generic similarity metrics may
miss. Adapting these components to specific domains remains an important direction for future work.

Limited Sample Size. CoCoA estimates consistency by sampling multiple outputs. Generating many
samples is computationally expensive, and thus our experiments, e.g., most sampling-based methods,
use relatively small sets. While even a few samples can yield meaningful estimates, they may miss
the full diversity of model outputs for complex prompts.

Quality Metric. Finally, the CoCoA’s performance assessment depends on quality metrics
(e.g., COMET for machine translation, and Accuracy for QA) that may not capture every nuance
of textual outputs. Further refining or extending quality metrics to account for deeper reasoning,
factual faithfulness, and stylistic appropriateness would better align uncertainty scores with real-world
perceptions of model correctness.

7 Conclusion and Future Work

We presented CoCoA, a unified approach that integrates Confidence and Consistency for uncertainty
quantification in LLMs. By combining confidence scores with semantic similarity between multiple
sampled outputs, CoCoA offers a more holistic view of uncertainty than either approach alone. In
extensive evaluations on question answering, summarization, and translation, our approach outper-
formed existing baselines and state-of-the-art UQ methods. Moreover, CoCoA’s flexible design allows
easy adaptation to a variety of tasks and settings.

Moving forward, several directions are open for further exploration. These include incorporating more
adaptive sampling strategies that efficiently capture the model output space, refining the semantic
similarity functions for domain-specific tasks, like code generation or commonsense reasoning.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately describe the proposed family of
Confidence and Consistency-based Approaches (CoCoA) to UQ. Theoretical contributions
include new methods that merge information- and consistency-based measures for UQ in
LLMs. Experimental validation of the new approaches is done across different NLP tasks:
question answering, summarization, and translation. It aligns with the content presented in

the paper (Section 3] [5.2] Appendix B).
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section [6]discusses limitations, including relying on an information-based con-
fidence score and a semantic similarity function, having limited sample sets, and depending
on a quality metric.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper presents theoretical formulations: uncertainty measures derived
from Minimum Bayes Risk (MBR) and the definition of CoCoA and its approximated
variant CoCoA Light (Sections[2.2]and [3). However, we do not make any formal theoretical
statements in this work.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section[5.1]outlines the experimental setup, datasets and evaluation metrics.
The description of datasets used for each task includes TriviaQA, CoQA, MMLU, GSM8k
for Question Answering, WMT14 French-English, WMT19 German-English for machine
translation, and XSUM for summarization. The models used: LLaMA 3.1 8B, Mistral 7B
and Falcon 3 7B. The similarity function is specified as ROBERTa-large fine-tuned on the
Semantic Textual Similarity benchmark. The evaluation metric, Prediction Rejection Ratio
(PRR), is clearly defined, and task-specific quality measures such as Accuracy, AlignScore,
and COMET are used. Furthermore, the training setup for the CoCoA Light method,
including the use of multilayer perceptron and middle layer embeddings of the base LLM, is
described. The appendix provides additional details on ablation studies, similarity metrics,
and decoding strategies (Appendix [C|and [E).

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code is open source and is provided as an extension to the LM-Polygraph
library (Section[5.1).

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the Neur[PS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental settings, including model architecture (base LLaMA 3.1 8B,
Mistral 7B, Falcon 3 7B), embedding layer selection for auxiliary training (16th or 14th
layer depending on model), and the auxiliary model structure (multilayer perceptron) are
described in Section[5.1]and Appendix [A]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not provide errorbars as it operates in (almost) deterministic
scenario: we operate with pre-trained models and there is no training involved whatsoever.
The only randomization involved is the one related so sampling multiple sequences for
consistency-based methods. The choice to not compute errorbars here is deliberate as our
inference involves heavy computations and it is not possible to conduct main experiments
multiple times due to that. However, we conducted experiments on 3 different LLMs and
7 datasets, which is equivalent to 21 independent run, demonstrating the robustness and
reliability of our findings. For this reason, we do not report error bars, as the results are
stable.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix [H]discusses computational resources used to produce experimental
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human subjects or ethically sensitive applications.
We believe it conforms the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section[I]discusses the importance of Uncertainty Quantification, highlighting
its positive societal impacts (helps to reduce overreliance on automated systems and en-
courages a more responsible LLM usage). We do not foresee any negative negative societal
impact of this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: N/A.
Guidelines:

* The answer NA means that the paper poses no such risks.
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14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper properly cites the original sources of models (e.g., LLaMA 3.1
8B, Mistral 7B, Falcon 3 7B), datasets (CoQA, TriviaQA, MMLU, GSMS8k, XSUM,

WMT14FrEn, WMT19DeEn), and tools (e.g., RoOBERTa, LM-Polygraph). However, it
does not explicitly mention the specific licences and terms of use for these assets.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: The paper introduces a new family of uncertainty quantification methods called
CoCoA (Confidence and Consistency-based Approaches) and an approximated variant,
CoCoA Light. However, it does not release any new dataset, model, or a software tool
alongside the paper, and does not provide accompanying documentation or artifacts.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve crowdsourcing experiments or research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper centers its contributions on the use of Large Language Models
(LLMs) as the core subject of study. It introduces new methods for uncertainty quantification
in LLMs, specifically evaluating base models such as LLaMA 3.1 8B, Mistral 7B, and Falcon
3 7B. Apart from that LLMs were used solely to aid in editing the final manuscript and
writing some of the visualization code.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Decoding Strategy and Sample Selection

Modern LLMs are capable of producing output using a wide range of decoding strategies, and it is
not readily apparent which one to use as a foundation for UQ experiments. On top of that, when
sampling multiple outputs stochastically, one has to decide which sample to select for comparison
with the target sequence and UQ purposes.

To facilitate the choice of decoding and sample selection strategies for our experiments, we conducted
an evaluation of model performance with different approaches to both. Table 2] shows average values
of corresponding quality metrics for all combinations of models and datasets. We considered 4
approaches for the selection of output that subsequently is used to calculate the quality of generation:

* Greedy decoding produces single output by selecting top-1 candidate token at each genera-
tion step, thus no further selection of sample is needed.

* Random sample corresponds to the case where random output is selected among the number
of samples produced by repeatedly prompting the model with the same question. In practice
we use first generated sample, highlighting model performance when stochastic decoding is
done only once.

* Most Probable sample selects the output with highest model-assigned probability among
several sampled outputs.

* MBR sample selects the output with highest average consistency with respect to other
sampled outputs.

We note that selecting a random sample from the model outputs incurs a significant drop in the quality
of results on several datasets, most prominently on GSM8k. Based on these observations, we evaluate
the efficacy of UQ in three setups: greedy decoding, stochastic sampling with a focus on the most
probable sample and MBR decoding.

Regardless of the way the main model response was obtained, responses that were used to quantify
consistency in (§) were generated via repeated stochastic sampling. In all the experiments, where
stochastic sampling is involved, it was performed with temperature 7" = 1.0, top-k equal to 50, and
top-p equal to 1.0.

Sample Metric Greedy Random Sample Most Probable Sample =~ MBR Sample
Falcon7b-Base
CoQA Align Score  0.793 0.706 0.783 0.793
GSM8k Accuracy 0.776 0.313 0.205 0.419
MMLU Accuracy 0.715 0.638 0.715 0.699
TriviaQA Align Score  0.557 0.473 0.568 0.559
WMTI4FtEn  Comet 0.867 0.833 0.857 0.855
WMTI19DeEn  Comet 0.846 0.807 0.826 0.828
XSUM Align Score  0.842 0.734 0.782 0.801
Llama8b-Base
CoQA Align Score  0.756 0.671 0.743 0.766
GSMS8k Accuracy 0.548 0.234 0.261 0.346
MMLU Accuracy 0.570 0.368 0.577 0.469
TriviaQA Align Score  0.686 0.625 0.687 0.699
WMTI4FtEn  Comet 0.863 0.819 0.852 0.844
WMT19DeEn  Comet 0.870 0.816 0.854 0.845
XSUM Align Score  0.848 0.608 0.825 0.703
Mistral7b-Base
CoQA Align Score  0.793 0.695 0.777 0.790
GSMS8k Accuracy 0.382 0.169 0.190 0.259
MMLU Accuracy 0.632 0.552 0.632 0.612
TriviaQA Align Score  0.743 0.655 0.750 0.739
WMTI4FtEn  Comet 0.863 0.812 0.830 0.841
WMTI9DeEn Comet 0.864 0.805 0.836 0.837
XSUM Align Score  0.803 0.578 0.775 0.665

Table 2: Base quality metrics for models for different evaluated sequence choice.
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B Results Summary for Most Probable Sample and MBR Sample strategies

Tables [3|and [ report the PRR scores under the Most Probable Sample and MBR Sample generation
setups, as discussed in Section [5.2] We observe that CoCoA-family methods, and their Supervised
versions, consistently improve base uncertainty estimators.

Metric Llama8b-Base Mistral7b-Base Falcon7b-Base

QA NMT SUM QA NMT SUM QA NMT SUM
MCSE 0.356 0.380 0.192 0.453 0.406 0.162 0.460 0.409 0.128
MCNSE 0.380 0.429 0.186 0.466 0.489 0.196 0.530 0.424 0.153
Semantic Entropy ~ 0.396 0.411 0.194 0.482 0.438 0.164 0.479 0.440 0.134
DegMat 0.422 0.342 0.191 0.465 0.425 0.205 0.543 0.386 0.177
EigValLaplacian 0.388 0.274 0.190 0.426 0.366 0.197 0.498 0.336 0.174
SAR 0.478 0.506 0.159 0.542 0.576 0.175 0.590 0.488 0.193
P(True) -0.071 0.066 0.058 0.051 0.371 0.207 0.281 0.245 0.022
Consistency 0.535 0.536 0.030 0.572 0.689 0.071 0.626 0.571 0.282
SP 0.395 0.376 0.464 0.444 0.252 0.330 0.343 0.381 0.099
CoCoAgsp 04841 0.6071 04841 05261 0.7211 036617 05291 0.6311 02107
PPL 0.532 0.563 0.458 0.587 0.686 0.365 0.627 0.589 0.275
CoCoAppr, 05711 0.6171 0450 0.6131 0.7451 037217 0.6477 0.6487T 0.310
MTE 0.476 0.469 0.449 0.559 0.637 0.350 0.602 0.492 0.186
CoCoAnTE 0.5471 0.5791 04511 0.6001 0.72017 03731 0.64117 0.6147 028971

Table 3: Results for Evaluated Sequence — Most Probable Sample: Mean PRR across datasets for
each task. The best performing method is in bold, and the second-best is underscored. Arrows
indicate improvement in CoCoA over the base version.

Metric Llama8b-Base Mistral7b-Base Falcon7b-Base

QA NMT SUM QA NMT SUM QA NMT SUM
MCSE 0.402 0.297 0.158 0.474 0.330 0.237 0.437 0.346 0.076
MCNSE 0.392 0.389 0.124 0.441 0.435 0.192 0.446 0.440 0.078
Semantic Entropy  0.443 0.316 0.159 0.507 0.352 0.236 0.458 0.373 0.077
DegMat 0.478 0.290 0.047 0.471 0.322 0.124 0.499 0.371 -0.018
EigValLaplacian 0.434 0.224 0.037 0.437 0.279 0.115 0.460 0.326 -0.022
SAR 0.509 0.456 0.187 0.532 0.448 0.266 0.531 0.478 0.083
P(True) -0.049 0.094 -0.014  -0.044 0.113 0.079 0.160 0.178 -0.124
Consistency 0.504 0.365 0.235 0.518 0.367 0.284 0.538 0.410 0.099
SP 0.415 0.404 0.266 0.447 0.433 0.312 0.405 0.376 0.170
CoCoAgp 0.5271 04961 0.2931 05531 0.5151 03481 0.5001 05261 0.154
PPL 0.408 0.421 0.164 0.432 0.452 0.273 0.445 0.438 0.100
CoCoAppy, 0.5321 0.5041 0.2151% 0.5541 0.5141 03281 0.5521 0.5371 0.109 1
MTE 0.467 0.461 0.148 0.515 0.496 0.219 0.490 0.521 0.069
CoCoA yrE 0.5421 04791 0.2011t 05741 048 02901 0.5621 0.5271 0.081 1

Table 4: Results for Evaluated Sequence - MBR Decoding: Mean PRR across datasets for each
task. The best performing method is in bold, and the second-best is underscored. Arrows indicate
improvement in CoCoA over the base version.
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C Ablation

C.1 Choice of Similarity Function

For sample consistency estimation, one could come up with a variety of similarity functions s(y,y’).
We perform a comparison of the effectiveness of CoCoA-family methods using several such functions.
We consider the following functions:

* AlignScore [Zha et al.}2023]] with AlignScore-large model;

* RougeL [Lin, [2004];

e NLI [He et al., 2021]] based on microsoft/deberta-large-mnli model;

* CrossEncoder [Liu et al.,2019] based on cross-encoder/stsb-roberta-large model.
Tables [5] [6|and[7]report these results. There exists a considerable variation of relative effectiveness
of proposed methods with various similarity function choices, depending on a task at hand. We
opt to report all results in other sections with CrossEncoder-based similarity as it by itself provides
a significant improvement over baselines, and for consistency and ease of comparison reasons.

However, when applying these methods to a particular task, we encourage users to select appropriate
underlying similarity function for best results.
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Dataset

Method
XSUM WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k
Mistral7b-Base
CoCoAsp
AlignScore 0.334 0.293 0.445 0.354 0.655 0.466 0.550
RougeL 0.289 0.358 0.546 0.369 0.649 0.466 0.536
NLI 0.308 0.313 0.477 0.403 0.677 0.470 0.568
CrossEncoder 0.327 0.397 0.595 0.381 0.671 0.466 0.505
COCOAPPL
AlignScore 0.307 0.308 0.489  0.373 0.666 0.466 0.536
RougeL 0.226 0.369 0.531 0.352 0.653 0.466 0.466
NLI 0.233 0.316 0.501 0.376 0.682 0.470 0.480
CrossEncoder 0.281 0.371 0.565 0.365 0.674 0.466 0.465
COCOAMTE
AlignScore 0.302 0.299 0.477 0.366 0.664 0.450 0.555
RougeL 0.212 0.377 0.528 0.345 0.652 0.449 0.497
NLI 0.219 0.313 0.488 0.362 0.681 0.453 0.490
CrossEncoder 0.282 0.368 0.560 0.351 0.673 0.448 0.486
Llama8b-Base
CoCoAsp
AlignScore 0.367 0.331 0452 0.308 0.596 0.484 0.401
RougeL 0.336 0.393 0.545 0.321 0.563 0.474 0.375
NLI 0.344 0.352 0.467 0.364 0.606 0.478 0.419
CrossEncoder 0.375 0.454 0.583 0.350 0.598 0.480 0.367
COCOAPPL
AlignScore 0.422 0.346 0450  0.337 0.596 0.453 0.446
RougeL 0.370 0.408 0.486 0.319 0.552 0.441 0.418
NLI 0.374 0.354 0.438 0.348 0.600 0.446 0.409
CrossEncoder 0.380 0.444 0.514 0.339 0.593 0.447 0.429
COCOAMTE
AlignScore 0.419 0.340 0.438 0.339 0.605 0.411 0.459
RougeL 0.362 0.417 0.481 0.319 0.560 0.390 0.440
NLI 0.366 0.342 0.428 0.340 0.612 0.396 0.420
CrossEncoder 0.374 0.441 0.511 0.337 0.601 0.394 0.444
Falcon7b-Base
CoCoAsp
AlignScore 0.278 0.306 0.475 0.361 0.677 0.528 0.470
RougeL 0.205 0.394 0.499 0.378 0.678 0.527 0.417
NLI 0.236 0.361 0.511 0.407 0.684 0.532 0.532
CrossEncoder 0.253 0.436 0.577 0.396 0.685 0.529 0.428
COCOAPPL
AlignScore 0.252 0.340 0.523 0.410 0.678 0.528 0.521
RougeL 0.170 0.409 0.537 0.389 0.668 0.527 0.439
NLI 0.193 0.364 0.531 0.408 0.680 0.532 0.499
CrossEncoder 0.226 0.437 0.579 0.405 0.677 0.529 0.474
COCOAMTE
AlignScore 0.253 0.337 0.519 0.403 0.683 0.515 0.554
RougeL 0.170 0.426 0.540 0.382 0.673 0.514 0.472
NLI 0.190 0.364 0.525 0.398 0.687 0.521 0.514
CrossEncoder 0.223 0.438 0.575 0.395 0.685 0.517 0.505

Table 5: Comparison of PRRs of CoCoA-family methods with different choices of the similarity
function. Main model response obtained by greedy decoding.
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Dataset

Method
XSUM WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k
Mistral7b-Base
CoCoApnsp
AlignScore 0.393 0.448 0.491 0.399 0.626 0.467 0.476
RougeL 0.344 0.602 0.597 0.420 0.622 0.466 0.538
NLI 0.340 0.615 0.604 0.445 0.651 0.470 0.456
CrossEncoder 0.366 0.712 0.730 0.430 0.644 0.466 0.562
COCOAPPL
AlignScore 0.474 0.619 0.657 0.408 0.638 0.467 0.910
RougeL 0.362 0.710 0.717 0.391 0.627 0.466 0.950
NLI 0.370 0.677 0.684 0.414 0.657 0.470 0.941
CrossEncoder 0.372 0.735 0.755 0.402 0.648 0.466 0.937
COCOAMTE
AlignScore 0.492 0.547 0.590 0.383 0.633 0.449 0914
RougeL 0.355 0.695 0.684 0.366 0.624 0.448 0.959
NLI 0.364 0.656 0.658 0.387 0.656 0.453 0918
CrossEncoder 0.373 0.708 0.732 0.373 0.645 0.447 0.935
Llama8b-Base
CoCoAnsp
AlignScore 0.520 0.332 0.491 0.354 0.587 0.457 0.401
RougeLL 0.471 0.470 0.588 0.362 0.551 0.446 0.499
NLI 0.466 0.442 0.577 0.386 0.597 0.446 0.470
CrossEncoder 0.484 0.529 0.685 0.384 0.587 0.452 0.513
COCOAPPL
AlignScore 0.546 0.406 0.561 0.376 0.577 0.429 0.875
RougeL 0.452 0.518 0.639 0.352 0.532 0.417 0.931
NLI 0.458 0.466 0.597 0.365 0.583 0.418 0.912
CrossEncoder 0.450 0.544 0.689 0.364 0.573 0.422 0.925
COCOAMTE
AlignScore 0.561 0.325 0.497 0.365 0.589 0.380 0.821
RougeL 0.448 0.496 0.598 0.336 0.539 0.361 0.921
NLI 0.449 0.446 0.565 0.344 0.598 0.359 0.881
CrossEncoder 0.451 0.520 0.638 0.346 0.582 0.363 0.900
Falcon7b-Base
CoCoApnsp
AlignScore 0.181 0.378 0.473 0.410 0.654 0.528 0.239
RougeL 0.122 0.531 0.581 0.420 0.655 0.528 0.426
NLI 0.120 0.496 0.607 0.437 0.658 0.533 0.458
CrossEncoder 0.210 0.564 0.698 0.428 0.659 0.530 0.498
COCOAPPL
AlignScore 0.384 0.454 0.586 0.440 0.648 0.528 0.994
RougeL 0.280 0.565 0.668 0.410 0.637 0.528 1.000
NLI 0.283 0.515 0.671 0.424 0.647 0.533 0.998
CrossEncoder 0.310 0.579 0.717 0.415 0.644 0.530 1.000
COCOAMTE
AlignScore 0.292 0.386 0.498 0.435 0.648 0.515 0.972
RougeLL 0.222 0.545 0.607 0.400 0.633 0.515 0.998
NLI 0.201 0.498 0.636 0.415 0.645 0.521 0.987
CrossEncoder 0.289 0.551 0.678 0.402 0.646 0.517 0.998

Table 6: Comparison of PRRs of CoCoA-family methods with different choices of similarity function.
Main model response obtained by selecting the most probable sample.
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Dataset

Method
XSUM WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k
Mistral7b-Base
CoCoApnsp
AlignScore 0.287 0.326 0.460 0.312 0.575 0.515 0.747
RougeL 0.259 0.420 0.562 0.304 0.502 0.515 0.750
NLI 0.278 0.375 0.506 0.350 0.589 0.512 0.766
CrossEncoder 0.295 0.441 0.589 0.336 0.597 0.514 0.766
COCOAPPL
AlignScore 0.283 0.333 0.482 0.330 0.596 0.515 0.738
RougeL 0.219 0.427 0.561 0.300 0.517 0.515 0.744
NLI 0.219 0.390 0.508 0.334 0.602 0.512 0.723
CrossEncoder 0.258 0.451 0.577 0.322 0.612 0.514 0.768
COCOAMTE
AlignScore 0.269 0.314 0.447 0.357 0.663 0.497 0.746
RougeL 0.181 0.446 0.571 0.327 0.622 0.497 0.786
NLI 0.182 0.370 0.482 0.348 0.686 0.499 0.704
CrossEncoder 0.236 0.419 0.553 0.337 0.680 0.494 0.783
Llama8b-Base
CoCoAnsp
AlignScore 0.221 0.309 0.462 0.261 0.467 0.622 0.717
RougeL 0.195 0.401 0.542 0.250 0.361 0.631 0.721
NLI 0.222 0.311 0.463 0.311 0.480 0.580 0.769
CrossEncoder 0.225 0.403 0.590 0.304 0.487 0.586 0.731
COCOAPPL
AlignScore 0.225 0.325 0.484 0.304 0.476 0.603 0.747
RougeL 0.169 0.416 0.537 0.274 0.370 0.612 0.758
NLI 0.180 0.334 0.460 0.319 0.488 0.558 0.761
CrossEncoder 0.198 0.428 0.580 0.320 0.496 0.562 0.751
COCOAMTE
AlignScore 0.209 0.293 0.460 0.320 0.563 0.556 0.749
RougeL 0.148 0.436 0.559 0.314 0.497 0.587 0.785
NLI 0.156 0.298 0.445 0.340 0.592 0.460 0.740
CrossEncoder 0.189 0.398 0.561 0.345 0.587 0.472 0.765
Falcon7b-Base
CoCoApnsp
AlignScore 0.279 0.307 0.473 0.312 0.594 0.574 0.460
RougeL 0.202 0.424 0.487 0.307 0.566 0.574 0.447
NLI 0.231 0.362 0.508 0.355 0.618 0.577 0.531
CrossEncoder 0.248 0.461 0.590 0.336 0.617 0.575 0.472
COCOAPPL
AlignScore 0.278 0.320 0.534 0.350 0.607 0.574 0.617
RougeL 0.190 0.428 0.556 0.333 0.571 0.574 0.632
NLI 0.216 0.376 0.549 0.368 0.623 0.578 0.661
CrossEncoder 0.242 0.462 0.613 0.345 0.624 0.575 0.662
COCOAMTE
AlignScore 0.277 0.302 0.522 0.382 0.657 0.556 0.598
RougeL 0.175 0.472 0.573 0.364 0.642 0.556 0.617
NLI 0.196 0.359 0.530 0.400 0.671 0.562 0.639
CrossEncoder 0.237 0.454 0.600 0.373 0.666 0.557 0.650

Table 7: Comparison of PRRs of CoCoA-family methods with different choices of similarity function.
Main model response obtained by MBR decoding.
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C.2 Different Ways of Combining Confidence and Consistency

We justify the particular form of equation (IT]) by considering alternative ways to combine sample-
focused confidence with consistency estimation. Results are presented in Tables [8] 9] and In
particular, we investigate the performance of the additive approach (AdditiveCoCoA):

UAdditiveCoCoA(}’* ‘ X) = U(y* | X) + ﬁcons(}’* | X)7 (16)

and the same multiplicative combination, replacing sample-focused dissimilarity from () with the
average of the full pairwise dissimilarity matrix (24):

UFullSampleCoCoA(y* | X) = U(y* | X) : UDegMat(X)~ (17)

In addition, we present results where we compute u(y. | X) using probability-based scores instead of
log-likelihood, see equation (6). We refer to this variant as Uprobcocoa (¥« | X). While the results are
generally similar, the log-likelihood-based formulation offers greater numerical stability. Therefore,
we adopt it as the default in the main paper.

It is evident that on average the multiplicative form proposed in equation (I0) with both confidence
and consistency terms focused on a single sample is the better performing variant.
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Dataset

Method
XSUM  WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSM8k
Mistral7b-Base
AdditiveCoCoAsp 0.290 0.319 0459  0.351 0.654 0.471 0.472
FullSampleCoCoA ¢ 0.319 0.385 0.590 0.357 0.668 0.467 0.505
ProbCoCoAsp 0.059 0.302 0.520  0.390 0.671 0.461 0.435
CoCoAsp 0.330 0.396 0.598 0.383 0.670 0.466 0.517
AdditiveCoCoAppr, 0.262 0.392 0.564  0.369 0.671 0.464 0.494
FullSampleCoCoA . 0.277 0.373 0.551 0.334 0.672 0.467 0.435
ProbCoCoAppr, 0.297 0.369 0.566  0.373 0.674 0.464 0.475
CoCoAppr 0.286 0.375 0.568 0.369 0.674 0.466 0.467
AdditiveCoCoAnTE -0.279 -0.058 -0.072  0.098 0.312 0.079 0.187
FullSampleCoCoA ;5 0.274 0.368 0.543 0.309 0.668 0.442 0.456
CoCoAnTE 0.288 0.374 0.564  0.355 0.673 0.447 0.491
Llama8b-Base
AdditiveCoCoAsp 0.330 0.345 0.462  0.301 0.566 0.502 0.326
FullSampleCoCoA ¢ 0.358 0.434 0.564  0.333 0.589 0.488 0.354
ProbCoCoAsp 0.031 0.405 0.471 0.371 0.612 0.461 0.368
CoCoAsp 0.378 0.456 0.582  0.349 0.597 0.485 0.372
AdditiveCoCoAppr, 0.368 0.431 0.504  0.336 0.595 0.455 0.437
FullSampleCoCoA o, 0.389 0.420 0.487 0.314 0.580 0.450 0.399
ProbCoCoAppr, 0.381 0.445 0.513 0.345 0.599 0.446 0.438
CoCoAppr, 0.387 0.448 0.514  0.338 0.593 0.452 0.433
AdditiveCoCoAnrE -0.331 -0.042 -0.122  0.089 0.321 -0.122 0.117
FullSampleCoCoA ;& 0.383 0.410 0.481 0.308 0.588 0.363 0.414
CoCoAnmTE 0.380 0.446 0.511 0.337 0.601 0.402 0.447
Falcon7b-Base
AdditiveCoCoAsp 0.203 0.318 0.409  0.350 0.674 0.533 0.379
FullSampleCoCoA ¢ 0.225 0.423 0.571 0.388 0.678 0.533 0.404
ProbCoCoAsp 0.226 0.367 0.515 0.416 0.680 0.526 0.426
CoCoAsp 0.257 0.433 0.578 0.396 0.684 0.529 0.436
AdditiveCoCoAppr, 0.222 0.433 0.580 0413 0.677 0.525 0.489
FullSampleCoCoA ;. 0.204 0.425 0.565 0.393 0.669 0.533 0.437
ProbCoCoAppr, 0.235 0.433 0.576  0.410 0.680 0.528 0.482
CoCoAppr, 0.229 0.436 0.580  0.406 0.677 0.529 0.478
AdditiveCoCoAnTE 0.001 -0.103 -0.106  0.114 0.041 0.138 0.221
FullSampleCoCoA ;5 0.201 0.425 0.557 0.377 0.675 0.519 0.470
CoCoAnTE 0.228 0.439 0.577 0.395 0.685 0.517 0.510

Table 8: Comparison of PRRs of CoCoA-family methods with alternative formulations. Main model
response obtained via greedy decoding.
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Dataset

Method
XSUM  WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSM8k
Mistral 7b-Base
AdditiveCoCoAsp 0.333 0.239 0.310  0.406 0.631 0.472 0.311
FullSampleCoCoA ¢ 0.354 0.543 0.565 0.412 0.643 0.468 0.428
ProbCoCoAsp 0.076 0.684 0.721 0.428 0.643 0.464 0.846
CoCoAsp 0.366 0.712 0.730  0.430 0.644 0.466 0.562
AdditiveCoCoAppr, 0.368 0.737 0.751 0.406 0.644 0.465 0.939
FullSampleCoCoA . 0.383 0.714 0.723  0.379 0.649 0.468 0.933
ProbCoCoAppr, 0.369 0.738 0.756  0.401 0.649 0.467 0.935
CoCoAppr 0.372 0.735 0.755  0.402 0.648 0.466 0.937
AdditiveCoCoAnTE 0.368 0.723 0.702  0.332 0.643 0.452 0.942
FullSampleCoCoA ;5 0.380 0.661 0.653  0.331 0.643 0.442 0.929
CoCoAnTE 0.373 0.708 0.732  0.373 0.645 0.447 0.935
Llama8b-Base
AdditiveCoCoAsp 0.466 0.349 0.425 0.333 0.555 0.473 0.285
FullSampleCoCoA ¢ 0.476 0.462 0.619  0.363 0.574 0.464 0.379
ProbCoCoAsp 0.035 0.491 0.617  0.398 0.598 0.433 0.795
CoCoAsp 0.484 0.529 0.685  0.384 0.587 0.452 0.513
AdditiveCoCoAppr, 0.454 0.536 0.673  0.358 0.575 0.425 0.923
FullSampleCoCoA o, 0.459 0.525 0.649  0.343 0.556 0.430 0.914
ProbCoCoAppr, 0.438 0.547 0.689 0.364 0.574 0.419 0.923
CoCoAppr, 0.450 0.544 0.689 0.364 0.573 0.422 0.925
AdditiveCoCoAnrE 0.457 0.496 0.579  0.304 0.561 0.361 0.901
FullSampleCoCoA ;5 0.455 0.464 0.577  0.313 0.563 0.341 0.878
CoCoAnTE 0.451 0.520 0.638  0.346 0.582 0.363 0.900
Falcon7b-Base
AdditiveCoCoAsp 0.100 0.397 0.394  0.393 0.649 0.534 -0.156
FullSampleCoCoA ¢ 0.144 0.531 0.607 0.416 0.654 0.533 0.189
ProbCoCoAsp 0.282 0.522 0.670  0.434 0.658 0.529 0.978
CoCoAsp 0.210 0.564 0.698  0.428 0.659 0.530 0.498
AdditiveCoCoAppr, 0.297 0.582 0.706  0.417 0.643 0.526 1.000
FullSampleCoCoA ;. 0.297 0.560 0.670  0.405 0.641 0.533 1.000
ProbCoCoAppr, 0.311 0.587 0.718 0414 0.648 0.531 1.000
CoCoAppr, 0.310 0.579 0.717 0415 0.644 0.530 1.000
AdditiveCoCoA T E 0.253 0.554 0.634  0.383 0.630 0.523 0.997
FullSampleCoCoA ;5 0.237 0.502 0.554  0.383 0.636 0.519 0.989
CoCoAnTE 0.289 0.551 0.678  0.402 0.646 0.517 0.998

Table 9: Comparison of PRRs of CoCoA-family methods with alternative formulations. Main model
response obtained by selecting the most probable sample.
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Dataset

Method
XSUM  WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSM8k
Mistral7b-Base
AdditiveCoCoAsp 0.259 0.382 0.488 0.231 0.388 0.512 0.711
FullSampleCoCoA ¢ 0.287 0.447 0.591 0.318 0.570 0.516 0.748
ProbCoCoAsp 0.258 0.374 0.473 0.149 0.099 -0.265 0.710
CoCoAnTE 0.295 0.441 0.589  0.336 0.597 0.514 0.766
AdditiveCoCoAppr, 0.234 0.430 0.560  0.255 0.517 0.507 0.721
FullSampleCoCoA . 0.251 0.458 0.571 0.305 0.587 0.516 0.745
ProbCoCoAppr, 0.094 -0.123 -0.143  -0.202 -0.404 -0.423 0.027
CoCoAppr 0.258 0.451 0.577 0.322 0.612 0.514 0.768
AdditiveCoCoAnrE 0.201 0.468 0.585 0.296 0.669 0.501 0.760
FullSampleCoCoA , ;15 0.232 0.426 0.544  0.318 0.673 0.496 0.772
CoCoAnTE 0.236 0.419 0.553 0.337 0.680 0.494 0.783
Llama8b-Base
AdditiveCoCoAgsp 0.197 0.345 0.465 0.177 0.287 0.571 0.676
FullSampleCoCoA ¢ 0.214 0.409 0.589  0.289 0.449 0.589 0.724
ProbCoCoAsp 0.196 0.337 0.449  0.102 0.053 0.434 0.673
CoCoAnTE 0.225 0.403 0.590 0.304 0.487 0.586 0.731
AdditiveCoCoAppr, 0.182 0.406 0.500  0.229 0.401 0.540 0.715
FullSampleCoCoA . 0.186 0.433 0.563 0.304 0.461 0.565 0.746
ProbCoCoAppr, 0.101 -0.097 -0.152  -0.175 -0.367 0.099 0.053
CoCoAppr, 0.198 0.428 0.580  0.320 0.496 0.562 0.751
AdditiveCoCoA T E 0.160 0.437 0.554  0.302 0.560 0.477 0.748
FullSampleCoCoA ;5 0.174 0.400 0.543 0.334 0.568 0.475 0.762
CoCoAnTE 0.189 0.398 0.561 0.345 0.587 0.472 0.765
Falcon7b-Base
AdditiveCoCoAsp 0.188 0.356 0.401 0.228 0.488 0.578 0.368
FullSampleCoCoA g, 0.237 0.468 0.586  0.325 0.593 0.576 0.453
ProbCoCoAsp 0.184 0.339 0.378 0.144 0.350 -0.345 0.364
CoCoAnmTE 0.248 0.461 0.590 0.336 0.617 0.575 0.472
AdditiveCoCoAppr, 0.206 0.404 0.565 0.271 0.537 0.572 0.625
FullSampleCoCoA ;. 0.231 0.464 0.606  0.337 0.598 0.577 0.650
ProbCoCoAppr, 0.014 -0.167 -0.265 -0.187 -0.237 -0.416 -0.206
CoCoAppr 0.242 0.462 0.613  0.345 0.624 0.575 0.662
AdditiveCoCoAnTE 0.191 0.488 0.612  0.353 0.644 0.564 0.617
FullSampleCoCoA ;11 0.219 0.452 0.591 0.368 0.654 0.556 0.629
CoCoAnmTE 0.237 0.454 0.600  0.373 0.666 0.557 0.650

Table 10: Comparison of PRRs of CoCoA-family methods with alternative formulations. Main model
response obtained by MBR decoding.
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D Detailed Description of Uncertainty Quantification Methods

In this section, we provide a detailed description of the uncertainty quantification methods used in
this study.

D.1 Information-Based Methods

Information-based methods are commonly used to estimate uncertainty by analyzing the probability
distributions of tokens within a given output. These methods examine different levels of model
generation, such as the model’s confidence in producing a specific sequence, its ability to predict
individual tokens at each generation step, and the variability in the token-level predictions across the
sequence.

Sequence Probability (SP) is one of the simplest and most direct methods for estimating uncertainty.
It measures the probability of the most likely output sequence given a specific input. Thus, uncertainty
is quantified by calculating the probability of the sequence with the highest likelihood, under the
assumption that the model is most confident in this output. In its simplest form it is given by (6).
An equivalent (in terms of ordering of predictions for different inputs) but more numerically stable
formulation is logarithmic. It is defined as:

Usp(y | x) = —logp(y | x). (18)

Perplexity (PPL) is another widely used metric for estimating uncertainty in language mod-
els [Fomicheva et al., 2020]]. It measures the model’s confidence by evaluating the average likelihood
of generating the sequence tokens:

1
UppL(y | x) = —Elogp(y | x). (19)

Mean Token Entropy takes a broader view of uncertainty by considering the token-level predictions
across the entire sequence [Fomicheva et al., 2020]]. Instead of evaluating the model’s confidence in a
single output or individual token predictions, Mean Token Entropy calculates the average entropy of
the token probability distributions for each token in the sequence:

Uny (v | x) = ZH i | y<i,x), (20)

where H(y; | y<i,X) is an entropy of the token distribution p(y; | y<i, X).

The TokenSAR method, introduced in [Duan et al.l 2024], generalizes length-normalized log probabil-
ity by computing a weighted average of the negative log probabilities of generated tokens, where
weights are based on token relevance to the overall text. Using a similarity function s(-, -) and token
relevance function Rr(yx,y,x) =1 — s(xUy,xUy \ yx), the uncertainty estimate is calculated as:

Uokensar (Y | X) = ZRT .y, x) log p(yr | y<i, %), 1)

where

) RT(ykvya )

Zl 1 RT(:WvYa )
This measure is central for computing SAR uncertainty measure.

Re(yr,y | (22)

D.2 Consistency-Based Methods

Consistency-based methods assess the uncertainty of a language model by evaluating the semantic
consistency of its predictions across multiple outputs for the same prompt. The core idea is that
semantically similar outputs indicate higher confidence, while diverse or conflicting outputs suggest
greater uncertainty. Since language models can express the same meaning in different surface forms,
these methods construct a semantic similarity matrix S = (s;;), where each entry represents the
degree of similarity between pairs of responses. By clustering responses into groups with equivalent
meanings, these methods provide a semantic measure of the model’s consistency.
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The work [Lin et al.,2024] offers two similarity measures to evaluate the similarity of sequences. The
first is the Jaccard similarity, which treats sequences as sets of words and calculates the proportion of
shared words to the total number of unique words in both sequences: s(y,y’) = [y Ny’'|/ly Uy’|.

Natural Language Inference (NLI) provides another method for computing similarity between
sequences. We use the DeBERTa-large NLI model [He et al., 202 1]], following [Kuhn et al.,2023]]. For
each pair of sequences, an NLI model predicts two probabilities: pentail(y,y’), indicating entailment,
and peontra(y,y’), indicating contradiction. Similarity is then defined as either Sentail(y,y’) =

pentail(Y7 y/) or Scontra(y7 yl) = 1 - pcontra(y7 y/)

Among the simplest consistency-based approaches are the Number of Semantic Sets and the Sum
of Eigenvalues of the Graph Laplacian [Lin et al.[2024]]. Number of Semantic Sets estimates how
many distinct “meanings” the model produces by clustering its outputs with an NLI model. The
number of semantic sets is initially equal to the total number of generated answers, M. Two sentences
are grouped into the same cluster if the following conditions are satisfied: Dentail (y(i)7 y(j)) >
Pcontra (y(l)v y(j)) and Pentail (y(J)a y(l)) > Peontra (y(j)a y(l)) . This COIIlplltEltiOl’l is performed for
all pairs of answers, and the final number of distinct clusters is denoted by UnumsemSets-

Sum of Eigenvalues of the Graph Laplacian examines global diversity: it constructs a similarity
matrix among the sampled outputs and computes a continuous uncertainty score from the eigenvalues
of the Laplacian of that similarity graph. The work [Lin et al.,|2024]] proposes computing an averaged
similarity matrix as s;; = (s(y,y9))+s(y"),y?)) /2. The Laplacian for the matrix S is defined
as L = I — D~ 25D~ 2, where D is a (diagonal) degree matrix with elements D;; = Z;L; S4j-
Consequently, the following formula is derived:

M
Ugigy (x) = »_max(0,1 — X;(x)). (23)
i=1

Both Number of Semantic Sets and Sum of Eigenvalues of the Graph Laplacian effectively capture
overall variation in generated text but cannot produce an individual uncertainty score for each output.
To address this, the work [Lin et al., 2024| proposes to use the diagonal Degree Matrix D(x) which
represents the total similarity of each answer with all others. The corrected trace of D(x) provides an
average pairwise distance between answers, and uncertainty is computed as:

UbegMat (X) = 1 — trace(D(x))/M?. (24)

D.3 Information-Based Methods with Repeated Sampling

The natural idea is to somehow benefit from having multiple samples from the model while using
important information contained in the output probabilities estimated by an LLM. Below, we examine
several approaches that have sought to achieve this.

Averaging uncertainties.

We can compute the entropy on the sequence level E[— logp(y | x)], where the expectation is
taken over the sequences y randomly generated from the distribution p(y | x). Unfortunately, while
for token level, we have an exact way of computing the entropy, for the sequence level, we need
to adhere to some approximations. In practice, we can use Monte-Carlo integration, i.e. generate
several sequences y(¥), i = 1,..., M via random sampling and compute Monte Carlo Sequence
Entropy [Kuhn et al., 2023

M
1 ,
Uns(x) = Vi E logp(y” | x). (25)
=1

We can replace p(y? | x) with its length-normalized version p(y(?) | x) leading to a more reliable
uncertainty measure in some cases.

While simple averaging represents a natural way to aggregate uncertainties, it has certain issues related
to the nature of LLMs. First of all, in the vast majority of applications, an LLM-based system should
produce a single output y, for an input query. When we consider Uy, (x) or other similar measure,
we essentially perform averaging of uncertainties of different sequences, thus somewhat assessing the
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uncertainty related to the entire generative distribution p(y | x) for the input x, but not for a particular
generated sequence y .. This averaged uncertainty might not be adequate for this particular sequence
and, remarkably, often performs worse than the uncertainty u,. = U(y. | x), which is related solely
to the output y .. Moreover, although intuitive, this naive aggregation method assumes that all outputs
contribute equally to the final uncertainty estimate, regardless of their semantic relationships. This
can lead to inconsistencies when semantically equivalent outputs have varying uncertainty scores or
when outputs with low similarity are treated as equally important.

Semantically weighted averaging. Semantic Entropy [Kuhn et al., |[2023]] addresses the issue of
generated sequences with similar meanings but differing probabilities according to the model, which
can heavily influence the resulting entropy value (23). The method clusters generated sequences
y@, i=1,..., M into semantically homogeneous groups Cy, k = 1,..., K (where K < M) using
a bi-directional entailment algorithm. Probabilities of sequences are averaged within each cluster.
The entropy estimate is then defined as:

K C |
Us(x Z ~ log pr(x (26)
k=1

where py(x) = > .. p(y | x) represents the aggregated probability for cluster Cy.

SentenceSAR [Duan et al.l [2024]] enhances the probability of sentences that are more relevant. It
uses a sentence relevance measure s(y?), y(*)) to evaluate the relevance of y?) with respect to y*).
SentenceSAR is calculated as:

. 1 ,
Usentsar(x) = —— Z 10%( @ x) + ;Rs(y(l)’ X))» 27
where ¢ is a temperature parameter used to control the scale of shifting to relevance, and

Rs(y?,x)=> s(y?,y®)p(y™ | x). (28)
k#j

The combination of SentenceSAR and TokenSAR results in a unified method called SAR [Duan et al.,
2024]. In this approach, the generative probability p(y | x) in the SentenceSAR formula is replaced
with the token-shifted probability p'(y | x) = exp{ TokenSAR(y, x } creating a comprehensive
measure that integrates both sentence- and token-level adjustments.

The aggregation approaches like Semantic Entropy [Kuhn et al.,[2023]] or SAR [Duan et al.| [2024]]
can be unified into a semantically-aware Generalized Monte Carlo uncertainty estimate, defined as

Usmcu (x Zh<z Dy p(yW) |x)>. (29)

Jj=1

Here, the inner summation aggregates sequence probabilities p(y(j ) | X) weighted by their semantic
similarity to the i-th output, and the outer summation averages these contributions across all samples.
The function h(-) provides an additional layer of flexibility, transforming the reweighted uncertainty
scores, making the method a generalized framework for uncertainty quantification.

Unfortunately, methods that fall under GMCU, while offering benefits, also inherit the aforementioned
issues from both categories of methods. In particular, the outer summation in (29)), similarly to the
case of simple Monte Carlo averaging, often fails to outperform the uncertainty U, (x) = U(y« | x)
of a single generated sequence y..

D.4 Verbalized Uncertainty

Verbalized uncertainty methods refer to approaches that prompt a model to explicitly express its
confidence. In our experiment, we utilize the P(True) method, implemented following the description
by [Kadavath et al., 2022f]. Specifically, the model is presented with the original question and its
answer, and then prompted to indicate whether the answer is True or False. We use the negative
log-probability of the token “True” as the uncertainty score.
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E Detailed Experimental Results

Tables 3| and [T] presented PRR scores averaged over datasets corresponding to each task. Here we
present expanded results for each dataset, see Tables [TT] [T2]and [T3]
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Dataset

Method
XSUM  WMTI14FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k
Mistral7b-Base
MCSE 0.007 0.257 0.350  0.247 0.496 0.337 0.475
MCNSE 0.009 0.342 0.478  0.238 0.540 0.356 0.401
Semantic Entropy 0.008 0.271 0.382  0.271 0.562 0.387 0.472
DegMat 0.137 0.229 0.382  0.336 0.646 0.410 0.299
EigValLaplacian 0.132 0.207 0.328  0.301 0.624 0.398 0.241
SAR 0.094 0.353 0.517  0.313 0.644 0.419 0.471
P(True) 0.179 0.118 0.033 -0.061 -0.128 0.068 0.005
Consistency Light -0.006 0.317 0.457  0.306 0.597 0.432 0.441
Consistency 0.051 0.285 0.500  0.379 0.647 0.423 0.435
SP 0.287 0.315 0.451 0.326 0.628 0.474 0.471
CoCoAsp 0.330 0.396 0.598  0.383 0.670 0.466 0.517
CoCoAsp Light 0.309 0.380 0.580  0.351 0.674 0.480 0.506
PPL 0.204 0.365 0.489  0.281 0.632 0.474 0.311
CoCoAppr 0.286 0.375 0.568  0.369 0.674 0.466 0.467
CoCoAppr, Light 0.260 0.404 0.557  0.326 0.684 0.480 0.428
MTE 0.182 0.392 0.484  0.243 0.619 0.456 0.350
CoCoAnTE 0.288 0.374 0.564  0.355 0.673 0.447 0.491
CoCoA T Light 0.254 0.415 0.550  0.303 0.672 0.465 0.458
Llama8b-Base
MCSE 0.033 0.293 0.354  0.237 0.482 0.171 0.351
MCNSE 0.022 0.370 0.415 0.219 0.501 0.170 0.344
Semantic Entropy 0.033 0.297 0.389  0.272 0.549 0.229 0.375
DegMat 0.081 0.250 0.355 0.353 0.622 0.342 0.309
EigValLaplacian 0.079 0.198 0.278  0.332 0.604 0.292 0.273
SAR 0.077 0.427 0.483 0.311 0.595 0.352 0.398
P(True) 0.058 0.047 0.037 -0.037 -0.066 -0.180 0.026
Consistency Light -0.022 0.475 0.441 0.353 0.552 0.279 0.378
Consistency 0.024 0.389 0.453 0.375 0.614 0.391 0.368
SP 0.328 0.342 0456  0.277 0.526 0.508 0.324
CoCoAsp 0.378 0.456 0.582  0.349 0.597 0.485 0.372
CoCoAsp Light 0.358 0.448 0.556  0.340 0.598 0.504 0.353
PPL 0.369 0.351 0422  0.253 0.507 0.461 0.303
CoCoAppr 0.387 0.448 0.514  0.338 0.593 0.452 0.433
CoCoAppr, Light 0.382 0.483 0.491 0.319 0.597 0.467 0.398
MTE 0.357 0.357 0.408  0.239 0.497 0.349 0.326
CoCoAnTE 0.380 0.446 0.511 0.337 0.601 0.401 0.447
CoCoA 7k Light 0.372 0.501 0.487 0.316 0.599 0.387 0.412
Falcon7b-Base
MCSE 0.159 0.297 0.337 0.258 0.549 0.420 0.427
MCNSE 0.108 0.371 0.474  0.293 0.586 0.442 0.299
Semantic Entropy 0.164 0.307 0.389 0.294 0.581 0.463 0.418
DegMat 0.201 0.274 0.431 0.407 0.651 0.480 0.395
EigValLaplacian 0.201 0.229 0.394  0.381 0.645 0.454 0.358
SAR 0.144 0.398 0.517  0.381 0.649 0.508 0.387
P(True) -0.159 0.175 0.135 0.036 0.275 0.027 0.133
Consistency Light 0.232 0.483 0.468  0.327 0.657 0.362 0.363
Consistency 0.226 0.337 0.496  0.408 0.656 0.485 0.426
SP 0.201 0.312 0.400  0.321 0.662 0.539 0.377
CoCoAsp 0.257 0.433 0.578  0.396 0.684 0.529 0.436
CoCoAsp Light 0.242 0.463 0.566  0.349 0.691 0.522 0.405
PPL 0.155 0.375 0.525 0.316 0.644 0.539 0.326
CoCoAppr 0.229 0.436 0.580 0.406 0.677 0.529 0.478
CoCoAppr, Light 0.234 0.497 0.558 0.364 0.694 0.522 0.468
MTE 0.152 0.409 0.537  0.291 0.633 0.533 0.367
CoCoAnTE 0.228 0.439 0.577  0.395 0.685 0.517 0.510
CoCoA nre Light 0.234 0.518 0.549  0.345 0.693 0.491 0.500

Table 11: Detailed experimental results. Main model response obtained by greedy decoding.
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Dataset

Method
XSUM WMTI14FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k
Mistral7b-Base
MCSE 0.162 0.406 0.407 0.289 0.492 0.339 0.693
MCNSE 0.196 0.471 0.507 0.277 0.529 0.358 0.700
Semantic Entropy 0.164 0.434 0.442  0.312 0.554 0.389 0.675
DegMat 0.205 0.439 0410 0.376 0.618 0.410 0.454
EigValLaplacian 0.197 0.388 0.344  0.342 0.600 0.399 0.361
SAR 0.175 0.563 0.590  0.347 0.620 0.421 0.780
P(True) 0.207 0.472 0.269 -0.058 -0.084 0.068 0.278
Consistency 0.071 0.670 0.708 0.405 0.614 0.423 0.846
SP 0.330 0.212 0.291 0.388 0.607 0.476 0.307
CoCoAsp 0.366 0.712 0.730  0.430 0.644 0.466 0.562
PPL 0.365 0.695 0.676  0.327 0.615 0.476 0.931
CoCoAppr, 0.372 0.735 0.755  0.402 0.648 0.466 0.937
MTE 0.350 0.668 0.606  0.254 0.594 0.457 0.932
CoCoAnTE 0.373 0.708 0.732  0.373 0.645 0.447 0.935
Llama8b-Base
MCSE 0.192 0.366 0.395 0.258 0.465 0.158 0.545
MCNSE 0.186 0.377 0.480  0.239 0.484 0.165 0.631
Semantic Entropy 0.194 0.371 0.451 0.286 0.528 0.213 0.557
DegMat 0.191 0.274 0.409  0.366 0.606 0.320 0.396
EigValLaplacian 0.190 0.216 0.333  0.339 0.587 0.274 0.351
SAR 0.159 0.441 0.571 0.327 0.578 0.340 0.667
P(True) 0.058 0.075 0.056 -0.011 -0.071 -0.120 -0.084
Consistency 0.030 0.473 0.598 0.394 0.600 0.353 0.793
SP 0.464 0.339 0.413 0.304 0.514 0.483 0.280
CoCoAsp 0.484 0.529 0.685 0.384 0.587 0.452 0.513
PPL 0.458 0.504 0.622  0.293 0.483 0.441 0911
CoCoAppr, 0.450 0.544 0.689 0.364 0.573 0.422 0.924
MTE 0.449 0.437 0.501 0.238 0.458 0.326 0.883
CoCoAnTE 0.451 0.520 0.638 0.345 0.582 0.363 0.899
Falcon7b-Base
MCSE 0.128 0.399 0.419  0.285 0.535 0.421 0.598
MCNSE 0.153 0.395 0.452  0.318 0.588 0.443 0.771
Semantic Entropy 0.134 0.420 0.460  0.319 0.566 0.463 0.567
DegMat 0.177 0.350 0422 0422 0.637 0.480 0.633
EigValLaplacian 0.174 0.289 0.382  0.393 0.622 0.454 0.522
SAR 0.193 0.455 0.521 0.385 0.642 0.509 0.826
P(True) 0.022 0.245 0.245 0.038 0.244 0.028 0.815
Consistency 0.282 0.491 0.651 0.416 0.627 0.484 0.979
SP 0.099 0.385 0.378 0.369 0.638 0.540 -0.175
CoCoAgp 0.210 0.564 0.698 0.428 0.659 0.530 0.498
PPL 0.275 0.541 0.637 0.353 0.614 0.540 1.000
CoCoAppr, 0.310 0.579 0.717 0415 0.644 0.530 1.000
MTE 0.186 0.475 0.510 0.317 0.573 0.534 0.984
CoCoAnTE 0.289 0.551 0.678 0.402 0.646 0.517 0.998

Table 12: Detailed experimental results. Main model response obtained by selecting most probable
candidate among stochastically sampled responses.
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Dataset

Method
XSUM  WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSM8k
Mistral7b-Base
MCSE 0.123 0.297 0.363  0.245 0.515 0.385 0.751
MCNSE 0.105 0.385 0.485 0.256 0.552 0.406 0.548
Semantic Entropy 0.127 0.310 0.395  0.272 0.580 0.439 0.735
DegMat 0.244 0.280 0.365  0.358 0.673 0.461 0.392
EigValLaplacian 0.243 0.238 0.319 0.334 0.654 0.443 0.318
SAR 0.204 0.392 0.503  0.334 0.658 0.478 0.656
P(True) 0.079 0.142 0.084 -0.056 -0.084 0.047 -0.084
Consistency 0.211 0.297 0.437  0.355 0.659 0.458 0.603
SP 0.259 0.381 0.486  0.216 0.346 0.514 0.711
CoCoAnTE 0.295 0.441 0.589 0.336 0.597 0.514 0.766
PPL 0.205 0.391 0.513  0.186 0.358 0.514 0.672
CoCoAppr, 0.258 0.451 0.577  0.322 0.612 0.514 0.768
MTE 0.156 0.443 0.550 0.234 0.598 0.508 0.717
CoCoAnTE 0.236 0.419 0.553  0.337 0.680 0.494 0.783
Llama8b-Base
MCSE 0.089 0.240 0.354  0.220 0.444 0.297 0.647
MCNSE 0.055 0.334 0.443  0.247 0.470 0.306 0.545
Semantic Entropy 0.089 0.250 0.382  0.245 0.514 0.361 0.650
DegMat 0.217 0.218 0.361 0.368 0.611 0.391 0.539
EigValLaplacian 0.217 0.167 0.280  0.347 0.592 0.305 0.492
SAR 0.125 0.393 0.520 0.345 0.578 0.472 0.642
P(True) -0.014 0.098 0.091 -0.014 -0.054 -0.210 0.083
Consistency 0.146 0.290 0.440  0.387 0.603 0.428 0.599
SP 0.197 0.344 0.463  0.161 0.247 0.577 0.675
CoCoAnTE 0.225 0.403 0.590 0.304 0.487 0.586 0.731
PPL 0.168 0.382 0.460  0.161 0.253 0.549 0.668
CoCoAppr 0.198 0.428 0.580  0.320 0.496 0.562 0.751
MTE 0.130 0.412 0.509  0.245 0.466 0.459 0.699
CoCoArTE 0.189 0.398 0.561 0.345 0.587 0.472 0.765
Falcon7b-Base
MCSE 0.188 0.331 0.362  0.274 0.560 0.455 0.460
MCNSE 0.126 0.387 0.494  0.306 0.605 0.479 0.396
Semantic Entropy 0.192 0.332 0.414  0.304 0.594 0.497 0.438
DegMat 0.246 0.271 0.470  0.392 0.672 0.516 0.415
EigValLaplacian 0.238 0.220 0.432  0.365 0.660 0.476 0.339
SAR 0.184 0.412 0.543  0.370 0.664 0.553 0.536
P(True) -0.124 0.194 0.161 0.016 0.279 0.061 0.284
Consistency 0.235 0.323 0.498  0.376 0.665 0.523 0.588
SP 0.187 0.355 0.398 0.213 0.458 0.583 0.367
CoCoAsp 0.248 0.461 0.590 0.336 0.617 0.575 0.472
PPL 0.177 0.371 0.504  0.201 0.439 0.583 0.556
CoCoAppr, 0.242 0.462 0.613  0.345 0.624 0.575 0.662
MTE 0.159 0.462 0.580  0.290 0.588 0.565 0.517
CoCoAnTE 0.237 0.454 0.600 0.373 0.666 0.557 0.650

Table 13: Detailed experimental results. Main model response obtained by MBR decoding.
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F Alternative Performance Metrics for PRR

The choice of PRR as a UQ quality metric of choice is dictated by its ability to handle both continuous
performance metrics, like Comet and AlignScore without the need for selecting arbitrary thresholds,
as well as relative robustness to class imbalance in case of binary performance metric. However,
PRR scores are calculated for a particular choice of underlying performance metric. For a truly
comprehensive evaluation, we perform the same evaluation as in our main experimental run, but with
alternative choice of performance metrics.

Tables[I4]and[T5]report PRRs for these metrics on all models for NMT and QA tasks. MetricX [Juraska
et al., |2024]] was used for NMT and GPT-as-a-judge (gpt-40-2024-08-06) was used to score QA
datasets. The following is the prompt used to facilitate GPT QA scoring:

You are a text evaluator. The model was asked the following question:

{question}

The 'Generated' text is a model's response. The 'Target' is the correct answer.
If the generated answer correctly answers the question based on the target, return 1.
If it is wrong, return 0.

Respond ONLY with a single digit: 1 or 0.

Generated: {model output}
Target: {target sequence}
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NMT (MetricX) QA (GPT-40)
Method WMTI14FtEn  WMTI19DeEn CoQA/Gpt  TriviaQA/Gpt MMLU/Gpt  GSMS8K/Gpt
Mistral7b-Base
MCSE 0.127 0.212 0.226 0.478 0.338 0.453
MCNSE 0.267 0.417 0.246 0.535 0.357 0.388
Semantic Entropy 0.158 0.261 0.254 0.554 0.387 0.454
CEDegMat 0.270 0.402 0.336 0.659 0.402 0.356
SAR 0.302 0.451 0.333 0.660 0.419 0.456
Semantic Density 0.291 0.366 0.056 0.688 0.335 0.195
SP 0.173 0.287 0.287 0.640 0.473 0.485
CoCoAsp 0.314 0.462 0.367 0.681 0.465 0.537
PPL 0.316 0.448 0.220 0.645 0.473 0.345
CoCoApprL 0.361 0.512 0.331 0.687 0.465 0.499
MTE 0.350 0.455 0.190 0.631 0.456 0.387
CoCoAnTE 0.366 0.512 0.323 0.684 0.447 0.524
Llama8b-Base
MCSE 0.145 0.181 0.200 0.486 0.158 0.332
MCNSE 0.319 0.361 0.183 0.530 0.170 0.324
Semantic Entropy 0.157 0.235 0.239 0.552 0.203 0.361
CEDegMat 0.287 0.367 0.350 0.621 0.299 0.300
SAR 0.354 0.420 0.302 0.610 0.319 0.382
Semantic Density 0.252 0.328 0.069 0.650 0.335 0.299
SP 0.176 0.274 0.228 0.564 0.469 0.313
CoCoAsp 0.329 0.451 0.332 0.625 0.449 0.365
PPL 0.327 0.388 0.217 0.549 0.462 0.309
CoCoAppr 0.395 0.469 0.329 0.623 0.443 0.445
MTE 0.353 0.388 0.214 0.543 0.358 0.329
CoCoAyTE 0.394 0.472 0.333 0.634 0.393 0.455
Falcon7b-Base
MCSE 0.168 0.218 0.228 0.587 0.420 0.443
MCNSE 0.304 0.399 0.265 0.640 0.442 0.323
Semantic Entropy 0.201 0.276 0.262 0.623 0.463 0.448
CEDegMat 0.287 0.428 0.380 0.712 0.476 0.347
SAR 0.339 0.457 0.367 0.715 0.508 0.410
Semantic Density 0.323 0.422 0.076 0.746 0.396 0.349
SP 0.176 0.275 0.279 0.737 0.539 0.391
CoCoAsp 0.335 0.483 0.364 0.763 0.529 0.459
PPL 0.322 0.454 0.245 0.722 0.539 0.341
CoCoAppr 0.394 0.531 0.345 0.754 0.529 0.513
MTE 0.370 0.455 0.228 0.707 0.533 0.385
CoCoAnTE 0.403 0.529 0.341 0.762 0.516 0.551

Table 14: PRRs for all models on QA and NMT tasks with alternative choice of performance metrics.

Main model response obtained by greedy decoding.
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NMT (MetricX) QA (GPT-40)
Method WMTI14FtEn  WMT19DeEn CoQA/Gpt  TriviaQA/Gpt MMLU/Gpt GSMS8k/Gpt
Mistral7b-Base
MCSE 0.305 0.324 0.244 0.464 0.339 0.392
MCNSE 0.360 0.466 0.252 0.516 0.358 0.188
Semantic Entropy 0.336 0.366 0.272 0.536 0.389 0.420
CEDegMat 0.468 0.485 0.339 0.623 0.404 0.239
SAR 0.455 0.527 0.336 0.628 0.421 0.298
Semantic Density 0.565 0.554 0.043 0.646 0.306 0.421
SP 0.169 0.252 0.311 0.608 0.474 0.460
CoCoAsp 0.607 0.623 0.376 0.647 0.466 0.550
PPL 0.510 0.552 0.265 0.619 0.474 0.096
CoCoAppr 0.620 0.667 0.346 0.655 0.466 0.091
MTE 0.487 0.499 0.211 0.604 0.457 0.167
CoCoAnmTE 0.581 0.638 0.324 0.653 0.447 0.151
Llama8b-Base
MCSE 0.284 0.271 0.191 0.451 0.155 0.302
MCNSE 0.354 0.419 0.197 0.493 0.171 0.251
Semantic Entropy 0.299 0.333 0.230 0.515 0.201 0.341
CEDegMat 0.343 0.451 0.369 0.598 0.301 0.241
SAR 0.412 0.497 0.315 0.584 0.323 0.311
Semantic Density 0.403 0.452 0.065 0.638 0.286 0.396
SP 0.247 0.289 0.225 0.523 0.467 0.332
CoCoAsp 0473 0.568 0.346 0.597 0.440 0.418
PPL 0.437 0.517 0.238 0.498 0.459 0.185
CoCoAppr, 0.510 0.614 0.335 0.588 0.433 0.199
MTE 0.387 0.439 0.201 0.485 0.345 0.226
CoCoAnmTE 0.495 0.589 0.330 0.604 0.372 0.237
Falcon7b-Base
MCSE 0.269 0.341 0.261 0.553 0.421 0.159
MCNSE 0.325 0.403 0.312 0.620 0.443 0.064
Semantic Entropy 0.308 0.397 0.296 0.588 0.463 0.172
CEDegMat 0.381 0.478 0.398 0.686 0.477 0.083
SAR 0.389 0.483 0.398 0.685 0.509 0.152
Semantic Density 0.434 0.518 0.047 0.661 0.377 0.299
SP 0.269 0.311 0.340 0.683 0.540 0.104
CoCoAsp 0.465 0.621 0.407 0.705 0.530 0.300
PPL 0.430 0.553 0.308 0.663 0.540 0.156
CoCoApprL 0.526 0.655 0.376 0.691 0.530 0.128
MTE 0418 0.452 0.275 0.615 0.535 0.054
CoCoAnmTE 0.512 0.620 0.370 0.692 0.517 0.050

Table 15: PRRs for all models on QA and NMT tasks with alternative choice of performance metrics.
Main model response obtained by selecting the most probable candidate among stochastically sampled

responses.
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G AUROC

We strongly believe that due to the considerations presented in Appendix [F| PRR is a superior metric
to AUROC when comparing relative performance of UQ methods. However, we acknowledge that
AUROC is widely used in modern UQ literature, so we opt to include AUROC results on QA datasets.
The results are presented in Tables[T6and[T7] All results here were obtained with GPT-as-a-judge

correctness scoring.

Table 16: AUROC for all models on QA tasks. Main model response was obtained by greedy

decoding.

CoQA/Gpt  TriviaQA/Gpt MMLU/Gpt  GSMS8K/Gpt

Mistral7b-Base
MCSE 0.642 0.784 0.737 0.716
MCNSE 0.653 0.806 0.744 0.684
Semantic Entropy 0.653 0.817 0.756 0.716
CEDegMat 0.690 0.859 0.759 0.682
SAR 0.694 0.862 0.770 0.717
Semantic Density 0.531 0.871 0.713 0.576
SP 0.674 0.849 0.794 0.684
CoCoAsp 0.708 0.867 0.790 0.729
PPL 0.636 0.855 0.794 0.628
CoCoAppr 0.690 0.871 0.790 0.714
MTE 0.620 0.849 0.787 0.640
CoCoAnTE 0.687 0.870 0.783 0.727

Llama8b-Base
MCSE 0.635 0.779 0.620 0.705
MCNSE 0.630 0.799 0.629 0.689
Semantic Entropy 0.655 0.815 0.652 0.713
CEDegMat 0.708 0.845 0.703 0.691
SAR 0.694 0.842 0.715 0.724
Semantic Density 0.540 0.855 0.680 0.655
SP 0.647 0.816 0.787 0.669
CoCoAsp 0.700 0.847 0.776 0.718
PPL 0.640 0.815 0.778 0.661
CoCoAppr 0.699 0.848 0.770 0.745
MTE 0.633 0.817 0.726 0.667
CoCoAyTE 0.702 0.854 0.746 0.753

Falcon7b-Base
MCSE 0.648 0.807 0.770 0.766
MCNSE 0.660 0.831 0.779 0.709
Semantic Entropy 0.669 0.830 0.788 0.761
CEDegMat 0.718 0.870 0.784 0.722
SAR 0.713 0.870 0.805 0.757
Semantic Density 0.544 0.881 0.746 0.716
SP 0.681 0.866 0.820 0.731
CoCoAsp 0.719 0.884 0.815 0.774
PPL 0.645 0.860 0.820 0.700
CoCoAppr 0.705 0.882 0.815 0.800
MTE 0.630 0.854 0.818 0.721
CoCoAnTE 0.704 0.886 0.810 0.814
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CoQA/Gpt  TriviaQA/Gpt MMLU/Gpt  GSMS8k/Gpt
Mistral7b-Base

MCSE 0.650 0.777 0.738 0.676
MCNSE 0.656 0.798 0.745 0.602
Semantic Entropy 0.661 0.808 0.757 0.692
CEDegMat 0.693 0.845 0.760 0.625
SAR 0.695 0.849 0.771 0.643
Semantic Density 0.523 0.854 0.696 0.633
SP 0.684 0.836 0.795 0.663
CoCoAsp 0.713 0.853 0.790 0.720
PPL 0.657 0.843 0.795 0.592
CoCoAppr 0.697 0.858 0.790 0.615
MTE 0.627 0.838 0.788 0.606
CoCoAnmTE 0.689 0.858 0.783 0.632
Llama8b-Base
MCSE 0.632 0.763 0.617 0.653
MCNSE 0.633 0.783 0.629 0.629
Semantic Entropy 0.653 0.800 0.650 0.669
CEDegMat 0.716 0.836 0.703 0.633
SAR 0.698 0.831 0.715 0.659
Semantic Density 0.534 0.849 0.655 0.666
SP 0.647 0.801 0.787 0.627
CoCoAsp 0.706 0.836 0.771 0.686
PPL 0.648 0.796 0.776 0.635
CoCoAppr 0.702 0.835 0.765 0.658
MTE 0.624 0.794 0.719 0.644
CoCoAnmTE 0.701 0.842 0.736 0.673
Falcon7b-Base
MCSE 0.662 0.797 0.770 0.589
MCNSE 0.682 0.826 0.779 0.571
Semantic Entropy 0.684 0.821 0.788 0.593
CEDegMat 0.726 0.863 0.785 0.580
SAR 0.727 0.862 0.806 0.611
Semantic Density 0.525 0.856 0.734 0.684
Sp 0.706 0.850 0.820 0.555
CoCoAsp 0.738 0.869 0.815 0.667
PPL 0.677 0.844 0.820 0.657
CoCoAppr 0.719 0.866 0.815 0.657
MTE 0.654 0.825 0.818 0.603
CoCoAnmTE 0.717 0.867 0.810 0.628

Table 17: AUROC for all models on QA tasks. Main model response obtained by selecting the most
probable candidate among stochastically sampled responses

H Computational Budget

Total available computational resources used to produce results in this paper amounted to 12 compute
nodes each having 4xA100 40Gb GPUs. Total computational budget spent to produce results was
around 400 GPU-days. Each individual combination of model and dataset amounted roughly to 16
GPU-days on average to obtain all model outputs and hidden states needed for computing the results.
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I CoCoA Light Training Details

The model architecture consisted of a simple multilayer perceptron (MLP) with a single hidden layer:
* Input dimension: equal to the embedding size of the corresponding base model (4096 for
Mistral7b-Base and Llama8b-Base, 3072 for Falcon7b-Base).
* Hidden dimension: 2048.
* Output dimension: 4096.
* Dropout: 0.1 applied between layers.

We trained the MLP on mean pooled hidden-layer embeddings extracted from the middle layer of an
LLM. Table 18] details the size of a train set for each model and dataset.

Dataset LLaMA Falcon Mistral
CoQA 10,000 10,000 10,000
GSMS8K 3,000 3,000 2,500
MMLU 1,461 1,461 1,461
TriviaQA 10,000 10,000 10,000

WMT14 Fr-En 6,000 6,000 6,000
WMT19 De-En 6,000 6,000 6,000
XSum 7,500 5,000 6,500

Table 18: Training set sizes (number of examples) for Llama8b-Base, Falcon7b-Base, and Mistral7b-
Base across several datasets.

Training was conducted for 20 epochs with the following hyperparameters:

* Batch size: 4 (per device) with gradient accumulation of 7 steps (effective batch size of 28).
* Learning rate: 1 x 10> with AdamW optimizer.

* Weight decay: 0.1.

¢ Warmup ratio: 0.05.

* Gradient clipping: 1.0.
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J Larger Model Experiments

We additionally evaluate our method using the Gemma 3 12B-Base model to assess its performance
on a larger-scale architecture. As shown in Table[T9] CoCoA continues to achieve the best average
performance among all methods.

Method Dataset
XSUM  WMTI14FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k

MCSE -0.014 0.277 0.408 0.262 0.556 0.449 0.386
MCNSE -0.031 0.393 0.442 0.280 0.595 0.468 0.344
Semantic Entropy -0.011 0.273 0.430 0.287 0.621 0.531 0.407
DegMat 0.130 0.246 0.370 0.356 0.692 0.561 0.359
EigValLaplacian 0.130 0.195 0.307 0.323 0.667 0.526 0.312
SAR 0.087 0.429 0.494 0.335 0.688 0.582 0.418
P(True) -0.022 0.012 -0.020 -0.006 0.195 0.046 0.145
Consistency Light -0.006 0.328 0.483 0.345 0.709 0.408 0.421
Consistency -0.163 0.452 0.496 0.311 0.657 0.293 0.387
MSP 0.257 0.315 0.499 0.319 0.672 0.630 0.335
CoCoApsp 0.308 0.424 0.641 0.372 0.723 0.617 0.391
CoCoArsp Light 0.287 0.416 0.634 0.356 0.720 0.613 0.360
PPL 0.303 0.369 0.451 0.288 0.681 0.630 0.275
CoCoAppr, 0.339 0.427 0.539 0.362 0.728 0.617 0.439
CoCoAppr, Light 0.327 0.489 0.518 0.334 0.727 0.613 0.353
MTE 0.284 0.372 0.413 0.269 0.664 0.617 0.310
CoCoAyTE 0.326 0.422 0.527 0.344 0.728 0.592 0.468
CoCoA g Light  0.308 0.501 0.498 0.313 0.719 0.565 0.386

Table 19: Detailed experimental results for Gemma 3 12B-Base model. Model response obtained by
greedy decoding

Method Dataset
XSUM  WMTI14FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k

MCSE 0.051 0.346 0.447 0.273 0.531 0.447 0.495
MCNSE 0.088 0.441 0.456 0.319 0.580 0.465 0.533
Semantic Entropy 0.054 0.348 0.492 0.294 0.597 0.527 0.505
DegMat 0.165 0.294 0.372 0.366 0.659 0.558 0.457
EigValLaplacian 0.164 0.228 0.306 0.327 0.634 0.522 0.415
SAR 0.109 0.474 0.526 0.353 0.661 0.577 0.593
P(True) -0.029 0.037 -0.015 0.019 0.193 0.046 0.278
Consistency Light  0.076 0.478 0.631 0.373 0.671 0.443 0.744
MSP 0.188 0.353 0.466 0.361 0.646 0.624 0.223
CoCoAysp 0.251 0.542 0.718 0.406 0.693 0.613 0.433
PPL 0.178 0.501 0.619 0.349 0.660 0.624 0.750
CoCoAppy, 0.211 0.576 0.692 0.400 0.700 0.613 0.805
MTE 0.168 0.431 0.487 0.295 0.643 0.612 0.703
CoCoAnTE 0.212 0.546 0.641 0.369 0.702 0.591 0.796

Table 20: Detailed experimental results for Gemma 3 12B-Base model. Model response obtained by
most probable sample decoding
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Dataset

Method
XSUM  WMTI4FtEn  WMTI19DeEn CoQA  TriviaQA MMLU GSMS8k

MCSE 0.120 0.290 0.361 0.271 0.544 0.487 0.493
MCNSE 0.126 0.366 0.439 0.308 0.597 0.497 0.464
Semantic Entropy 0.121 0.267 0.396 0.307 0.611 0.550 0.468
DegMat 0.195 0.222 0.318 0.399 0.684 0.571 0.373
EigValLaplacian 0.197 0.170 0.254 0.367 0.653 0.522 0.319
SAR 0.204 0.409 0.464 0.372 0.680 0.591 0.508
P(True) 0.030 0.043 0.018 0.014 0.204 0.079 0.313
Consistency Light  0.192 0.311 0.419 0.368 0.690 0.421 0.467
MSP 0.222 0.390 0.491 0.240 0.330 0.542 0.441
CoCoApsp 0.282 0.452 0.598 0.347 0.624 0.574 0.498
PPL 0.187 0.400 0.526 0.183 0.344 0.542 0.468
CoCoApprL 0.270 0.476 0.587 0.337 0.638 0.574 0.557
MTE 0.139 0.425 0.515 0.251 0.628 0.623 0.498
CoCoAnTE 0.230 0.451 0.528 0.361 0.712 0.610 0.575

Table 21: Detailed experimental results for Gemma 3 12B-Base model. Model response obtained by
MBR decoding
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