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Abstract

In this paper we introduce DeepForge, a platform for deep learning designed to
lower the barrier to entry and facilitate the rapid development of deep learning
models while maintaining a high degree of transparency and interoperability. Uti-
lizing a cloud-based infrastructure, DeepForge facilitates rapid development by
promoting reproducibility, collaboration and remote execution of machine learning
pipelines. DeepForge represents an interdisciplinary approach to facilitating deep
learning development as it leverages the strengths of Model Integrated Computing
to provide a powerful hybrid textual-visual programming platform beneficial to
both novices and researchers.

1 Introduction

Deep learning has proven to be a very powerful machine learning approach in a variety of domains
from image classification (9) to audio speech recognition (2). A significant contributor to the success
of deep neural networks is their ability to model very complex functions; this enables neural network
architectures to be applied to various domains and the models to be confirmed empirically. Due to the
emphasis on empirical validation, it is very important that researchers and practitioners are equipped
with the appropriate tooling to allow them to iterate quickly, work together and easily integrate the
latest advancements in research into their own projects. The foundation of DeepForge, shown in
Figure 1, is based on two main computing technologies, Torch 7 and Model Integrated Computing
using WebGME.

Torch 7 is a scientific computing framework, written in Lua, which provides both a high degree of
flexibility and highly optimized linear algebraic operations on both CPU and GPU (7). Along with
providing flexibility and high performance, Torch provides an extensible layer based neural network
library which supports a simple interface for creating custom layer definitions. This extensibility,
flexibility and high performance makes Torch a valuable tool for developing neural network models
including prototyping new neural network layers. Torch also has developed an active community
which contributes many layer implementations and extra utilities to the Torch ecosystem. However,
there is still a steep learning curve as well as a barrier to entry with deep learning development,
making it difficult to quickly move from idea to prototype. Additionally, with increased flexibility for
research, there is no standardization between experiments, making code difficult to reproduce and
share.

Model Integrated Computing (MIC) is the technique of using models, or domain specific abstractions,
for developing systems or applications (23) and was developed to aid in the rapid design and
implementation of complex applications and systems. The Generic Modeling Environment (GME)
is an open source MIC tool developed for creating domain specific modeling environments and has
been effectively applied to a number of domains including embedded systems and mechatronics
(8; 24; 20; 25; 5; 22; 11).
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Figure 1: An example project in DeepForge

WebGME, the successor to GME, leverages a number of modern features such as a cloud-based
infrastructure, integrated version control and real-time collaborative editing (16). WebGME also
introduces a number of powerful modeling abstractions, such as prototypal inheritance and mixins, to
improve its ability to model complex systems (15). WebGME has been used to improve development
in a variety of domains from medical capsule robotics to space radiation (14; 4; 3; 18).

DeepForge is a development environment with deeply integrated domain specific modeling aspects
created with WebGME. This enables DeepForge to leverage the strengths of model integrated
computing to facilitate the rapid development of deep learning models and lower the barrier to entry
for deep learning while also promoting the reproducibility of experiments. In doing so, we provide
a powerful open source platform for deep learning, with aims to build a community around the
platform in which users can contribute custom DeepForge extensions as well as seamlessly share and
collaborate with one another.

The structure of the paper is as follows. In Section 2, we will present the conceptual framework
for creating and executing machine learning tasks. Section 3 presents the design of the DeepForge
platform. Section 4 provides a machine learning example in DeepForge and Section 5 provides a
comparison with existing tools including Nvidia’s DIGITS (19) and Google’s TensorBoard (1).

2 Core Concepts

DeepForge presents four main concepts for testing and training machine learning models: Pipelines,
Operations, Executions and Jobs.

Operations are atomic functions which accept one or more named inputs and return one or more
named outputs. Both the input and output values are typed. Operation attributes can be defined
for an operation at design time, providing adjustable parameters for the operation. At runtime, an
operation’s attributes are provided as constants to the operation. Operations can also define references
which, like attributes, are specified at design time. Unlike attributes, a reference is a pointer to another
artifact, such as a neural network architecture.

A Pipeline represents a machine learning task, such as model training, testing or data preprocessing
composed of operations. Operations are composed by directing an output of a single operation,
represented as a port, into an input of one or more other operations. That is, these operations are
composed into acyclic data flow graphs. Pipelines can also contain Input and Output operations for
representing input data to the pipeline and output data from the pipeline. That is, the Input operation
is an initial node in a pipeline and Output operation is a terminal node.

Executing pipelines results in the creation of Executions. A pipeline’s execution is an acyclic data flow
graph that is isomorphic with the graph of the originating pipeline. This graph is created by converting
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each of the pipeline’s operations into a Job that corresponds to the original operation combined with
run status and running metadata (such as images or plots generated during the execution).

As DeepForge focuses on training (deep) neural networks, it also utilizes two additional concepts:
Architectures and Layers. As expected, an architecture represents a neural network architecture while
a layer represents a neural network layer. The layers are connected in a directed acyclic graph forming
the architecture. Similar to operations, layers can have attributes which are set at design time1. Unlike
operation attributes, layer attributes can also be set to another layer or sequence of layers.

3 Platform

Leveraging the concepts presented in Section 2, DeepForge provides a web-based platform for deep
learning with three principle design goals: development simplification, facilitating rapid development
and reproducibility of experiments. DeepForge utilizes techniques in MIC along with intuitive,
domain specific interfaces to lower the barrier to entry for deep learning. Rapid development is
facilitated through promoting collaboration and interoperability with Torch7 as well as supporting the
entire development cycle from the first iteration to the last execution. Finally, DeepForge leverages
WebGME’s version control system to provide deeply integrated versioning of both the code and
the data throughout the entire development process. In this section we will discuss the DeepForge
platform in more detail with an emphasis on how the design supports the design goals.

3.1 Development Simplification

DeepForge uses WebGME, a framework for creating domain specific modeling environments, to
create a domain specific modeling language for neural networks and the concepts described in
Section 2. This enables DeepForge to leverage the strengths of MIC, such as enforcing semantics
of the domain and easily generating artifacts of different formats from the models, while also
facilitating the development of other modern features including real-time collaborative editing and a
deeply integrated version control system. DeepForge provides a hybrid textual-visual development
environment for developing deep learning models. This allows users to leverage the strengths of a
domain specific modeling environment when working at high levels of abstraction, such as designing
pipelines, and utilize the precision of a textual programming environment when working at low levels
of abstractions, such as implementing custom operations. This visual editor is not simply a diagram
generated from the code but is an executable domain model and is always guaranteed to provide an
up-to-date visual representation of the given pipeline or architecture.

Providing a visual interface for designing pipelines and architectures not only lowers the barrier to
entry for developing deep learning models but also provides a more easily understandable diagram
of the given structure. Lowering the barrier to entry reduces the amount of time it takes for a new
user to be able to start developing and training neural network models. Designing pipelines and
architectures with a visual interface can simplify complex machine learning tasks as the interface
provides a diagram of the given pipeline or architecture.

Textual interfaces are provided for some of the more advanced features of DeepForge such as
implementing custom operations and custom layers. The textual interface for implementing operations
allows the user to utilize the power and flexibility of Torch and the ecosystem of supporting libraries
and frameworks, such as Torchnet.

3.2 Rapid Development

Along with lowering the barrier to entry, DeepForge provides a number of modern features to facilitate
rapid development of deep learning models. This is done primarily through promoting collaboration,
reproducibility and easy execution in a distributed environment.

DeepForge provides a number of features promoting collaboration. Google Docs-style real-time
collaborative editing allows users to simultaneously work together on a project. Version control is
deeply integrated into DeepForge and user actions are automatically committed. This allows users to
not only see the recent changes made by collaborators but also enables them to leverage branches to
manage collaboration in large projects.

1Layer attributes are analogous to layer arguments in textual neural network implementations
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Torch interoperability was another priority influencing the design of DeepForge. Promoting inter-
operability allows users to more easily incorporate existing Torch work into DeepForge as well as
easily transition existing research using Torch into DeepForge. Maintaining interoperability and
transparency enables the environment to be familiar to existing Torch users; this also makes skills
learned in DeepForge, such as defining custom layers, transferable to vanilla Torch.

This interoperability with Torch enables DeepForge to easily integrate the existing cutting edge
research and projects. Supporting generic Torch allows users to leverage the large number of
frameworks and tools built for Torch, such as Torchnet (6). This includes not only supporting
arbitrary Torch code in the operation but also supports automatically importing neural network
architectures written in Torch. Importing architectures allows users to convert the Torch architecture
definitions into editable models of the given architecture. As architectures can be exported to
vanilla Torch, this interoperability greatly simplifies the task of incorporating and understanding
complex architectures. To promote easily deploying pipelines to production, DeepForge also supports
exporting pipelines to arbitrary formats by creating custom extensions; this includes exporting for
use in production environments.

Supporting the complete development cycle of creating machine learning pipelines was paramount
in DeepForge; supporting both the creation and execution of the machine learning pipelines not
only greatly simplifies the user experience but also allows the environment to support developer
iteration, multi-tasking and record the results of the given task. DeepForge supports the execution of
machine learning pipelines on a distributed environment. This includes not only the ability to execute
pipelines in a distributed environment but also powerful utilities for monitoring and improving upon
existing pipelines. DeepForge provides real-time feedback from running jobs, including creating
plots, viewing images or simply viewing the job’s console output. To promote rapid development,
DeepForge also enables the user to restart individual jobs within an execution and caches intermediate
job results in an execution; this allows the user to reuse the outputs of unchanged jobs and avoid
redundant computation.

3.3 Reproducibility

Figure 2: Viewing the commit his-
tory of a project multiple branches

The final design goal in DeepForge is to provide easy repro-
ducibility of experiments. This is achieved through the use of
automatic versioning during development and as well as ver-
sioning both the code and the binary artifacts (such as data and
trained models) for the given experiments. Automatic version
control ensures that all changes and edits will be recorded in
the history of the project and are reproducible. Versioning both
the code and all associated binary artifacts, DeepForge is able
to ensure that not only the historical versions of the code are
reproducible for a given experiment but also any associated
data and models.

Leveraging the version control API’s provided by the WebGME
framework, DeepForge is able to provide an automatic version
control system specific to the deep learning domain. This
includes automatically tagging commits when experiments are
run, creating commits automatically complete with meaningful
commit messages and committing intermediate results from
machine learning pipelines to promote reproducibility and rapid
iteration.

4 Example

This section provides a simple, working example of how to train a deep convolutional network on the
CIFAR-10 (13) dataset using DeepForge. In this example, we will retrieve training and test sets from
AWS and then we will normalize the data. Next, we will train a deep neural network on the training
set and then test it on the test set. Finally, we will store the trained neural network model and the test
scores. We will first present the machine learning pipeline and the operations. Then we will present
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the associated neural network architecture in the context of the architecture editor. Finally, we will
examine an execution of the given pipeline and one of the corresponding jobs.

Figure 3: Pipeline to download and
normalize the CIFAR-10 dataset
then train and test a neural network
model

The entire pipeline for training this deep neural network model
is shown in Figure 3. As discussed in Section 2, a pipeline is a
collection of operations that are connected in a directed acyclic
graph of operations. In Figure 3, the grey boxes represent the
operations in the given pipeline and the connections represent
the data flow through the given pipeline. In this case, there
are six operations: DownloadCIFAR10, NormalizeData, Train,
Test and two Output operations. DownloadCIFAR10 downloads
the CIFAR-10 testing and training datasets. After downloading
the data, the two datasets are passed into the NormalizeData
operation which normalizes the data.

Next, the normalized training data is passed to the Train oper-
ation. In Figure 3, the Train operation is selected; this results
in the operation being expanded and shows the attributes and
references defined for the given operation. The Train opera-
tion has two attributes, maxIterations and learningRate, and
two references, criterion and net, defined. In this example, the
learning rate has been set to 0.001 and the maximum number of
iterations is set to 50. This operation is using the popular archi-
tecture VGG (21); this is specified by setting net to reference
VGG. In this example, the criterion is set to ClassNLLCriterion
provided in the neural network torch package.

After the Train operation, the trained model is then passed
to the Output operation and the Test operation. The Output
operation is a default operation which simply saves the data
back to DeepForge for easy export and reuse as the input to other pipelines. The Test operation accepts
testing data and a trained model and returns the classification accuracy for each of the provided
classes. These accuracies are then passed to another Output operation, allowing them to be easily
accessible within DeepForge.

Figure 4: Editing the VGG ar-
chitecture from Figure 3

Figure 4 shows a section of the VGG architecture used in the pipeline.
In this section, there are four layers shown: SpatialMaxPooling, View,
Dropout and Linear. These layers are all provided in the neural net-
work package provided by Torch. In Figure 4, the linear layer is
selected and is showing its configurable attributes: inputSize, out-
putSize and bias. This particular linear layer has 512 input neurons
and output neurons with no bias. As the linear layer is provided by
the neural network package, the implementation of this layer is not
editable; visually, this is represented by the disabling of the button
in the top right of the layer. When a custom layer is selected, the
icon in the top right is light blue (similar to the selected operations)
and allows the user to edit the Torch implementation of the layer or
operation.

After creating the pipeline, we can execute it within DeepForge. As
described in Section 2, this results in an execution being created from
the pipeline. Executions share the same structure as their originating
pipeline but are composed of jobs rather than operations. Executing
the pipeline from Figure 3 results in the execution shown in Figure 5.
Figure 5 shows a job for each of the operations from the originating
pipeline. Each job is color coded according to its execution status.
The first two jobs, DownloadCIFAR10 and NormalizeData, have
completed and the Train job is currently running. This is illustrated
by the green and yellow colors, respectively. The remaining jobs
are queued and will run as soon as their required data is available.
As described in Section 3, detailed real-time output of each job can
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be monitored during an execution. An example viewing the output of the Train job is provided in
Figure 6.

Figure 5: Execution of the pipeline
in Figure 3

Figure 6 shows an example of monitoring the Train job. When
monitoring a job, the job implementation is provided along with
any of the job’s outputs. In this example, the Train job has two
types of output: the console output and a plot of the training
error (using the criterion function defined in Figure 3). In Fig-
ure 6, the implementation is provided on the left and the output
is shown on the right. In this example, the graph is currently
visible and providing real-time feedback after each training
iteration. The console output can be viewed by selecting the
“Console” button beneath the graph.

One powerful aspect of this approach to job feedback lies in
its flexibility; the real-time plotting API is provided in the
operation implementation and enables users the flexibility to
define the most appropriate feedback mechanisms for the given
operation. This plotting API is also very simple and easy to
incorporate into an operation’s implementation. The relevant
plotting logic from the Train operation is provided below.

graph = DeepForge.Graph(’Training Error’)
errLine = graph:line(’error’)

trainer.hookIteration =
function(t, iter, currentErr)

errLine:add(iter, currentErr)
end

trainer:train(trainset)

In this example, we are first creating the graph and an error line using the “DeepForge.Graph”
constructor and the graph’s “line” method, respectively. The trainer variable is the stochastic gradient
descent module provided in Torch; in defining a function for the “hookIteration”, we are able to add a
point to the error line where the x value is the iteration and the y value is the associated error metric.
Finally, the trainer invokes “train” to perform stochastic gradient descent on the neural network model
and plot the error metric after each iteration.

Figure 6: Monitoring Train execution with real-time graph feedback
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5 Comparison with Other Tools

While there are a handful of visual environments for data science developers, such as RapidMiner
(17) and Knime (12), as well as more recent tools tailored to deep learning development, such as
Nvidia’s DIGITS (19) and Google’s TensorBoard (1), DeepForge has significant differences. Unlike
the existing data science developer tools, DeepForge primarily addresses the challenges of developing
deep learning models while still providing the user a high degree of low-level flexibility, such as
implementing custom layers and operations using Torch7. This flexibility allows DeepForge to be
valuable not only to basic use cases but also to the more advanced use cases that come up in research.
This enables DeepForge to be a useful platform for both researchers and industry, simplifing the
task of incorporating the latest research into production environments. DeepForge provides a much
higher degree of customizability and flexibility when creating neural networks than these generic
data science tools.

Both DIGITS and TensorBoard provide support for the execution of machine learning tasks and
provide visualization utilities to aid in the creation of the given tasks. They also both provide a
web-based user interface for monitoring these executions and performing some model introspection
such as visualizing weights of trained layers. Despite having visualization functionality, both tools
require that the actual tasks are written in a textual language (or, for DIGITS, optionally using Caffe
prototext). Both tools provide very useful capabilities for running and monitoring a machine learning
task but provide little support for the actual process of creating and defining the machine learning
task initially.

Unlike existing deep learning platforms, DeepForge also focuses on facilitating reproducibility and
collaboration throughout the entire development process. By providing capabilities such as real-time
collaboration and automatic version control, DeepForge supports the development process from
the very beginning. DeepForge also provides a simple, yet powerful conceptual framework for the
creation, execution and management of machine learning tasks. Providing not just visualization
utilities but actually a visual editor for neural network architectures and machine learning pipelines
lowers the barrier to entry for working with deep learning models while also providing an intuitive
representation which can still benefit experienced users. As DeepForge still provides remote execution,
real time feedback and visualization capabilities, it provides a platform that supports the developer
from initial experimentation through to the iteration and fine tuning of the developed models.

6 Conclusion

This paper presented DeepForge, a robust development platform for deep learning with a powerful
underlying conceptual model. DeepForge utilizes the strengths of model integrated computing,
including model analysis and manipulation, to develop a deep learning platform that both provides an
intuitive visual interface enforcing domain semantics as well as providing portable models which can
be exported to various deployment formats. Furthermore, DeepForge has been designed to facilitate
collaboration, reproducibility and extensibility. This includes supporting real-time collaborative
editing, integrated version control and the remote execution of machine learning pipelines.

Future work includes integration of publicly available datasets such as OpenML and Kaggle as well
as creating a registry for hosting operation definitions, architectures and trained models (26; 10).
Adding data visualization support to the existing extension architecture is another planned feature
to incorporate into DeepForge. This will enable the development and incorporation of third party
custom model and data visualization utilities and will facilitate the incorporation of the latest neural
network introspection and visualization techniques (27; 28). Developing an active community is
particularly valuable as users can develop custom DeepForge extensions. Currently, extensions can
be used to create custom export formats (simplifying deployment of machine learning pipelines);
however, in the future, these will also include custom model introspection utilities as well as data
visualization.
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