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ABSTRACT

In this paper, we find that by designing a novel loss function entitled, “tracking
loss”, Convolutional Neural Network (CNN) based object detectors can be suc-
cessfully converted to well-performed visual trackers without any extra computa-
tional cost. This property is preferable to visual tracking where annotated video
sequences for training are always absent, because rich features learned by detec-
tors from still images could be utilized by dynamic trackers. It also avoids extra
machinery such as feature engineering and feature aggregation proposed in previ-
ous studies. Tracking loss achieves this property by exploiting the internal struc-
ture of feature maps within the detection network and treating different feature
points discriminatively. Such structure allows us to simultaneously consider dis-
crimination quality and bounding box accuracy which is found to be crucial to the
success. We also propose a network compression method to accelerate tracking
speed without performance reduction. That also verifies tracking loss will remain
highly effective even if the network is drastically compressed. Furthermore, if we
employ a carefully designed tracking loss ensemble, the tracker would be much
more robust and accurate. Evaluation results show that our trackers (including the
ensemble tracker and two baseline trackers), outperform all state-of-the-art meth-
ods on VOT 2016 Challenge in terms of Expected Average Overlap (EAO) and
robustness. We will make the code publicly available.

1 INTRODUCTION

Visual tracking is a fundamental computer vision task, and can be used to predict the trajectory of
objects in a video sequence. It is the building block for applications in self-driving vehicles, robotics
and automatic surveillance.

The richness of feature representations is crucial to the success of Convolutional Neural Networks
(CNNs) in many computer vision tasks, such as image classification and object detection. This
property also motivates researchers to adopt CNNs as strong feature extractors in the setting of visual
tracking (Wang et al., 2015; Ma et al., 2015; Hong et al., 2015; Nam & Han, 2015; Nam et al., 2016).
MDNet (Nam & Han, 2015) is a famous CNN based tracker which achieved tremendous success on
VOT 2015 (Kristan et al., 2015). One major drawback is that MDNet is trained with annotated
video sequences provided by previous challenges. Therefore, MDNet is lack of generalizability to a
diversity of tracking targets. Actually, there is no such dataset with enough labeled video sequences
specialized to train trackers.

Previously, a series of trackers (Wang et al., 2015; Ma et al., 2015; Hong et al., 2015) attempted to
convert CNN based classifiers trained on large scale image classification datasets (for example Im-
ageNet (Russakovsky et al., 2015)) to tracking. In our opinion, these approaches relied heavily on
feature engineering and feature aggregation. That would result in more time and computational cost.
Another feasible idea might be to convert pre-trained object detectors to trackers. Region Proposal
Network (RPN) (Ren et al., 2015) is a state-of-the-art object detector and achieves tremendous suc-
cess. It could simultaneously provide strong features for classification and bounding box regression.
After a careful exploration, we find the internal structure of RPN is highly relevant and possesses
strong potential for discriminative trackers.

Visual trackers usually require to be trained online to learn specific appearances of targets. However,
ground truths are quite limited. Data augmentation is widely employed to enlarge training samples.
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As to positive training samples, they are a batch of randomly cropped patches, which are subject to a
two-dimensional Gaussian distribution, from the entire image around the ground truth. However, this
sampling strategy usually contains some background pixels at the border of sampled images. These
background pixels are noisy to train a well-performed tracker. With time elapse, accumulative noises
will make the tracker get even worse. Due to above problem, if RPN is directly employed in tracking
without any modification, different pixels will be treated equally, and the tracker will perform poor.
In our opinion, we think pixels in different positions should be treated discriminately. Generally
speaking, centric pixels of sampled images are more confident to cover the target object than border
ones. Also corresponding feature points of centric pixels are more likely to be positive. In order
to realize treating different feature points discriminatively, we explore the top layer feature maps of
RPN, design a series of matching strategies, and evaluate them quantitatively and qualitatively. Due
to none of the matching strategies is the best, we propose the tracking loss composed of two better
performed matching strategies. Such method proves to be effective to take advantage of pros and
offset cons of each matching strategy. Tracking loss bridges the gap between object detection and
visual tracking in an unconventional loss viewpoint which will not bring extra computation.

RPN is a relative large network which would limit tracking speed. Basing on knowledge distillation
theory (Hinton et al., 2015), we also propose a network compression method to trim the RPN.
Experiments show that tracking loss would remain highly effective even if the network is drastically
compressed.

Furthermore, we adopt a carefully designed tracking loss ensemble which is consist of four types of
loss functions. Evaluation results show that tracking loss ensemble could perform much better. Our
trackers (including the ensemble tracker and two baseline trackers) outperform all state-of-the-art
methods on VOT 2016 Challenge in terms of Expected Average Overlap (EAO) and robustness.

The contributions can be summarized as follows,

• We propose a novel tracking loss which successfully converts a pre-trained object detector
RPN to a state-of-the-art visual tracker without extra computational cost. It shed new lights
on transferring pre-trained detection network to new tasks where labeled data is very scarce.

• We propose a network compression method to speed up our tracker. Meanwhile, it proves
that tracking loss is a robust way to convert detection to tracking and independent of net-
work variations. Furthermore, we implement a tracking loss ensemble with four types of
loss functions to further promote tracking performance.

• Our two baseline trackers and the ensemble tracker outperform all state-of-the-art trackers
on VOT 2016 (Kristan et al., 2016) in terms of EAO and robustness.

2 RELATED WORK

Most visual tracking algorithms can be categorized into two classes, generative or discriminative.
In generative approaches (Comaniciu et al., 2003; Zhang et al., 2012; Han et al., 2008), target ap-
pearances are trained to represent objects. Trackers search the most matched region as target pre-
diction. Discriminative trackers regard tracking as a classification task. Taking the state-of-the-art
MDNet (Nam & Han, 2015) as example, firstly 256 candidate proposals are sampled as network
input. Sampling is subject to a two-dimensional Gaussian distribution which are cropped around
the target object from the entire image. The mean is the target height and width of previous frame,
and standard deviation is (0.15(height + width), 0.15(height + width)). Next, the tracker executes a
binary classification to judge whether candidate proposals are the target or background. MDNet was
the champion of VOT 2015 Challenge (Kristan et al., 2015). But due to it was trained with labeled
video sequences, therefore lack of generalizability to various tracking targets.

If CNN features pre-trained on other tasks can be utilized by visual tracking, that would be quite
meaningful. Wang et al. (2015) and Ma et al. (2015) took cross-layer feature selection, but it is
hard to manually decide the best lower level features which works well across various scenes and
domains. Hong et al. (2015) proposed a target specific saliency map for sequential bayesian filtering
by back-propagating relevant features. However, back-propagation is a time consuming operation,
thus not proper for speed sensitive visual tracking tasks.
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RPN is first adopted in a popular two-stage detector, Faster R-CNN (Ren et al., 2015), which inte-
grates candidate proposal generation and classification into an identical convolutional network. RPN
is consist of a backbone network and two following convolutional layers to provide robust features
for proposal generation, classification and bounding box regression simultaneously. The backbone
network is usually a pre-trained CNN based classification network, such as AlexNet (Krizhevsky
et al., 2012), ZF (Zeiler & Fergus, 2014), VGG-16 and VGG-19 (Simonyan & Zisserman, 2014).
RPN provides translation invariant anchors. An anchor (Ren et al., 2015) is essentially a 1x1 position
in feature maps of a specified layer. Each anchor is conceptually corresponding to a few imaginary
areas in input images called as anchor boxes. This property is convenient to map an anchor point to
corresponding anchor boxes in the input image, also translate regions to corresponding anchors. In
Faster R-CNN (Ren et al., 2015), they assigned 9 kinds of anchor boxes, assembled by 3 types of
aspect ratios (1:1, 1:2, 2:1) and 3 scales (1282, 2562, 5122).

For discriminative trackers, a backbone network is required to extract target independent high-level
features for further classification. Furthermore, they should have the ability to learn target specific
features for diverse tracking tasks. We find the network structure of RPN is suitable to construct a
discriminative tracker. The backbone network in RPN can be utilized to generate target independent
features. Two subsequent convolutional layers would be re-initialized to learn target specific features
for each tracking video. However, object detection and tracking are two independent tasks. In
tracking, the ground truth wouldn’t be provided except for the first frame. If converting RPN to
tracking directly, loss of bounding box regression will lose efficacy. A feasible idea is to re-design
the loss function in RPN to adapt to tracking. To our best knowledge, no previous work attempted
to convert a detector into a tracker merely by adjusting loss function.

Larger deep neural networks could enhance model capability, but simultaneously result in more time
and computational consuming. RPN is relative large to tracking. Network compression is required
to speed up tracking procedure. Moreover, a well-performed loss function should be independent of
network variations, just like network compression. Han et al. (2015) proposed a network compres-
sion pipeline, including 3 stages: pruning, quantization and huffman encoding. But that pipeline is
not proper for CNN based RPN.

Previously, ensemble method has already been employed in tracking. Cao & Xue (2013); Bai et al.
(2013); Wang & Yeung (2014) proposed to combine a set of weak classifiers to build a strong tracker.
Han et al. (2017) proposed the “BranchOut” to silence a subset of CNN branches during model
update to regularize the online ensemble tracker. Apart from network ensemble, loss ensemble can
be also a feasible way to strength the tracker. And that is a much lighter method to implement
ensemble.

3 CONVERTING RPN TO TRACKING

In this section, we will introduce our first trial analysis when directly employing RPN in tracking.
We find different feature points should be treated discriminately. After exploring the top layer fea-
ture maps of RPN, we design and evaluate four matching strategies according to discrimination in
confidence scores. Finally, we propose the tracking loss which is composed of two better performed
matching strategies.

3.1 FIRST TRIAL ANALYSIS

We observe that if directly employing RPN in tracking without modifications, the tracker would
perform terrible. The reasons can be concluded as follows. RPN could provide target independent
features. However, tracking targets are various. Target specific appearances require to be learned
online for a variety of tracking tasks. But in visual tracking, ground truths are quite limited for online
training. Therefore, data augmentation is widely used to enlarge training samples. In MDNet (Nam
& Han, 2015), with respect to negative training samples, they are some patches randomly cropped
from background. As to positive training samples, they are a batch of cropped patches, which are
subject to a two-dimensional Gaussian distribution, from the entire image around the ground truth.
If taking this kind of sampling strategy, positive samples will usually contain several background
pixels around the border. These background pixels are a kind of noise during online training. With
time elapse, accumulative noises will make the tracker get even worse. In our opinion, we think
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Figure 1: (a) A matched anchor box and the ground truth in object detection. (b) A matched anchor
box and the ground truth in visual tracking.

pixels in different positions should be treated discriminately. Due to sampling follows a Gaussian
distribution, centric pixels are more confident to cover the target object than border ones for positive
samples. Also corresponding CNN feature points of centric pixels are more likely to be positive. In
order to treat different feature points discriminately, we explore the top layer feature maps of RPN.

According to the difference in backbone network type, RPN could be different versions. In order to
achieve a trade-off between network capability and speed, we select the ZF type (Zeiler & Fergus,
2014) RPN which receives 203x203 sampled RGB images as input.

3.2 EXPLORING TOP LAYER FEATURE MAPS OF RPN

The size of the top layer feature maps of ZF type RPN is 14x14, as shown in Figure 2. Each
feature point is an anchor. The receptive field of an anchor in the top layer of RPN is 171x171.
In other words, maximum visual field an anchor can see. Therefore, we set the scale of anchor
box and receptive field the same. Moreover, we only reserve anchor boxes with aspect ratio 1:1.
That significantly reduces the number of anchor boxes from 9 to 1, also a large amount of trainable
weights, and accelerates tracking speed a lot.

In RPN, the purpose of anchor boxes is to provide fundamental coordinates in the input image. If
the ground truth is given, the similarity between anchor boxes and the ground truth can be calculated
to categorize anchor boxes as target object (positive) or background (negative). We use Intersection
Over Union (IoU) to define similarity. Figure 1 (a) shows a ground truth (the green rectangle)
matched with an anchor box (the red rectangle) in object detection, whose IoU is larger than 0.7.
Figure 1 (b) shows the relationship between ground truth and a possible anchor box in tracking.

Although ground truths are not provided in tracking, according to analysis in Section 3.1, centric
pixels are more confident to cover the target object than border ones. Also corresponding central
feature points of centric pixels are more likely to be positive. With even height and width, the
central point of RPN is not unique. Therefore, we regard the union area of central anchor boxes
(corresponding to 2x2 anchor points with value 1 shown in Figure 2) as the ground truth. We
calculate the IoU of each anchor box with newly defined ground truth as its confidence score, and
display it at each point of Figure 2.

We can treat anchors in different positions discriminatively according to Figure 2. A higher con-
fidence score means the corresponding anchor box is much more similar with the ground truth.
During training, error back-propagation through these points is more confident. If only considering
points with high confidence scores, blue points in Figure 2 have IoUs larger than 0.8. We define the
blue area as the first matching strategy, just looking like a symbol +. As to a medium threshold, we
choose a square area with least IoU 0.49 as the second matching strategy, including red and blue
points in Figure 2. What’s more, anchor points contained in another square area, with least IoU
0.24, are defined as the third matching strategy, including green, red and blue points in Figure 2. In
addition, the full top feature points are defined as the fourth matching strategy, including all orange,
green, red and blue points in Figure 2. During training, only feature points in the matched area
would be considered to calculate the total loss in each matching strategy. For the rest mismatched
points, they would be ignored. Parameters will only be updated through matched anchor points.
Such contraption treats different feature points discriminatively.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0.11 0.13 0.16 0.19 0.22 0.25 0.28 0.28 0.25 0.22 0.19 0.16 0.13 0.11

2 0.13 0.16 0.20 0.24 0.28 0.32 0.36 0.36 0.32 0.28 0.24 0.20 0.16 0.13

3 0.16 0.20 0.24 0.29 0.34 0.40 0.46 0.46 0.40 0.34 0.29 0.24 0.20 0.16

4 0.19 0.24 0.29 0.35 0.41 0.48 0.56 0.56 0.48 0.41 0.35 0.29 0.24 0.19

5 0.22 0.28 0.34 0.41 0.49 0.58 0.68 0.68 0.58 0.49 0.41 0.34 0.28 0.22

6 0.25 0.32 0.40 0.48 0.58 0.70 0.83 0.83 0.70 0.58 0.48 0.40 0.32 0.25

7 0.28 0.36 0.46 0.56 0.68 0.83 1.00 1.00 0.83 0.68 0.56 0.46 0.36 0.28

8 0.28 0.36 0.46 0.56 0.68 0.83 1.00 1.00 0.83 0.68 0.56 0.46 0.36 0.28

9 0.25 0.32 0.40 0.48 0.58 0.70 0.83 0.83 0.70 0.58 0.48 0.40 0.32 0.25

10 0.22 0.28 0.34 0.41 0.49 0.58 0.68 0.68 0.58 0.49 0.41 0.34 0.28 0.22

11 0.19 0.24 0.29 0.35 0.41 0.48 0.56 0.56 0.48 0.41 0.35 0.29 0.24 0.19

12 0.16 0.20 0.24 0.29 0.34 0.40 0.46 0.46 0.40 0.34 0.29 0.24 0.20 0.16

13 0.13 0.16 0.20 0.24 0.28 0.32 0.36 0.36 0.32 0.28 0.24 0.20 0.16 0.13

14 0.11 0.13 0.16 0.19 0.22 0.25 0.28 0.28 0.25 0.22 0.19 0.16 0.13 0.11

Figure 2: Confidence scores and matching strategies in the top layer feature maps of ZF type RPN.
Confidence scores are IoUs of corresponding anchor boxes with defined ground truth. Region in
blue is defined as the first matching strategy, red and blue as the second, green, red and blue as the
third, full map as the fourth.

3.3 LOSS FUNCTION OF RPN IN OBJECT DETECTION

Eq. (1) is the original loss function in RPN (Ren et al., 2015). There are two parts, loss of classifi-
cation (Lcls) and loss of bounding box regression (Lreg). qi and ti are the predicted probability and
predicted bounding box, and q∗i and t∗i are their ground truths. λ is a hyper-parameter to balance
these two parts. In visual tracking, only the first frame has one labeled bounding box as ground
truth. Bounding box regression will lose efficacy in tracking. Therefore, only Lcls part is reserved
during constructing our RPN based tracker. Lcls can be different types of loss function, including
Softmax Logistic Loss, Info-gain Loss , Sigmoid Cross-entropy Loss and Hinge Loss.

LRPN =
∑
i

Lcls(qi, q
∗
i ) + λ

∑
i

q∗i Lreg(ti, t
∗
i ) (1)

3.4 MATCHING STRATEGY EVALUATION

Quantitative Evaluation: Softmax Logistic Loss is a commonly used loss function among above
four types. We implement different matching strategies with it. In order to give a concrete compari-
son of four matching strategies, we conduct a quantitative evaluation on VOT 2016 benchmark (Kris-
tan et al., 2016). Results are shown in Table 1. There are two types of experiments, unsupervised
and baseline. For unsupervised experiment, it is the traditional One Pass Experiment (OPE) without
re-initialization. In baseline experiment, trackers would be re-initialized once the predicted bound-
ing box completely drifts off the ground truth. Average Overlap (AO) is an indicator standing for
the average IoU for frames across all videos.

Table 1: Matching strategy evaluation results. The first and fourth matching strategies perform better
both in baseline and unsupervised experiments. Red stands for ranking the first and blue the second.

Experiment Baseline Unsupervised
(AO)
First matching strategy 0.47 0.39
Second matching strategy 0.45 0.38
Third matching strategy 0.41 0.36
Fourth matching strategy 0.47 0.43
First + Fourth 0.52 0.46

According to Table 1, trackers with the first and fourth matching strategy perform better both in
baseline and unsupervised experiments. But their performance still can not reach our expectation.

Qualitative Evaluation: If we use a relatively high threshold of IoU during anchor box matching,
for example the first matching strategy, less feature points would be used during computing the loss.
Total loss reflects more about central points in the feature maps. We observe this kind of tracker
is able to successfully follow up most of the objects at the beginning, including very challenging
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videos, as shown in Figure 3 (a). However, the bounding box will gradually get larger and larg-
er along with time elapse, as Figure 3 (b). If we use a relative low IoU threshold, for example
the fourth matching strategy, although bounding box quality could be improved, the tracker drifts
quickly on challenging videos with abrupt motion or deformation, such as human body and hand
shown in Figures 3 (c) and (d). Target appearance changes dramatically through the whole video.
As to a medium IoU threshold, for example the second and third matching strategy, their tracking
performance are even worse.

#9 #112

Tracking result Ground truth

(a)

#5 #28

(c)

(b)

(d)

Figure 3: Qualitative evaluation of matching strategies. (a) is an early frame of first matching
strategy, and (b) shows bounding box will get larger with time elapse. (c) and (d) show that trackers
drift quickly to abrupt motion and deformation in fourth matching strategy.

Analysis: For the first matching strategy, due to back-propagation only goes through anchors with
high IoUs, the tracker is able to follow up target object, but performs poor to provide tight bounding
boxes. Eventually, the phenomenon in Figure 3 (b) would occur. In the fourth matching strategy,
bounding box is accurate, but errors from classification would increase. That is owing to anchor
points with low IoUs are equally treated with higher ones. Actually, higher IoUs should be more
confident than lower ones. According to evaluation results of the second and third matching strate-
gies, if choosing a medium IoU threshold, tracking performance would not be improved, instead get
even worse.

We find the first matching strategy is good at classification, but poor in bounding box accuracy.
Although loss function in the fourth matching strategy only contains a classification part, comparing
with the first matching strategy, it performs better in providing tight bounding boxes rather than
accurate classification.

3.5 TRACKING LOSS

In the paper, the key idea is to design a tracking loss to convert detection to tracking simultaneously
considering the discrimination quality and bounding box accuracy. We propose to combine the first
and fourth matching strategies together to define the new tracking loss. We believe this method
could take advantage of pros and offset cons of each matching strategy. Tracking loss is defined as
eq. (2). Where ai is the predicted probability of an anchor i being an object in the first matching
strategy. a∗i is the label of the ground truth. pi and p∗i are separately the predicted probability of and
ground truth in the fourth matching strategy. α and β are two variables to balance these two loss
terms.

LTrackingLoss = α
∑
i

Lcls(ai, a
∗
i ) + β

∑
i

Lcls(pi, p
∗
i ) (2)

Tracking loss contains two matching strategies. Each has an independent RPN module. They share
identical features from the backbone ZF network. With a Softmax Logistic Loss employed, we find
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AO is significantly promoted to 0.52 in baseline experiment, and 0.46 in unsupervised experiment,
as shown in Table 1. Here, the hyper-parameters α and β are set to 1 and 10 respectively. Above
evaluation results verify that tracking loss is effective to convert detection to tracking.

4 NETWORK COMPRESSION

RPN is a relative large network to tracking. Additional actions should be taken to accelerate its
speed. Moreover, shallow features are often field independent. A well-performed loss function
should be robust to network variations. Each RPN has a backbone network for feature extraction. If
backbone network is drastically compressed, could tracking loss still performs outstanding results?
Learning from knowledge distillation, we propose a new network compression method to speed up,
simultaneously to verify the robustness of tracking loss.

Hinton et al. (2015) proposed to distil knowledge from a large network into a small one. It was found
that small networks trained from large networks could also offer similar performance than directly
training a small network from scratch. Therefore, we propose to train the compressed ZF network
from a pre-trained ZF network.

203×203

107×107

Stride 2

Stride 4

Conv1

Pool1 Conv2

Conv1

Pool2

Conv2

Conv3 Conv4 Conv5

Conv3 Conv4 Conv5

Pre-trained
ZF Network

Compressed
ZF Network

E
u
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e
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 Lo
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Forward
Backward

Figure 4: Training flow of compressed ZF network. We remove Pool1 & Pool2 in the compressed
ZF network, and adjust the stride of Conv1 from 2 to 4. Other hyper-parameters remain invariant.
We resize a batch of identical images in PASCAL VOC 2012 into two resolutions 203x203 and
107x107, feed them into two networks, and take Conv5 feature maps in the pre-trained ZF network
as guidance to train the compressed ZF network with Euclidean Loss.

The training procedure of compressed ZF network is shown in Figure 4. To begin with, we use top
layer feature maps of a pre-trained ZF network as ground truth whose weights won’t be updated
during training. The size of input images is 203x203. We believe it beneficial to make use of
the knowledge learnt by pre-trained ZF network. Therefore, weights in compressed ZF network are
initialized from the pre-trained ZF network. We take smaller images as input whose size is 107x107.
In order to obtain an identical size of top layer feature maps, we adjust the stride of Conv1 in
compressed ZF network from 2 to 4, and keep the stride of Conv2 unchanged. Moreover, we
remove Pool1 and Pool2 layers. Those modifications will not change the size and amount of kernels
in each layer. During training, we resize a minibatch of images into required resolutions. Then
we separately feed those resized images into the pre-trained ZF network and the compressed ZF
network. Euclidean loss is employed to guide training. Weights only update in the compressed ZF
network during training. In addition, we remove the last pooling layer after Conv5, and normalize
the feature maps with the mean and standard deviation of top layer feature maps of pre-trained ZF
network on PASCAL VOC 2012 images (Everingham et al., 2015).

After training, we separately take pre-trained ZF and compressed ZF as backbone network of RPN
and evaluate on VOT 2016 benchmark. Eventually, we get the same AO at 0.52 in baseline exper-
iment and 0.46 in unsupervised experiment. Apparently, our network compression won’t lose any
old knowledge. That indicates tracking loss is robust to network compression and independent of
feature extraction in backbone network. Surprisingly, the time of one forward pass with compressed
ZF network decreases from 2.37s to 0.60s. The proposed network compression method significantly
accelerates tracking speed four times.
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5 ALGORITHM OVERALL

Previous evaluation results in Section 4 show that compressed ZF network could also provide high
quality features like the non-compressed one. Therefore, we take compressed ZF network for feature
extraction. Different types of loss functions approach Empirical Risk Minimization in different
ways. We utilize four types of tracking loss to realize ensemble. Overall structure of our tracker is
depicted in Figure 5.

On the left part of Figure 5, a compressed ZF network is used to extract features. On the right side,
there are four independent branches with different types of loss function. Each branch contains two
Conv proposal layer and two Conv proposal cls score layer separately for two parts in tracking
loss whose weights would be updated during online training. Each loss branch also owns an inde-
pendent scoring mechanism. Softmax Logistic Loss and Info-gain Loss take a softmax function.
Sigmoid Cross-entropy Loss and Hinge Loss use a sigmoid function instead. The scores are used to
identify whether candidate proposals belong to target object or background. Each baseline tracker
only contains one single branch, corresponding to a dashed box in Figure 5. We average scores from
four separate branches to define the similarity between a candidate proposal and ground truth. These
four branches compose tracking loss ensemble.
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Figure 5: Overall architecture of our algorithm. A fine-tuned compressed ZF network is used for
fast feature extraction. Four branches contain different types of tracking loss forming ensemble.

Weights in Conv proposal layer and Conv proposal cls score layer are randomly initialized
before online tracking with a Gaussian distribution. The value α:β require to be determined before
tracking. After fine-tuning, we use 1:10 in Softmax Logistic Loss and Information-gain Loss, 4:1
in Sigmoid Cross-entropy Loss and 3:9 Hinge Loss. The base learning rate is 0.0002 for Sigmoid
Cross-entropy Loss, 0.0005 for other loss functions. Momentum is set to 0.9. Weight decay is
0.0005.

6 EXPERIMENT

Our tracker is implemented in MATLAB using Caffe deep learning framework. It is evaluated on a
workstation with NVidia GeForce GTX Titan X GPU and Intel i7 3.6GHz CPU. The speed is about
1.6 FPS with a compressed ZF network and tracking loss ensemble. For a single loss tracker, the
speed is 1.7 FPS. With respect to MDNet running at 1FPS, our tracker accelerates 60% in speed.

6.1 EVALUATION ON VOT 2016 BENCHMARK

We evaluate our tracker on VOT 2016 (Kristan et al., 2016) which contains a moderate scale dataset
with 60 challenging video sequences. This benchmark pays more attention to quality of contents and
annotations rather than quantity. A re-initialization protocol will be triggered whenever the predicted
bounding box in any frame has zero overlap with the target ground truth. We use EAO, accuracy
and robustness to judge tracking performance. AO measures the accuracy between predictions and
ground truths. Robustness is defined as average failures of each tracking video sequence. EAO
measures the expected no-reset overlap of a tracker running on a short-term sequence, which could
balance the accuracy of successful frames and robustness of sequences with diverse lengths (Kristan
et al., 2016).
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We evaluate four baseline tracking loss and tracking loss ensemble. Each tracker takes compressed
ZF network as backbone network. To make a horizontal comparison, we use 9 state-of-the-art
algorithms on VOT 2016 Challenge (Kristan et al., 2016) as contrast, including CCOT (Danell-
jan et al., 2016), TCNN (Nam et al., 2016), SSAT, MLDF, Staple (Bertinetto et al., 2016), DDC,
EBT (Zhu et al., 2016) SRBT and MDNet N (MDNet without training on labeled videos). In Fig-
ure 6 and Table 2, Ours softmax denotes the baseline tracker with single Softmax Logistic Loss,
Ours sigmoid stands for a tracker with Sigmoid Cross-entropy Loss, Ours hinge for Hinge Loss,
Ours info1 for Information-gain Loss with matrix [0.9 0.1; 0.1 0.9], Ours info2 for Information-
gain Loss with matrix [0.8 0.2; 0.2 0.8], Ours info3 for Information-gain Loss with matrix [0.7
0.3; 0.3 0.7]. Ours ensemble denotes tracking loss ensemble, which is composed of four types
of tracking loss, including Softmax Logistic Loss, Sigmoid Cross-entropy Loss, Hinge Loss and
Information-gain Loss.

Figure 6: Ranking plot of Accuracy and Robustness. Right top trackers perform excellent and
achieve a tradeoff between bounding box accuracy and discrimination quality.

Among all single tracking loss methods, Hinge Loss performs the best in EAO and robustness.
Ours info2 is the best among three Information-gain Loss based trackers. So we take information
matrix [0.8 0.2; 0.2 0.8] in tracking loss ensemble. Ours hinge and Ours info2 exceed all contrast
trackers in EAO and robustness. Softmax Logistic Loss and Sigmoid Cross-entropy Loss also exceed
most contrast trackers. Figure 6 is the ranking plot of trackers in terms of accuracy and robustness.
Tracking loss ensemble occupies the top right corner, achieves a tradeoff between accuracy and
robustness. According to Table 2, tracking loss ensemble is the most robust one and achieves the
first place in EAO, which outperforms state-of-the-art trackers, like CCOT, TCNN. MDNet N falls
behind due to its backbone network here is pre-trained on ImageNet rather than labeled videos.

Our proposed tracking loss algorithms (including Ours hinge, Ours info2 and Ours ensemble) ex-
ceed all contrast trackers in EAO and robustness. But they fail to achieve good performance in accu-
racy. We suppose that might result from tracking loss only contains classification part, no bounding
box regression part. Nevertheless, tracking loss is robust to keep up with target object without in-
terruption. Eventually, overall performance is improved significantly and achieves the first in EAO
which is the most significant indicator among the three. Actually, trackers are also ranked by EAO
on VOT 2016 challenge (Kristan et al., 2016).

Table 2: EAO, Accuracy and Robustness comparing with trackers on VOT 2016 Challenge. Red
stands for ranking the first, blue for the second and green for the third.

Trackers EAO Accuracy Rank Robustness Rank
Ours ensemble 0.3498 2.80 2.98
Ours hinge 0.3384 2.53 3.60
Ours info2 0.3365 2.63 3.88
CCOT 0.3310 3.23 4.28
TCNN 0.3249 2.22 5.67
Ours softmax 0.3241 2.65 4.35
Ours sigmoid 0.3210 2.97 4.65
SSAT 0.3207 1.55 5.15
Ours info1 0.3166 2.88 4.73
MLDF 0.3106 5.00 4.08
Staple 0.2952 3.52 7.23
DDC 0.2929 2.65 6.67
Ours info3 0.2928 3.07 5.73
EBT 0.2913 6.55 4.22
SRBT 0.2904 5.07 6.67
MDNet N 0.2572 2.27 6.00
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7 DISCUSSION

In this paper, we find that data augmentation will bring noise to train trackers. Pixels in different
positions should be treated discriminatively. If sampling is subject to a Gaussian distribution, centric
pixels are more likely to cover the target object than border ones. Due to translation invariant anchor
box design of RPN, we could easily map anchor boxes to points in the top layer feature maps.
Central feature points are highly confident to be positive. Therefore, we regard four central points
as the ground truth. Confidence scores of different anchor points are defined by IoU. According to
discrimination in confidence scores, we design four matching strategies and employ RPN in tracking.
Finally, we combine two better strategies and propose the novel tracking loss. Such contraption
realizes to treat different feature points discriminatively.

Moreover, we propose a network compression method and accelerate tracking speed four times
without performance decline. That also implies tracking loss is robust to network variations.

Evaluation results on VOT 2016 show that two baseline tracking loss trackers and the tracking loss
ensemble tracker outperform all state-of-the-art trackers in terms of EAO and robustness. That
verifies tracking loss is effective to convert a popular detector RPN to a well-performed tracker.
Treating feature points in different positions discriminatively could improve tacking performance
indeed.

Feature engineering and feature aggregation would cost more time and computation during con-
verting. Comparing with them, tracking loss is a much lighter method to convert rich features in
detectors to trackers.

8 CONCLUSION

In the paper, we propose a novel tracking loss to convert an object detector to a well-performed ro-
bust tracker without extra time or computational consuming modifications (e.g. feature engineering
and feature aggregation). On the basis of inaccuracy of sampling, tracking loss fully exploits the
internal structure of top layer features of the detection network to treat feature points discriminative-
ly. Such structure could provide high-quality discrimination and tight bounding boxes in tracking.
Our network compression yields 4 times speedup. That also proves tracking loss is robust to net-
work variations. We further employ tracking loss ensemble to promote the performance. Evaluation
results on VOT 2016 show that two baseline tracking loss trackers and the tracking loss ensemble
tracker outperform all state-of-the-art trackers in terms of EAO and robustness.
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