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Abstract. Since the mid 2000s’, the Linked Data principles, and the
tools they inspired, became a solid foundation for a decentralized yet
connected Web of Data where static (or slowly evolving) data can be
shared and traversed. However, the growing popularity of (fast) stream-
ing data is now calling for an extension of Linked Data towards a Web of
Data Streams. In this paper, we identify several challenges to solve to-
wards this vision. Moreover, we present VoIS, a Vocabulary of Interlinked
Streams, and we show how it contributes in addressing such challenges.

1 Introduction

The vision of a Web of Data Streams– a decentralized ecosystem of streaming
and static data published and consumed by intelligent systems following Linked
Data principles – is appealing as never before. This is thanks to the availability
on the Web of data sources like social media, news-feeds and application logs,
which are both natively data stream and Web-based.

Since the late 90s, the popularity of streaming data grew every year [2]. The
Semantic Web did – and it is still doing – its part [7]. Processing data stream,
using extensions of Web technologies, captured most of the attention. However,
decentralization was advocated [13,5] and recently Triplewave [11] made a first
step in prototyping a solution for decentralized publishing of data stream.

The Web of Data Streams scenario promises interesting use-cases, but can we
handle streams in Linked Data applications? We analyzed the status of streams
in relation of Linked Data principles in Table 1.

Linked Data Principles Static Data Data Streams

Decentralised URI Yes Yes
Cross Links Yes Maybe
Metadata VoID, DCat, DC terms No
Served with HTTP RDF/HTML No
Standards RDF & SPARQL Ongoing

Table 1. How linked data best practice apply to Streaming Data
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Like static data, streams are referenced using URIs. Cross Links, i.e. the
navigation from one data source to another, is possible from data items flowing
in the streams to Linked Data, but it is unclear how the opposite can work in
the general case, due to the volatile nature of those flowing data items.

Stream representation is an open problem. While many vocabulary are avail-
able to describe datasets, e.g. VoID, Dcat, DC terms, none of them is suitable
to represent a data stream. Listing 1.1 clearly shows that some information is
missing when we deal with streaming data. See for instance Line 9, how can
we expect to dump a potentially infinite data stream? Moreover, the dump will
be continuously updated, but how can we describe this phenomena? One may
argue that Partition (see Lines 10-16) can solve the issue, but still metadata
to describe the Window (e.g., length, starting time, or periodicity) are missing.
Last but not, streams are not generally served via HTTP.

1 : MilanTraf f icDS a void : Dataset ; # No datastream concept
2 dcterms : s ub j e c t dbc : T r a f f i c ;
3 dcterms : s ub j e c t dbc : Milan ;
4 dcterms : t i t l e ”Milan t r a f f i c stream ” ;
5 dcterms : d e s c r i p t i o n ” Streaming t r a f f i c aspect o f milan

areas ” ;
6 terms : l i c e n s e <https : // creativecommons . org / l i c e n s e s /by−nc

/4.0/> ;
7 f o a f : homepage <http ://www. example . com/>;
8 void : vocabulary <http :// dbpedia . org/> ;
9 void : dataDump <http ://www. example . com/dump . t t l> ;

10 void : c l a s s P a r t i t i o n [ void : c l a s s f o a f : Organizat ion ; ] ;
11 void : p rope r tyPar t i t i on [ void : property f o a f : name ; ] ;
12 void : subset : Window 1 .
13 : Window 1 a void : Dataset ;
14 dcterms : t i t l e ”Window o f Milan t r a f f i c stream ” ;
15 dcterms : d e s c r i p t i o n ”Window o f Milan t r a f f i c stream ” ;
16 void : dataDump <http ://www. example . com/dump . t t l> .

Listing 1.1. VoID limits for stream representation

Linked Data Notification (LDN) [6] is a recent approach that enables asyn-
chronous communications between decentralized actors. Although LDN captures
the idea of a dynamic environment and focuses on the transmission of linked
data (not necessarily bounded to the HTTP protocol), it does offer a solution
for decentralized data streams.

Velocity in Linked Data [8] was always seen as changes/updates and han-
dled by means of versioning systems capable of answering comparative SPARQL
queries across historical instances. Unfortunately, this mechanisms does not scale
to scenarios where changes happens extremely frequently like in data streams.
Indeed, the Stream Reasoning community defined SPARQL extensions that can
specifically target streaming data by means of the continuous semantics, how-
ever, much as LDN, they focus on the description and the processing of the
flowing data items without paying much attention to describe the data stream.
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In this paper, we investigate the following research question: Can we repre-
sent and publish data stream on the Web as Linked Data? In order to answer
such a research question, we designed VoIS1, i.e. a Vocabulary of Interlinked
Datastreams (VoIS), which is the main contribute of this paper.

The remainder of the paper is organized as follows. Section 2 reports on the
requirement analysis we conducted starting from the challenge we perceive in
Web of Data Streams. Section 3 illustrates the overall solution we propose with
our Vocabulary of Interlinked Datastreams (VoIS). Section 4 explains how VoIS
can be used to address the challenges introduced in Section 2. In Section 5, we
position VoIS w.r.t. the state of the art. Finally, in Section 6, we draw some
conclusions.

2 From Challenges to a Requirement Analysis

In this section, we present the challenges that we perceive in the Web of Data
Streams. By discussing them, we elicit the requirements for a vocabulary able
to positively answer our research question. Table 2 summarizes our requirement
analysis.

Challenges Requirememnts

Stream Discovery Metadata are required to enable lookup, selection, linking, and li-
censing of streaming data sources in a decentralized way.

Stream Access Applications must be able to negotiate access to data via streaming
protocols and standards.

Stream Recall At least the most recent part of a data stream must be accessed via
Linked Data standards and protocols.

Provenance The provenance of operations that can generate, manipulate or
delete a stream must be tracked.

Table 2. Challenges and requirements in the Web of Data Streams

Stream Discovery. For a Linked Data application, discovery is the process of
finding available datasets that are relevant to a certain task [12]. The process
is based on the dataset metadata (i.e. void:DatasetDescription) and available
endpoints ( e.g. void:sparqlEndpoint).

A vocabulary must enable the discovery process by specifying which an-
notations are relevant for a data stream, e.g. stream rate, source and content
information. Moreover, it is worth to mention that licensing plays a crucial role
in a decentralized Web environment where actors can exchange data for goods.
Stream Access. In Linked Data, access usually refers to the problems of fetch-
ing a data dump or delegating the SPARQL query execution to some endpoint.

Generally, streaming data are not served using HTTP nor queried using
Linked Data standards (RDF/SPARQL). It is rather provisioned via streaming
APIs or queried by means of systems that support continuous queries.

1 https://github.com/streamreasoning/vois
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Fig. 1. Modeling stream elements using VoIS

A vocabulary is needed to define how to access streams, what are the available
options and who can access them. Moreover, it must describe, if the access
requires any extensions beyond HTTP-based content negotiation mechanisms.
Stream Recall. Changes in Linked Data are usually handled by versioning
system and data dumps; this allows to query the previous version of a dataset
by means of specialized endpoints and SPARQL extensions [14].

Unfortunately, a general assumption for stream processing is that streams
are theoretically unbounded and it is not possible (or meaningful) to store them
entirely. This practically means that any attempt to access streaming data with
one-time queries hardly ends up with the same result twice.

A vocabulary must explain how to access past data when possible and how we
can possibly do it using one-time access to data issued via traditional protocols
(i.e. HTTP) and standards (RDF/SPARQL).
Provenance. A final challenge regards tracking the provenance of those pro-
cesses that generate or manipulate a data stream. Indeed, discovery, processing
and recall need to trust the data provisioner and they have to be able to evaluate
the semantics of the data stream. A vocabulary must capture the transforma-
tions that might influence both the provenance of a stream as a whole and the
one of the various time-varying data items that flow in the data stream.

3 Vocabulary of Interlinked Datastreams (VoIS)

In this section, we introduce the first version of the Vocabulary of Interlinked
Datastreams (VoIS) which extends VoID to represent streams as Linked Data.

As depicted in Figure 1, the following abstractions regulate
the definition of a stream and, thus, the access to its content: a
(i) vois:InstantaneousStremElement is unit of content at a given time
instant. (ii) a vois:DataStream – which is usually served though a streaming
API [4] – is an unbounded sequences of vois:InstantaneousStremElement.
Streams metadata are available within a (iii) vois:DataStreamDescription,
which is a Web resource that can be accessed through HTTP. Finally a
recent portion of the time-varying data items that flowed on the stream, i.e.
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Fig. 2. How VoIS abstractions allows representing time-varying data items in the
streaming–side of a λ architecture.

(iv) vois:FiniteStreamPartition, are made available via HTTP to enable
consuming part of the stream with standard SPARQL (one-time) queries.

VoIS design takes inspiration from the λ-architecture [10] – an architectural
pattern typical of Big Data applications. In order to deal with data velocity
without turning down accuracy, a pipeline that computes the results on-the-fly
is places side-by-side to the one that performs batch computations with a coarser
time granularity. Figure 2 shows how VoIS abstractions allows representing time-
varying data items in the streaming side of this architecture. Note that FSP
stays for Finite Stream Portion and the leftmost FSP is not linked because old
enough FSP can be forgotten from the streaming–side of the λ-architecture,
since they are now available from the the batch–side. The batch side, which is
not illustrated, can be implemented with Linked Data.

4 Addressing Challenges with VoIS

In this section, we show how VoIS solves the challenges we presented in Section 2.
Table 3 summarizes how each requirement is satisfied in VoIS.

Challenges Vois

Stream Discovery DataStream, SourceDescription and StreamDescription.
Stream Access StreamEndpoint(ws), RSPEndpoint, SPARQLendpoint.
Stream Recall FiniteStreamPartition, Windowing
Provenance (S) StreamToRelation (R), R2R, R2S, S2S operators with PROV-O.

Table 3. Challenges and VoIS solutions for a Web of Data Streams.

Stream Discovery. As mentioned in Section 2, traditional data discovery is
based on the dataset and endpoint metadata. Similarly, we identified different
set of metadata to enable discovery of data streams:

– stream metadata, i.e. time-varying metadata that refers to the stream con-
tent (e.g. rate),
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Fig. 3. Using VoIS for discovery

– source metadata, i.e. metadata that refer to the source of the stream (e.g.
sensor capabilities),

– publication metadata, that connects sources, streams and possible samples
and makes the stream actually findable by means of registry or repositories.

VoIS allows to capture all these levels of metadata by means of
three classes, i.e., vois:DataStream, vois:StreamSourceDescription, and
vois:StreamDescription. Figure 3 depicts the structure of the representation,
while Listing 1.2 shows an example that uses Dublin Core2 and VoID vocabu-
laries for stream metadata about subject and licensing. SSN is used to describe
the source, which is a sensor. The vois:StreamDescription is the file itself.

1 <> a v o i s : StreamDescr ipt ion ;
2 f o a f : primaryTopic [ : MilanTraf f icDS a v o i s : DataStream ] .
3

4 : MilanTraf f icDS dcterms : t i t l e ”Milan t r a f f i c stream ” ;
5 dcterms : s ub j e c t dbc : T r a f f i c ;
6 dcterms : s ub j e c t dbc : Milan ;
7 dcterms : d e s c r i p t i o n ” T r a f f i c Data about Milan ” ;
8 dcterms : l i c e n s e <https : // cc . org / l i c e n s e s /by−nc/4.0/> ;
9 v o i s : hasStreamEndpoint : MilanTraff icDS StreamEndpoint ;

10 v o i s : hasRSPEndpoint : MilanTrafficDS RSPEndpoint .
11 v o i s : ha sF in i t ePar t i on : Window 1 ;
12 v o i s : ha sF in i t ePar t i on : Window 2 .
13

14 : SourceDesc r ip t i on 1 a v o i s : SourceDesc r ip t i on .
15

16 : MilanTraff icDS StreamEndpoint a v o i s : Endpoint ;
17 v o i s : u r i ”ws :// example . org / milan / t r a f f i c /” .
18 : MilanTrafficDS RSPEndpoint a v o i s : Endpoint ;
19 v o i s : u r i ” http :// example . org / milan / t r a f f i c / r s p q l ” .

Listing 1.2. Source Description attached to data stream with VoIS

Stream Access. In a Web of Data Streams, data are processed as soon as
they arrive by systems capable to deal with information flows. Streaming data
access relies either on protocols specifically designed to reduce the overhead of the
request or registering a continuous query to a Stream Processor that is exposed as
an endpoint. Either ways require to extend the Linked Data content negotiation
protocol to enable direct access and continuous querying, since streaming data
are neither generally served using HTTP nor querable by with SPARQL engines.

2 http://dublincore.org/documents/dcmi-terms/
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Fig. 4. Using VoIS for discovery

VoIS captures this extension
by means of vois:Endpoint, that
describes the available endpoints
to access a data stream. Currently,
we defined two types of endpoints
widely used in stream processing:
vois:StreamEndpoint that rep-
resents streaming API (e.g. Web
Socket) [11] and vois:RSPEndpoint
that refers to endpoints that ex-
pose methods to register continuous
queries [3].
Stream Recall. Versioning is not a traditional stream processing use-case, how-
ever, in a Web of Data Streams providing Liked Data compliant access to, at
least, a recent part of past information serves the purposes of many applications.

In VoIS, we introduced two classes vois:InstantaneousStreamElement
and vois:FiniteStreamPartition for this reason. As the name suggests, the
former represents a single data item in the stream with temporal metadata, while
the latter is a sample that contains stream elements. More precisely, we defined
vois:Window as a partition that is generated according to certain criteria and
correspond to a time interval that contains some stream elements.

An crucial point is maintaining the order between stream elements. Indeed,
anyvois:InstantaneousStreamElement are is linked with its predecessor by
means of the property vois:previousElement. Similarly, any vois:Window is
part of a list linked through the property vois:previousWindow.

Fig. 5. Using VoIS for Recall.

Figure 5 illustrates the relation between window and stream elements.
Thanks to these abstractions it is possible to locate and access stream data
items in the past exploiting the temporal metadata as shown in Listing 1.3.

1 SELECT ?w
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2 WHERE { ?w a v o i s : Window ; v o i s : s tartedAt ? i n s t a n t .
3 ? i n s t a n t time : inXSDDateTime ? s .
4 FILTER(? s > ”2017−06−05T00 : 3 8 : 0 0 . 0 0 0 ”ˆˆ xsd : dateTime . ) }

Listing 1.3. SPARQL query retrieving window overlapping with specific time instance

Provenance. As mentioned in Section 2, two are the types of transformation
that can influence the provenance of a stream.

Fig. 6. Modeling window using VoIS

Figure 6 shows how the windowing mechanism is modeled in VoIS by means
of PROV-O ontology. We used the Agent-Activity-Entity design pattern to rep-
resent the windowing action on a stream.

Figure 7 illustrates how to model Stream-level transformations in VoIS. A
new relation vois:hasAffluent between streams was introduced to model
the fact that a stream – namely a swollen one – is derived from others
– namely affluent ones. Accordingly, two subtypes of streams are modeled:
vois:SwollenStream to refer to a stream derived from other streams, and
vois:AffluentStream to refer to stream contributing to a swollen stream.

Fig. 7. Using VoIS for provenance: Composition
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5 Related Work

In this section, we discuss the related work with regard to the challenges we
presented in Section 2. Table 4 summarizes the discussion.

DCterms, DCAT and VoID. Several vocabularies exist to describe
dataset by means of metadata. Dublin Core Terms3 is the first one made to
describe both physical and Web resources. It provides fifteen generic terms (eg.
Title, Creator, Subject and Description). Data Catalog Vocabulary (DCAT) [9]
is an RDF vocabulary designed to facilitate interoperability between data cat-
alogs published on the Web. It focuses on describing how static data catalogs
and datasets are accessible and distributed. Vocabulary of Interlinked Datasets
(VoID) [1] aims at describing RDF datasets and cross dataset links. VoID’s
use-cases comprise dataset discovery, selection and query optimization.

None of these vocabularies fully solves the challenges we identified for a Web
of Data Streams. They neither capture the dynamic nature of data stream nor to
represent time-varying data elements. Although discovery is still possible relying
on source metadata, streaming data access is never taken into account. Recall
can be partially achieved by periodically creating dumps of the stream data.
However, this approach does not scale well with streaming data. Provenance
tracking is possible, but limited to stream data sources only.

Linked Stream Data [13]. Sequeda and Corcho proposed a URI based
mechanism to identify and access stream data coming from sensor networks. This
proposal takes into account temporal and spatial aspects that are relevant from
a query perspective. LSD enables discovery by referencing streams. However,
authors neither proposed any protocol extensions that would support streaming
access, nor discussed the problem of recalling old portions of the stream. Prove-
nance tracking is possible by means of data source descriptions (Sensors), but
not in terms of stream transformations.

Streaming Linked Data [5]. Barbieri et al. proposed to publish data
streams as Linked Data by means of an RSP engine. To this extent they in-
troduced the concepts of Stream Graph (or s-graph) and Instantaneous Graph
(or igraph). This makes possible fully solves the problem of discovery and we can
partially track the provenance of the RSP engine activity. However, they did not
consider any protocol extension nor described the problem of recall. VoIS build
on SLD introducing a better description of data stream access and provenance.

3 http://dublincore.org/documents/dcmi-terms/

Challenges DCterms, DCAT & VoID SLD [5] LSD [13] LDN [6] VoIS

Stream Discovery X X X
Stream Access ' ' X
Stream Recall ' X
Provenance ' ' ' ' X

Table 4. Challenges and VoIS solutions for a Web of Data Streams. Symbol Legend:
Empty cell, i.e. not covered; ', i.e. partially covered; X, i.e. covered.
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Linked Data Notification (LDN) [6]. Capadisli et al. proposed a protocol
– now officially a W3C recommendation4 – that aims at making Web Notifica-
tions de-referenceable, persistent and reusable, i.e. compliant to Linked Data
principles. Such a protocol orchestrates the communication between senders, re-
ceives and consumers. Stream Access might be possible using LDN since they
are not bounded to any specific transmission protocols, although the commu-
nication methods between consumer and receives are RESTful. We can track
the provenance of the involved actors, but not specifically stream transforma-
tions. Finally, neither Stream Discovery nor Recall challenges are in the scope
of the work, which targets communication/sharing between actors rather than
exploration and querying.

6 Conclusion and Future Work

In this paper, we advocated Data Streams as part of the Linked Data ecosystem.
To this extent, we presented four challenges that we perceived in the Web of Data
Streams. We elicit the requirements for a vocabulary able to support machines
in automatically addressing those challenges in a decentralized environment and
we contribute Vocabulary of Interlinked Datastreams (VoIS) as a solution.

VoIS has the potential to enable:

– Stream Discovery – it allows identifying streams that are relevant to one
task according to the metadata the publishers used to describe the nature
of their streams, the endpoints where they can be accessed and any other
relevant information (encoded with a specialized vocabulary).

– Stream Access – it describes the information necessary to extend the Linked
Data content negotiation approach in order to allow accessing data streams
by the means of streaming APIs and consuming on the fly the time-varying
data that flows on them.

– Stream Recall – it offers a way for a stream publisher to exposed as Linked
Data a recent portion of the (naturally unbounded) data streams and, thus,
permits to issue one-time SPARQL query to recall recent time-varying data.

– Provenance – it enables provenance tracking in terms of stream source and
transformations both at the level of the entire data stream and at the level
of the time-varying data elements that flow on it.

As for future works, evaluating the vocabulary both functionally and statis-
tically is our current priority. We plan to do the former by asking for reviews
to Semantic Web / Stream Reasoning experts, Linked Data practitioners and
students. We plan to do the latter following ontology evaluation best practices.

Moreover, we are working on the implementations of a machinery (based
on [3]) that practically demonstrates the advantages of using VoIS.

4 https://linkedresearch.org/ldn/
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