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Abstract

Event-based cameras offer unique advantages such as high temporal resolution,
high dynamic range, and low power consumption. However, the massive storage
requirements and I/O burdens of existing synthetic data generation pipelines and the
scarcity of real data prevent event-based training datasets from scaling up, limiting
the development and generalization capabilities of event vision models. To address
this challenge, we introduce Video-to-Voxel (V2V), an approach that directly
converts conventional video frames into event-based voxel grid representations,
bypassing the storage-intensive event stream generation entirely. V2V enables
a 150× reduction in storage requirements while supporting on-the-fly parameter
randomization for enhanced model robustness. Leveraging this efficiency, we train
several video reconstruction and optical flow estimation model architectures on
10,000 diverse videos totaling 52 hours—an order of magnitude larger than existing
event datasets, yielding substantial improvements.

1 Introduction

Event-based cameras [8] are bio-inspired visual sensors that asynchronously record per-pixel intensity
changes, offering high temporal resolution and high dynamic range with low power consumption,
compared to traditional frame-based cameras. These properties make event cameras particularly
promising for applications involving high-speed motion, challenging lighting conditions, and resource-
constrained environments such as robotics, autonomous driving, and augmented reality.

Despite their theoretical advantages, event cameras have yet to match the practical performance of
conventional cameras. This performance gap can be attributed to several factors, with the scarcity
of large-scale training data constituting a critical bottleneck. While deep learning approaches have
revolutionized frame-based computer vision through decades of dataset collection and massive
repositories like ImageNet [4], COCO [19], and WebVid [2], event camera data remains scarce and
limited in diversity. The restricted commercial deployment of event cameras creates a fundamental
chicken-and-egg problem: widespread adoption requires robust algorithms, which in turn depend on
diverse training data that can only come from widespread deployment.

To address this data limitation, researchers have developed simulation pipelines that convert conven-
tional visuals into synthetic event ones. However, significant challenges remain in both approximating
the high temporal dynamics of event cameras and utilizing these simulations efficiently.

Standard video datasets typically have frame rates of around 30 per second (FPS), providing temporal
resolution orders of magnitude lower than event cameras. This fundamental mismatch creates a
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Figure 1: The Video-to-Voxel (V2V) approach enables our training dataset to have more diversity
(280→10000 scenes), less storage usage and I/O load (279 GB→20 GB), and more randomly
augmented sample variants. V2V-retrained models E2VID [33], ETNet [36] and HyperE2VID [7]
demonstrate better reconstruction quality, indicated by higher SSIM (structural similarity, averaged
over HQF [33] and EVAID [6]) on real-world test datasets.

significant hurdle for data simulation. The field has consequently developed two primary simulation
approaches, each with distinct limitations: Video-based simulators like V2E [13] attempt to bridge
this temporal gap through frame interpolation techniques; however, they inevitably introduce artifacts
and interpolation errors since they attempt to reconstruct information that was never captured in
the original footage. Model-based simulators like those in E2VID+ [33] render high frame rate
videos from 3D scene models, providing precise control of the temporal resolution but suffering from
significant realism limitations. In practice, these methods often resort to simplistic approximations,
such as randomly flying 2D images against static backgrounds – far removed from real-world scene
complexity, as illustrated in topleft of Figure 1.

Beyond realism concerns, both approaches encounter severe storage and computational inefficiency.
Unlike conventional video data, which benefits from decades of codec optimization, event data
compression remains relatively underdeveloped [14, 31]. Consequently, storing and processing
synthetic event data becomes exceedingly resource-intensive. For context, a single 10-second
sequence from the ESIM-280 dataset occupies approximately 1GB. If we were to scale to 10,000
diverse scenes, substantial I/O bottlenecks during training will emerge. Moreover, since each event
stream corresponds to a specific camera configuration, exploring multiple parameter variations
(thresholds, noise levels, etc.) multiplies storage requirements by the number of configurations.

These technical challenges create a significant barrier to training on large-scale, diverse datasets,
leading us to question: Is explicit event stream synthesis truly necessary for model training?

Our analysis reveals a surprising answer: No. We observe that most event-based deep learning
pipelines convert asynchronous events into dense representations (particularly voxel grids) before
neural network processing. This creates an opportunity to directly target these representations instead
of generating intermediate event streams.

In this paper, we introduce Video-to-Voxel (V2V), a principled approximation that efficiently gener-
ates discrete voxel representations directly from video frames. This approach bypasses the computa-
tionally expensive event generation step while preserving the essential spatial-temporal information
needed for learning. The key advantages of our approach are illustrated in Figure 1:

• Efficiency. Our approach eliminates the need to store intermediate event streams, drastically saving
storage resources (up to 150 times) and enabling the use of substantially larger datasets.

• Flexibility. Our approach allows on-the-fly parameter randomization during training, enabling
models to learn more robust representations from diverse virtual camera configurations without
multiplicative storage requirements.

• Scalability. This efficiency enables direct utilization of massive internet-scale video repositories
like WebVid [2], creating a training dataset containing 10,000 videos with a total duration of 52
hours—an order of magnitude larger than existing event camera datasets.
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We validate the effectiveness of the V2V module on two fundamental event-based visual dense
prediction tasks: event-based video reconstruction and optical flow estimation. In particular, our
method enables the training of existing models on a diverse dataset with 35 times more scene
variations than the previous practice, with performance scaling with dataset size. As shown in the
right of Figure 1, this leads to significant improvements in reconstruction quality. These results
demonstrate that our V2V pipeline effectively addresses the data scarcity bottleneck in event-based
vision, opening new possibilities for developing robust event-based algorithms.

2 Related Works

Synthetic event data. Video-based and model-based event simulators have been proposed to
generate synthetic event data. Video-based simulators [13, 18, 41, 44, 46] synthesize events from
videos, using frame interpolation algorithms [13] or learning-based methods [41, 44] to compensate
the lack of temporal information due to limited video frame rate. This requries reconstructing
intermediate intensity changes that were never captured—an ill-posed problem. Model-based event
simulators such as ESIM [28] and PECS [12] render events from synthetic 3D scenes, providing fully
precise temporal information. However, the diversity and realism of the scenes are limited. Random
scenes with flying 2D [33] or 3D [35] objects and elaborate models of city scenes [22] have been
used, but complex real-world phenomena, such as with non-rigid movement, fluid dynamics, and
complex lighting interactions, remain difficult to model.

Training data of event-based video reconstruction. The development of video reconstruc-
tion from event streams (E2VID) has been predominantly constrained by available training data.
Existing learning-based E2VID methods use model-based simulated events or real events for train-
ing. E2VID [29] proposed to use the ESIM simulator for training data generation, and Stoffregen
et al. [33] improved model performance by using diversified thresholds in ESIM. FireNet [30],
SPADE-E2VID [3], ETNet [36], Event-Diffusion [17], HyperE2VID [7], EVSNN [45] and TFC-
SNN [38] all used ESIM data for training. Mostafavi et al. [24] used a mixture of ESIM data and
real data. Gu et al. [11] used the video-based simulator V2E [13], but the high frame rate video
inputs were from synthesized scenes with flying images. SSL-E2VID [27] proposed a self-supervised
training framework so that the model could be trained on real event streams without corresponding
ground truth images. The low light methods DVS-Dark [40], NER-Net [20], and NER-Net+ [21]
utilize real-world low-light events for domain adaptation.

Training data of event-based optical flow estimation. Event-based optical flow estimation has
explored marginally more diverse training strategies but encounters similar limitations. EVFlow [42]
is trained on ESIM-generated data, while EVFlow+ [33] is trained on ESIM with diversified thresholds.
ADMFlow [22] utilizes a synthetic dataset MDR, rendered by browsing cameras through 53 static
virtual 3D scenes and using the V2E [13] toolbox. E-FlowFormer [16] is trained on BlinkFlow, which
is composed of 3362 rendered scenes of random moving objects. Zhu et al.trained their model on the
real MVSEC dataset [43] with an unsupervised loss, while Spike-FlowNet [15] and STE-FlowNet [5]
used it in a self-supervised way. ERAFT [10] is trained on DSEC-Flow, a real dataset from 24
DSEC [9] sequences. EEMFlow+ [23] is trained on HREM, a real event dataset with 100 scenes.

3 Method

In this section, we will introduce our V2V framework, which utilizes large-scale video datasets for
training. In Section 3.1, we introduce preliminaries and emphasize the importance of data scalability.
In Section 3.2, we reveal that intra-bin temporal information can be neglected in training with the
discrete voxel representation, greatly improving efficiency. Finally, in Section 3.3, we show that
on-the-fly video-to-voxel generation provides additional flexibility that improves data diversity.

3.1 Preliminaries

Formulation of event generation model. Event cameras are bio-inspired vision sensors that
operate on fundamentally different principles than conventional frame-based cameras. Instead of
capturing intensity frames at fixed time intervals, event cameras asynchronously report changes in
logarithmic brightness at the pixel level. In an ideal event camera, a pixel at (x, y) triggers an event
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Figure 2: Event data’s inherent ambiguity: multiple valid image sequences I(t0) can produce identical
event streams E under different initial conditions and camera parameters M . It indicates the critical
importance of diverse training data to establish robust priors for reconstruction tasks.

signal (x, y, t, p) whenever the change of its logarithmic irradiance exceeds a threshold c:

| log Ix,y(t)− log Ix,y(t0)| ≥ c, (1)

where Ix,y(t) indicates the pixel’s irradiance at time t, and t0 is the timestamp of the previous
event triggered from pixel (x, y). The polarity p ∈ {−1,+1} represents whether the irradiance has
decreased or increased.

The output of an event camera is a stream of asynchronous events E , capturing the change of the
scene. By summing the positive and negative events triggered between t1 and t2 on each pixel into
an event stack E(t1, t2), we can acquire the relationship between irradiance levels I(t1) and I(t2):

log I(t2)− log I(t1) = c ∗ E(t1, t2), where Ex,y(t1, t2) =
∑

(x,y,t,p)∈E,t1≤t<t2

p. (2)

The inherent ambiguity in event-based vision tasks. This relationship highlights a fundamental
challenge in event-based vision which has been widely discussed [29, 34]: events only provide
constraints on relative changes in logarithmic irradiance, not absolute intensity values. For example,
in the task of event-to-video reconstruction, a model is trained to reconstruct a series of image
frames F (t1), . . . , F (tn) based on an event stream E . This means that it must estimate both an
initial irradiance I(t0) and a mapping M from irradiance I(ti) to pixel values F (ti) that would
produce high-quality frames, which are related to camera parameters such as aperture size, exposure
time and image signal processer (ISP) configurations. As demonstrated in Figure 2, multiple valid
interpretations of the same event stream exist, corresponding to different scene priors and camera
parameters. To provide models with high-quality prior knowledge, large-scale datasets that resemble
real-world distributions are essential.

However, current model-based simulators cannot achieve scale, diversity, and quality simultaneously,
as realistic 3D models are prohibitively expensive to design and simple scenes fall short of real-world
complexity. Utilizing existing video datasets offers a promising alternative, but requires addressing
the significant temporal resolution gap between conventional videos (typically 30 FPS) and event
data (microsecond resolution). Our method bridges this gap through a novel representation approach
that enables effective learning from standard video data while preserving compatibility with real
event camera outputs.

3.2 Bridging the temporal resolution gap

The fundamental challenge in utilizing conventional videos for event-based learning lies in the vast
difference in temporal resolution. Event streams operate at microsecond temporal precision, while
typical videos provide only 30-60 frames per second. Although frame interpolation algorithms could
theoretically increase frame rates, interpolating to event-level frame rates would be computationally
prohibitive and introduce compounding artifacts such as ghosting effects [37]. More importantly,
such interpolation attempts to reconstruct temporal information that was never captured in the original
footage, resulting in significant fidelity loss.

Our approach tackles this challenge by fundamentally reconsidering how event data is represented and
processed in deep learning pipelines. For deep learning approaches, the sparse, asynchronous nature
of event streams necessitates conversion into dense representations that can be fed into conventional
neural networks. Among these representations, voxel grids have emerged as the most widely used
format. In voxel representations, events are first separated into temporal bins, and each bin of events
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Figure 3: While synthetic (top) and real (bottom) events exhibit notable differences in interpolated
voxels (left) due to microsecond-level temporal disparities, they demonstrate similarity in discrete
voxel representations (right)—justifying our direct video-to-voxel conversion approach.

is encoded into a frame through some form of accumulation. These frames are then stacked into
different channels of the voxel corresponding to their sequence. This organization creates a natural
separation between inter-bin temporal information (the relationship between separate bins) and intra-
bin temporal information (the precise timing of events within each bin). This separation is crucial
to our approach, as it allows us to discard the high-precision intra-bin timing information—which
cannot be reliably simulated from low frame rate videos—while preserving the essential inter-bin
dynamics that can be accurately derived from frame differences.

Interpolated vs. discrete voxel grids. The most commonly used voxel representation is the
interpolated event voxel. An interpolated event voxel Vintp with B bins has shape B × H × W .
For each event (t, x, y, p) ∈ E , its polarity is linearly split to the closest two bins according to its
timestamp t (normalized to [0, 1]):

Vintp(b, x, y) =
∑

(x,y,t,p)∈E

p max(0, 1− |(B − 1)t− b|). (3)

The interpolated event voxel representation is widely used in event-based video reconstruction
algorithms [3, 17, 27, 29, 33, 36] and optical flow estimation algorithms [10, 22, 33]. However,
it does not meet our needs. The intra-bin temporal information still takes significant effect: as
the timstamp of an event changes, its weights on the two neighbouring bins continuously changes,
resulting in smooth smudge-like edges in voxels. When the intra-bin temporal information is absent,
the discreteness of the timestamps creates layered-like visual effects in the voxels. The difference is
depicted in the left wing of Figure 3.

The discrete event voxel, however, meets our needs. It is another variant of the voxel representation,
also referred to as SBT [24]. Each bin in a B ×H ×W discrete event voxel Vdisc is the summation
of all events with timestamps between b/B and (b+ 1)/B:

Vdisc(b, x, y) =
∑

(x,y,t,p)∈E

p 1[
b

B
≤ t <

b+ 1

B
]. (4)

In the discrete event voxel, all intra-bin information is discarded, and temporal information is only
encoded in inter-bin information. As shown in the right side of Figure 3, the discrete voxel represen-
tations of video-based simulated events show similar appearances to real ones with high temporal
resolution. One may worry that discarding intra-bin information would hurt the expressiveness of
the input data, but our experimental results ((l)&(m) in Table 2) show that models operating on the
interpolated and discrete representations can achieve comparable performance.

For a discrete event voxel with B bins, we can efficiently simulate it with just B + 1 video frames
F (t0), F (t1), · · ·F (tB), as detailed in the next section. If the input video has a frame rate X FPS,
then each created voxel will cover physical time of B/X seconds. A potential concern is that the
physical time span of real event voxels may be much shorter when we want to exploit its high
temporal resolution. However, due to the large scale and high diversity of our video datasets, we
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selected at train time (left). We use the V2V module and a lightweight optical flow estimator RAFT
to train video reconstruction (middle) and optical flow estimation models (right).

find that our models generalize well: although trained on 24/5 FPS synthetic voxels, they achieve
superior performance in reconstructing 150 FPS videos from real EVAID events [6].

This representation choice is the cornerstone of our approach, enabling us to significantly reduce
storage requirements and improve training efficiency by leveraging advanced video compression and
decoding techniques.

3.3 Directly converting videos to voxels

There exist many simulation algorithms that convert videos to events, such as EventGAN [44],
V2E [13], DVS-Voltmeter [18] and V2CE [41]. They are usually used in a two-stage pipeline. In
the first stage, event camera parameters such as thresholds and noise strength are selected. The
photoreceptor output voltage of the event sensor is simulated using the logarithm difference between
video frames as well as random noise. The number of events to be triggered on each pixel, equivalent
to the values of the corresponding discrete voxel, is calculated according to the thresholds. Event
streams are then generated by deciding a timestamp for each event triggered. In the second stage,
events are accumulated into dense representations such as voxels. Additional augmentation such
as hot pixels and gaussian noise can be added to the voxels on-the-fly when training, but with less
fidelity. For example, in real event cameras, when background noise triggers an event, the brightness
change detector is reset, effecting future pixel behaviour, while post-voxel augmentation noise is
independent to the signals.

Our Video-to-Voxel (V2V) approach skips the generation of event streams, merging both stages into
an efficient on-the-fly process conducted in each training iteration. As a result, the camera parameters
and high-fidelity noise corresponding to a single video can be randomly selected in each iteration,
providing far more sample diversity and improving model robustness. The V2V conversion process
is conducted in the following steps.

Parameter selection. In each V2V iteration, we first randomly select the event camera parameters:
the positive threshold c+ > 0, the negative threshold c− > 0, background noise strength σN > 0
and a hot pixel map H ∈ RH×W . The background noise corresponds to the dark current in the
photodiode of event pixels, and the hot pixel map H is a sparse matrix where a small number of
randomly selected “hot pixels” have abnormally large values and the other elements are zero [13].

Initialization. Then we begin the simulation. We use ∆L to denote the sensor’s photoreceptor
output voltage, corresponding to the amount of logarithm illumination change on each pixel since
their last previous triggered event. The initial value ∆L̂(t0) is initialized by sampling from the
uniform distribution [−c−, c+], assuming that the “sensor” has already been recording for a while.

Sensor simulation. We process the frames F (t0), F (t1), ..., F (tB) one by one. Given the frame
F (ti), we first apply a reverse gamma correction to make it approximately linear to I(ti), and
calculate its logarithm difference to the previous frame log I(ti) − log I(ti−1). Following DVS-
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Voltmeter [18], which models sensor voltage change as a Brownian motion process caused by
photon reception randomness, we add a background noise independently sampled from a gaussian
distribution N (0, σ2

b ) for each frame. We also randomly generate a hot pixel map H that keeps the
same throughout the sequence. For simplicity, we did not include other noise types like leak noise,
but they could be easily incorporated into our framework. We add up the signal and noise to acquire
the total output voltage:

∆L(ti) = ∆L̂(ti−1) + (log I(ti)− log I(ti−1)) +N(ti) +H, N(ti) ∼ N (0, σ2
b ). (5)

Then, we calculate the number of positive and negative events triggered, denoted as N+ and N−, and
subtract these already-triggered changes to prepare for the next input frame:

N+(i) = max

(
0,

⌊
∆L(ti)

c+

⌋)
, N−(i) = max

(
0,

⌊
−∆L(ti)

c−

⌋)
, (6)

∆L̂(ti) = ∆L(ti)− c+N+(i) + c−N−(i). (7)

Note that, unlike post-voxel augmentation noise, all noise added in the V2V process can play an
interactive part in the event simulation, which has the potential to lead to higher data fidelity.

Voxel calculation. Finally, we can compute the corresponding discrete event voxel bin:

Vdisc(i) ≈ N+(i)−N−(i). (8)

When c+ and c− are equal, or when the pixel intensity change between two frames is monotonic, the
equality holds strictly.

Applications. As illustrated in Figure 4, we apply the V2V module to the video reconstruction
(E2VID) and optical flow estimation (EvFlow) tasks by using them to generate voxels from video-
based datasets. We predict optical flow used for training from the video frames, using image-based
algorithms such as RAFT [32]. The V2V module enables us to train efficiently on large-scale diverse
datasets with flexible augmentation, boosting the performance of the models it is applied to.

4 Experiments

Dataset Scenes Duration Resolution Seqs Space

ESIM-Event 280 47 min 256× 256 3421 97.77 GB
ESIM-Voxel 280 47 min 256× 256 3421 279.00 GB
WebVid100 100 33 min 180× 596 253 0.21 GB
WebVid1k 1000 319 min 180× 596 2332 1.94 GB

WebVid10k 10000 52 hours 180× 596 22725 19.14 GB

IJRR [25] 27 18 min 240× 180 638 32.2 GB
MVSEC [43] 14 68 min 346× 260 9063 109.30 GB

HQF [33] 14 11 min 240× 180 385 2.74 GB
EVAID-R [6] 14 6 min 954× 636 1350 7.4 GB

Table 1: Comparison of dataset characteristics. “Seqs" for
event datasets represents total frames divided by 40, providing
a normalized comparison metric.

V2V-Random

V2V-Fixed

ESIM

WebVid-100

WebVid-1K

WebVid-10K

ESIM-280

# Scenes

Avg.

SSIM

Figure 5: Effectiveness of the
proposed parameter randomization
across dataset sizes.

4.1 Dataset preperation

We use the WebVid [2] video dataset for model training due to its high aesthetic quality and clean
shot cuts. From the 2.5M videos of WebVid, we randomly sample 10K, 1K and 100 videos, forming
our datasets WebVid10K, WebVid1K and WebVid100. In Table 2, we use "V2V-X" to represent our
V2V framework combined with the WebVid-X dataset.

The original resolution of WebVid videos is 336 × 596, and we only use the upper 180 × 596 to
avoid the watermarks. For each WebVid training sequence, we use 200 non-overlapping frames to
create 40 voxels, each with 5 event bins. The average WebVid video contributes 2 samples.
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We prepare the ESIM-280 dataset using the same configurations as Stoffregen et al. [33], generating
280 scenes composed of 2D flying objects along with camera movement. We also sample non-
overlapping sequences with 40 event voxels and ground truth frames, acquiring 3421 sequences
(“Seqs” in Table 1) with 256 × 256 resolution in total. We refer to the original dataset as ESIM-
Events, and the pre-stacked dataset with voxels (in float32 format) instead of events is referred to as
ESIM-Voxel.

The statistics of our WebVid datasets and the ESIM datasets are listed in Table 1. Due to the compact
encoding of videos, WebVid10K only uses 6.9% disk space while providing 6.6× more sequences
and 35.7× more scene diversity compared to ESIM-Voxel. It also provides rich real-world priors
with its realistic scenes, diverse viewing angles and non-rigid movement such as human motion.

Table 2: Quantitative evaluation of event-based video reconstruction results. Lower (↓) MSE and
LPIPS values and higher (↑) SSIM values are desirable. For each model type, we highlight the best
values with green . Experiments marked with ↓ use the original model weights directly downloaded.

Idx Model Train Dataset Loss Eps HQF EVAID

MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓
Results from different training dataset sizes

(a) E2VID ESIM-280 ↓ Alex+TC 500 0.037 0.638 0.256 0.088 0.526 0.469
(b) E2VID V2V-100 V+L1+H 8000 0.042 0.626 0.327 0.078 0.594 0.441
(c) E2VID V2V-1K V+L1+H 800 0.037 0.661 0.286 0.072 0.627 0.405
(d) E2VID V2V-10K V+L1+H 80 0.032 0.676 0.265 0.054 0.663 0.371

Results with other model structures

(e) HyperE2VID ESIM-280 ↓ Alex+TC 400 0.032 0.646 0.265 0.071 0.533 0.474
(f) HyperE2VID V2V-10K V+L1+H 60 0.035 0.671 0.269 0.055 0.654 0.377
(g) ETNet ESIM-280 ↓ Alex+TC 700 0.035 0.642 0.274 0.080 0.541 0.523
(h) ETNet V2V-10K V+L1+H 100 0.039 0.641 0.306 0.056 0.610 0.406

Ablation study: Effect of augmentation flexibility

(i) E2VID V2V-100-F V+L1+H 8000 0.049 0.611 0.330 0.073 0.604 0.451
(j) E2VID V2V-1K-F V+L1+H 800 0.039 0.640 0.293 0.066 0.617 0.413
(k) E2VID V2V-10K-F V+L1+H 80 0.032 0.666 0.264 0.058 0.644 0.378

Ablation study: Interpolated voxel vs. Discrete voxel

(l) E2VID(Intp.) ESIM-280 Alex+TC 500 0.041 0.599 0.306 0.078 0.526 0.478
(m) E2VID(Disc.) ESIM-280 Alex+TC 500 0.040 0.608 0.296 0.062 0.548 0.450

4.2 Video reconstruction

We retrained the models E2VID [29], ETNet [36] and HyperE2VID [7] on WebVid and ESIM
datasets. Then we performed zero-shot model evaluation on the real event datasets HQF [33] and
EVAID [6], with metrics MSE (Mean Square Error), SSIM (Structural Similarity) and LPIPS (Learned
Perceptual Image Patch Similarity). Quantitative results (a)-(h) in Table 2 and qualitative comparisons
(Figure 6) show that models trained with the V2V-WebVid10K dataset can outperform the original
ESIM versions.

Effect of scaling up. To test the effect of scaling up the dataset, we retrained the E2VID model
with datasets of different sizes: WebVid-100, WebVid-1K and WebVid-10K. As shown in rows (b)-(d)
in Table 2 and Figure 5, larger datasets produce models with better performance.

Effect of augmentation flexibility. A key advantage of our V2V module is that the same N scenes
can be augmented with different threshold configurations in each iteration, yielding N ×M sample
variants over M training epochs. To validate the importance of this feature by ablation, we designed
an experiment where each video in the WebVid dataset was pre-assigned a fixed threshold value,
meaning that the model could only access N × 1 sample variants across M epochs. In rows (i)-(k) of
Table 2, we denote these processed datasets with “-F” (Fixed). The results are visualized in Figure 5
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and show that disabling the augmentation flexibility causes performance drop, proving that providing
different variants in each iteration acts as an effective data augmentation technique.

Perceptual loss design. The loss functions of the baseline E2VID+ [33] is composed of a LPIPS
loss (from the Alex model) and a temporal consistency loss (from ground truth optical flow). We
refer to this combination as “Alex+TC”. We observe that using the Alex LPIPS loss causes patterned
artifacts in the reconstructed videos, while using a VGG version of the LPIPS loss does not. Since
VGG is more inclined to supervise high-level features [39], we combine an L1 loss with the VGG
LPIPS loss to supplement the supervision of low-level features. Ablation studies can be found in the
appendix (Section D).

Temporal consistency loss design. Due to the lack of ground truth optical flow from videos, we
use the RAFT-Small [32] model to predict optical flow between frames at train time. We observe that
adding the temporal consistency loss eliminates flickering in the generated videos, but also introduces
dirty-window artefacts: static undesired patterns float on top of the videos, as if filming through a
dirty window, likely because the model tries to maintain consistency even for unwanted artifacts from
previous frames. To mitigate this, we only apply temporal consistency loss to the latter half (last 20
frames of a 40-frame sequence), so consistency is only enforced after the reconstruction has had time
to stabilize. In Table 2, we refer to the loss combination of “VGG + L1 + Temporal-Consistency-Half”
as “V+L1+H”.

Ablation on voxel representation. To show that using discrete voxels does not harm performance,
we retrained E2VID with the same loss and the same ESIM-280 dataset, but with the interpolated
event voxel (Intp.) and the discrete event voxel (Disc.) as input representations respectively. Results
(l)-(m) in Table 2 show that discrete voxels work comparably to interpolated voxels.

Training details. We train the E2VID model with batch size 12, crop size 128× 128 and constant
learning rate 0.0001. For ETNet and HyperE2VID, we also follow their original training protocols.
The training epochs (“Eps” in Table 2) are set to keep the total amount of iterations approximately
the same across experiments.

V2V parameters. For the event threshold parameters c+ and c− used in the V2V simulator, we first
uniformly sample a threshold c from the range [0.05, 2]. (Following the ESIM simulator, we calculate
logarithm images with np.log(0.001 + video/255.0), so the amount of change between two
frames is in the range of [0, 6.908].) To keep the positive and negative thresholds close, we uniformly
sample a "threshold ratio" r from the range [1, 1.5], assigning (c, rc) to (c+, c−) or (c−, c+) with
equal probability. The standard deviation of the background gaussian distribution is uniformly
sampled from the range [0, 0.1]. The standard deviation of the hot pixel gaussian distribution is
uniformly sampled from the range [0, 10]. The fraction of hot pixels is uniformly sampled from the
range [0, 0.001] (i.e., 0 to 0.1%).

More evaluation details (Section A), test results on IJRR [25] and MVSEC [43] (Section E) and more
ablation studies (Section D) are provided in the appendix.

4.3 Optical flow estimation

To demonstrate that the V2V framework can adapt to various tasks, we also applied it to event-based
optical flow estimation. Based on the model design of EvFlow [42], we trained it with the WebVid10K
dataset, using optical flow predicted with RAFT-Large from images as pseudo ground truth. We
evaluated the models quantitatively on the MVSEC dataset (see Section A for details) with the
dt = 1 [42] setting. For metrics we used the Average Endpoint Error (AEE) and the percentage of
pixels with more than 3 Pixel Error (3PE). We provide dense (D) metrics which were averaged over
all pixels, and sparse (S) metrics which were calculated over pixels that triggered at least one event.
We also show qualitative results of our model on IJRR, HQF and EVAID in Figure 17.

In Table 3, Zeros refers to the baseline metrics acquired by predicting zero optical flow. EvFlow+ [33]
is trained on the ESIM+ dataset. Although EvFlow+ produces dense results, it often predicts hollows
with zero flow where events are sparse. Boosted with the real world priors from the WebVid10K
dataset, V2V-EvFlow is able to fill in the hollows with reasonable flow predictions. V2V-EvFlow
exceeds EvFlow+ on all metrics, especially dense metrics.
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Figure 6: Qualitative comparison of reconstruction results on the EVAID Traffic sequence. Our
method maintains information from camera motion occurred previously, even after it ceases.

Table 3: Optical flow results on the MVSEC dataset. Lower (↓) values of AEE and 3PE are desirable,
dense (D) or sparse (S). We highlight the best values of each metric with green .

Sequence indoor_flying1 indoor_flying2 indoor_flying3 outdoor_day1 outdoor_day2

AEE ↓ D S D S D S D S D S

Zeros 1.772 2.041 2.705 3.463 2.412 2.772 3.985 3.585 2.793 2.562
EvFlow+ 0.967 0.752 1.154 0.990 1.184 0.833 2.903 1.445 1.983 1.580
V2V-EvFlow 0.732 0.745 0.870 0.990 0.741 0.758 2.114 1.191 1.627 1.365

3PE (%) ↓ D S D S D S D S D S

Zeros 14.5 20.2 36.1 52.5 30.2 38.6 57.1 54.5 32.9 31.7
EvFlowt+ 2.7 0.8 5.4 2.4 7.0 1.6 36.1 12.1 19.8 14.4
V2V-EvFlow 0.5 0.5 1.3 2.3 0.4 0.6 23.6 8.4 15.0 11.2

5 Limitations

Computation resources. Since all training data is stored in video format, video decoding is
required throughout the training process. Video decoding algorithms are quite CPU-intensive; when
accelerated with hardware, they also consume GPUs. In our experiments, the CPU capabilities
of our systems were sufficient, and the real efficiency bottleneck was successfully pushed to the
100%-utilized GPU. However, this may be a problem on systems with other CPU-GPU combinations.

Event representations. As analyzed in Section 3, the video-to-voxel module is only applicable
when the input representation of a neural network is one that discards all intra-bin temporal informa-
tion, such as the discrete voxel. Although the discrete voxel representation can be applied to a large
range of event-based vision tasks, there are still scenarios when non-applicable representations are
essential, especially if the model to train is unconventional (e.g., spiking neural networks).

6 Conclusion

We introduce the V2V module, which directly converts videos to voxels and significantly reduces the
storage and data transfer costs of synthetic event data while providing more variant training samples.
Empowered by the V2V module, we scale up training datasets for video reconstruction and optical
flow estimation, boosting existing models to exhibit better performance. The V2V module has broad
application potential across more model architectures and event-based tasks, which remains to be
explored in the future.
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Appendix

A Evaluation Details

In Table 2, we report metrics MSE, SSIM, and LPIPS. There are several versions of these metrics
that produce different values, causing inconsistency across papers. We use a version that closely
reproduces the values in previous works such as E2VID++ [33] and ETNet [36]. Specifically:

MSE. In our experiments, Mean Square Error is calculated on pixel values of images normalized in
the range of [0, 1].

SSIM. Structural Similarity is calculated with skimage.metrics.structural_similarity
from the Python Package “scikit-image”. The images to be processed are normalized into the range of
[0, 1]. The window size is set to the default win_size=7. The data_range parameter is incorrectly
set to 2 instead of 1 to align with previous works.

LPIPS. The Learned Perceptual Image Patch Similarity is calculated with the code and weights
provided in https://github.com/cedric-scheerlinck/PerceptualSimilarity. The pa-
rameters are set to net="alex" and version="0.1". It is noted that using different versions of
code and weights will lead to different metric values.

We evaluate the methods on selected sequence cuts of IJRR [25], MVSEC [43], HQF [33], and
EVAID [6]. Following [33], we use the full HQF sequences, and cut the IJRR and MVSEC sequences
with boundaries as listed in Table 4. The same MVSEC sequence cuts are used for optical flow
evaluation.

Table 4: Cut boundaries for IJRR and MVSEC sequences.
IJRR MVSEC

Sequence Start [s] End [s] Sequence Start [s] End [s]

boxes_6dof 5.0 20.0 indoor_flying1 10.0 70.0
calibration 5.0 20.0 indoor_flying2 10.0 70.0
dynamic_6dof 5.0 20.0 indoor_flying3 10.0 70.0
office_zigzag 5.0 12.0 indoor_flying4 10.0 19.8
poster_6dof 5.0 20.0 outdoor_day1 0.0 60.0
shapes_6dof 5.0 20.0 outdoor_day2 100.0 160.0
slider_depth 1.0 2.5

The frames provided in the EVAID [6] dataset have relatively better visual quality. To reduce the
testing burden, we only crop a 5-second segment (up to 750 frames, as EVAID has a high frame rate)
from each of the longer sequences. The boundaries of these segments are listed in Table 5.

Table 5: Cut boundaries for EVAID sequences.
EVAID

Sequence Start [s] End [s] Frames Sequence Start [s] End [s] Frames

ball 0.0 5.0 500 bear 0.0 2.7 66
box 0.0 5.0 100 building 0.0 5.0 750
outdoor 0.0 1.4 26 playball 25.0 30.0 750
room1 0.0 5.0 750 sculpture 0.0 5.0 750
toy 0.0 5.0 100 traffic 0.0 5.0 500
wall 0.0 5.0 750

We did not include the “blocks” and “umbrella” sequences, because the cameras were completely
static and no signal events were triggered in the background throughout the sequences. As a result,
event-based video reconstruction methods can only wildly guess the backgrounds, which causes
metrics to be highly random. We cut from the later part of the “playball” sequence for the same
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Figure 7: Performance on real data fluctuates as training loss decreases.

reason: there was no camera motion at the beginning. We exclude the “room2” sequence because it is
highly homogeneous with the “room1” sequence.

We observe that, although the loss on the synthetic training datasets gradually converges after
sufficient epochs, the test performances on real datasets still exhibit considerable instability. Figure 7
shows the train loss and validation loss curves of E2VID in the experiments on WebVid10K ((d) in
Table 9) and ESIM ((l) in Table 9). The checkpoints achieving the best performance on different
datasets are often not the same, and the choice of checkpoint for final testing has a significant impact
on performance evaluation. In our study, for all experiments, we perform approximately the same
number of validation epochs on real datasets throughout training. For example, for E2VID-ESIM
trained over 500 epochs, validation is performed every 6 epochs; for E2VID-WebVid10K trained
over 80 epochs, every 1 epoch; for E2VID-WebVid1K trained over 800 epochs, every 10 epochs; and
for E2VID-WebVid100 trained over 8000 epochs, every 100 epochs. Then, we select the checkpoint
corresponding to the lowest average LPIPS loss across the HQF and EVAID datasets as the final
model for testing.

License. MVSEC [43] is released under the CC BY-SA 4.0 license. IJRR [25] is released under
the CC BY-NC-SA 3.0 license. HQF [33] and EVAID [6] did not include a license.

B Training Details

All our experiments were conducted on single-GPU instances, and the peak GPU memory usage does
not exceed 80 GB. We followed the optimizer and learning rate settings of the original models.

E2VID. The E2VID models were trained with a batch size of 12. The optimizer is Adam with a
constant learning rate of 0.0001, no weight decay, and AMSGrad enabled.

ETNet. The ETNet models were trained with a batch size of 6. The optimizer is AdamW with
initial learning rate 0.0002, weight decay rate 0.01, and AMSGrad enabled. We adjust the gamma
value of the exponential learning rate scheduler to 0.94 since we only train for 100 epochs.

HyperE2VID. The HyperE2VID models were trained with a batch size of 12. The optimizer is
Adam with a constant learning rate of 0.001, no weight decay, and AMSGrad enabled.

We trained the models on datasets rendered by ESIM [28] as well as the WebVid [2] dataset. As shown
in Figure 8, scenes from the WebVid dataset are far more diverse and realistic than the flying-image
style scenes rendered by ESIM, which is the source of our models’ exceeding performance.

License. WebVid [2] states on its website (https://github.com/m-bain/webvid) that the dataset can
be used for non-commercial purposes.

C Dataset Quality Discussion

The low quality of the APS frames in IJRR and MVSEC has already been reported by Stoffregen
et al. [33], who selected relatively good clips from IJRR and MVSEC to evaluate on. However, we
observe that even the selected clips are far from ideal.

15



(a) WebVid scenes (b) ESIM scenes

Figure 8: Scenes from the WebVid dataset are much more diverse and realistic than the flying-image
style scenes rendered by ESIM [33].

For example, as shown in Figure 9, the ground truth frame from IJRR/dynamic_6dof is underex-
posed and too dark. Even after adjusting the image, the person’s leg under the table cannot be seen.
The image also suffers from vignetting. Hence, the GT-based metrics of E2VID methods will be
punished if they generate frames with moderate exposure or successfully reconstruct the details under
the table, causing the metrics to be misleading.

The ground truth frame example from MVSEC/outdoor_day1 is also underexposed. Moreover, when
we adjust the frame to be brighter, we can observe that it is very noisy and unsuitable to serve as
ground truth.

The quality of the event pixels also varies across datasets. In Figure 10, for sequences from MVSEC,
IJRR, HQF, and EVAID, we visualize the total number of events triggered on each pixel within the
sequence.

In all DAVIS datasets (MVSEC, IJRR, HQF), we can observe “hot pixels” (dark red dots) that keep
omitting events. We also observe vertical stripe-like patterns, suggesting variations in threshold levels
between odd and even pixel columns.

In the MVSEC/indoor_flying sequences, we also observe many “dead pixels” (dark blue particles)
that do not trigger any events despite the large camera motion. This may have caused the dirty-window
artifacts (fixed patterns that hover on top of videos, like looking through a dirty window) shared by
the reconstructions of almost all the methods.

We did not observe these problems in the EVAID dataset, which was captured with a Prophesee EKV4
event camera. Hence, we speculate that these issues are inherent to the DAVIS camera series. While
we could simulate corresponding defects during event synthesis to improve model generalization
on DAVIS data, the fact that these cameras are no longer available on the market makes backward
compatibility less valuable. Therefore, we have decided to look ahead and directly update our testing
benchmark to focus on more advanced camera models.

D Ablation Study Results

D.1 Dataset quality

In the WebVid dataset, a large proportion of videos have out-of-focus blur due to large aperture
settings, and some videos are synthetic CG instead of real videos. We tried to improve dataset quality
by filtering them out, but the results were counterintuitive: using the unfiltered version produced
better results.

Specifically, from the 2.5M videos of WebVid, we arbitrarily selected a subset of 32K videos and
labeled them with the large vision language model Qwen2.5-VL [1]. For each video, we sample
one frame and ask Qwen2.5-VL if there is any post-production artefact (such as subtitles/CG/...)
in the image, if the image is blank, and if the image has out-of-focus or motion blur. We exclude
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Ground Truth

(a) IJRR/dynamic_6dof (b) MVSEC/outdoor_day1

Adjusted GT Ours Events
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Figure 9: Frames from IJRR (a) and MVSEC (b) are far from ideal.

EVAID/traffic
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HQF/bike_bay_hdr

HQF/still_life

IJRR/dynamic_6dof

IJRR/boxes_6dof

MVSEC/indoor_flying1
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Figure 10: Event count maps from real event data sequences.

all videos with post-production artefacts, blank content, or blurriness. From the remainings, we
randomly sampled 10K videos, forming the dataset WebVid10K*.

By comparing lines (d) and (n) in Table 9, we see that models trained on WebVid10K perform slightly
better than on WebVid10K*. This may be because the filtering decreases dataset diversity, since
specific sample types, such as daytime outdoor long-shot videos, are less likely to be filtered out. The
semantic statistics of the two datasets (annotated using Qwen2.5-VL [1]) are listed in Table 6.

Table 6: Semantic statistics of WebVid datasets.
Description WebVid10K* (%) WebVid10K (%)

Is real video 100.00 76.83
From outdoor scene 70.63 53.15
From indoor scene 21.33 25.09
Is daytime 75.53 60.51
Is nighttime 3.44 9.56
Has water 22.22 16.17
Has humans 30.09 34.11
Has sky 46.19 27.59
Is blank 0.00 3.44
Has defocus blur 0.00 41.10
Has motion blur 0.00 9.32
Contains text 3.76 3.43

To demonstrate the importance of exposure quality, we intentionally degenerate the dynamic range
of the video dataset, and observe its effect on the model. Specifically, in each iteration, with 80%
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Figure 11: Degenerating the dynamic range of training videos makes the model reconstruct images
with higher contrast.
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E2VID - WebVid10K - Alex + Temporal Consistency

Traffic 270

Sculpture 200

E2VID - WebVid10K - VGG + L1 + Temporal Consistency (Half)

Figure 12: The Alex LPIPS loss introduces arrow-like patterned artefacts when the video degenerates.

probability, we degenerate the video frames with a random scale s between 1 and 3:
Fdegrade = Clip((F − 127.5) ∗ s+ 127.5, 0, 255). (9)

This increases the contrast of the video, and creates more overexposed and underexposed areas. Our
experiments show that the corresponding model indeed learns to reconstruct images in a more high
contrast style, as shown in Figure 11. The quantitative metrics are listed in line (o) of Table 9.

D.2 Design of loss function

Alex or VGG for perceptual loss. We observe that using the Alex model for the computation of
LPIPS loss introduces a certain type of patterned artefact when events are sparse and the outputs start
to degenerate. These patterns are visually unpleasant, and they disappear when we change to using
the VGG LPIPS loss (combined with L1 loss). In the ablation experiment (p) of Table 9, we train
on WebVid10K using the original loss combination, Alex LPIPS + full temporal consistency (with
optical flow from RAFT-Small [32]). Figure 12 shows the unpleasant arrow-like patterns, and the
corresponding metrics in the table are also worse than experiment (d), which was trained on our loss
design.

Pseudo ground truth optical flow. Model-based event simulators such as ESIM provide ground
truth optical flow, which is used to compute temporal consistency loss. When we shift to video-based
simulation, ground truth optical flow is no longer accessible. Although we can predict optical flow
using the image frames, we worry that the errors in prediction may have negative effects on training.

In experiment (t) of Table 9, we train the E2VID model using predictions of RAFT-Small [32] as
optical flow. The experiment (l) of Table 9 has the same setting, except for the optical flow used in
the temporal consistency loss is ESIM-rendered ground truth. Through comparison, no significant
negative influence can be observed.
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Half temporal consistency loss. In this paper, we introduce half temporal consistency loss, i.e.,
only computing temporal consistency loss over the last 20 frames of a 40-frame sequence. In Table 9,
experiments (r) (s) (t) explore the benefits of using half temporal consistency loss instead of no
temporal consistency loss (only Alex LPIPS, (r)) or full temporal consistency loss (Alex+TC-RAFT,
(t)). Although the half consistency loss experiment (s) do not exceed in the frame-based quantitative
metrics, the elimination of flickering and the relief of dirty-window artefacts can be observed in the
reconstructed videos, which can be found in the supplementary video.

D.3 Comparison against the V2E solution.

In order to compare our V2V framework to a "frame interpolation + event simulation" approach, we
interpolated the WebVid-100 dataset by 8x with PerVFI [37] and used the popular V2E simulator [13]
to generate training events. We used the "clean" noise mode. For the thresholds, we linearly scaled
the random thresholds in the "fixed thresholds" ablation experiment due to the different logarithm
mapping of V2E from ESIM (our V2V framework follows ESIM).

In the simulation, a video (1066695484.mp4, with original size 1.2MB) produced 14GB of events.
This caused our post-processing step to fail due to out-of-memory issues. We discarded this sample,
leaving us with a WebVid-99 dataset. The WebVid-99 dataset (in raw events) sums to 12 GB space,
while the original WebVid-100 videos only sum to 210 MB.

We then stacked the events into interpolated voxel bins. In this stage, we need to select the durations
of the voxel bins. In the V2V experiments, each voxel corresponds to the events between 6 real
frames, and the E2VID models reconstruct 24/5 FPS videos. We tried two binning strategies in our
V2E experiments:

In strategy 1, we encode all the events between 1+1 original frames (crossing 7 interpolated frames)
into a single voxel. This makes the E2VID models reconstruct 24 FPS videos, utilizing the high
temporal resolution from frame interpolation. We annotate this as "V2E-1".

In strategy 2, we encode all the events between 5+1 original frames (crossing 35 interpolated frames)
into a single voxel. This makes the E2VID models reconstruct 24/5 FPS videos, aligning to the V2V
experiments. We annotate this as "V2E-5".

During training, we used the same augmentation noise (gaussian noise + hot pixels) as the ESIM
protocol. For the V2E-5 experiment, we train for 8000 epochs, aligning to the V2V-WebVid-100
experiment. For the V2E-1 experiment, it produces 5x more training samples, so we train for 1600
epochs.

The test results are shown in Table 7. The V2V-1 experiment produced better results than the V2V-5
experiment, showing that training on shorter bins may indeed benefit model performance. However,
both V2E experiments produced metrics worse than the "WebVid-100-Fixed" experiment, which also
uses fixed thresholds for each video. This shows that our V2V method not only exceeds the V2E
approach in efficiency, but also produces models with better performance.

Table 7: Comparison of V2V solution and V2E approach. Lower (↓) MSE and LPIPS values and
higher (↑) SSIM values are desirable. We highlight the best values with green .

Model Train Dataset Loss Eps HQF EVAID

MSE↓ SSIM↑ LPIPS↓ MSE↓ SSIM↑ LPIPS↓

E2VID V2V-100-Fixed V+L1+TH 8000 0.049 0.611 0.330 0.073 0.604 0.451
E2VID V2V-100 V+L1+TH 8000 0.042 0.626 0.327 0.078 0.594 0.441
E2VID WebVid99-V2E-1 V+L1+TH 1600 0.057 0.524 0.459 0.116 0.484 0.561
E2VID WebVid99-V2E-5 V+L1+TH 8000 0.077 0.470 0.569 0.117 0.483 0.588

D.4 Finetuning on test datasets.

Our V2V framework produces models with strong zero-shot generalization abilities. In order to
show this, we conducted a finetuning experiment on EVAID to show that our zero-shot model can
outperform a model trained or finetuned with limited real event data.
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Our EVAID test set has 10 sequences. We took 7 sequences (Ball, Box, Building, Outdoor, Playball,
Room1, Toy, Wall) as a train set, and 3 sequences (Bear, Sculpture, Traffic) as the new test set.

Zero-shot inference. We directly used the V2V-E2VID model weights, trained on the WebVid
dataset, for zero-shot inference on the EVAID test set.

Finetuning on EVAID. We finetuned the pretrained V2V-E2VID model on the EVAID train set for
100 epochs, with a learning rate of 0.0001, observing that the validation loss had converged.

Directly training on EVAID. We trained an E2VID model from scratch on the EVAID train set. We
trained it for 2000 epochs with learning rate 0.0001, observing that the validation loss had converged.

The resulting metrics of the three models are shown in Table 8. Surprisingly, the zero-shot model
performed best. Finetuning caused a slight performance drop, while training on real data from scratch
performed worst. This is likely due to the small size of the EVAID dataset, which caused the model
to overfit to the training sequences and fail to generalize to the test sequences.

Table 8: E2VID directly trained or finetuned with EVAID. Lower (↓) MSE and LPIPS values and
higher (↑) SSIM values are desirable. We highlight the best values with green .

Model Train Dataset Loss Eps EVAID

MSE↓ SSIM↑ LPIPS↓

E2VID V2V-10K (Zero-shot) V+L1+TH 80 0.056 0.661 0.424
E2VID V2V-10K + EVAID (Finetuned) V+L1+TH 80 + 100 0.064 0.645 0.458
E2VID EVAID (From scratch) V+L1+TH 2000 0.078 0.483 0.658

D.5 Performance gain on downstream tasks

In order to demonstrate the reusability of the V2V weights on downstream tasks, we conducted an
experiment on the N-MNIST classification task.

The MNIST dataset is an image-based dataset, corresponding to the task of classifying hand-written
digits, frequently used as a toy dataset in computer vision. N-MNIST [26] is a corresponding event-
based classification dataset, recorded by saccading the original MNIST images with an real event
camera. We chose this task due to its convenience: the dataset is small and code is simple.

We first trained a very simple convolution model on the train split of MNIST (the image version). On
the test split (images), the model achieved an accuarcy of 98.76%.

Then we explored using video reconstruction models in a zero-shot pipeline for the N-MNIST task.
The pipeline is as follows:

• Take real event streams from the N-MNIST test split. Stack them to 5*5 event bins.
• For each of the 5 voxels (each with 5 bins), use the E2VID model to reconstruct an image frame.

This produces 5 reconstructed frames.
• Use the last frame as the input to the image-based MNIST classifier, and predict the digit.

When using the original E2VID model, the resulting accuracy on the N-MNIST test set is 47.46%.
When changing to the V2V-E2VID model, the accuracy improves to 63.62%. This is due to the better
reconstruction quality of the V2V-E2VID model.

This shows that the quality improvement brought by the V2V framework can be utilized by zero-shot
downstream tasks. Note that there are existing classification models that can generalize much better;
the purpose of using a weak model is to compare the original E2VID against V2V-E2VID.

E Additional Reconstruction Results

We provide qualitative results of our method V2V-E2VID (trained on WebVid10K) in Figure 13,
Figure 14, Figure 15 and Figure 16. Compared to the baseline method E2VID+, our method produces
fewer artefacts and better image contrasts.

In Table 9, we report quantitative metrics over the datasets EVAID, HQF, IJRR, and MVSEC.
Quantitative metrics of all ablation studies are also provided.
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F Qualitative Optical Flow Results

In Figure 17, we provide visualizations of our optical flow predictions. Our retrained model V2V-
EvFlowNet produces denser results and fewer black hollows.

G Broader Impacts

Positive impacts. Our V2V module enables scaling up event-based datasets with less storage
usage, less data transfer burden, more sample diversity, and greater augmentation flexibility. This will
lower the economic barriers for conducting event-based vision research, empower more researchers
to advance related work, and leverage the event camera’s high temporal resolution, high dynamic
range, and low power consumption to push the boundaries of machine vision.

Negative Impacts. Video-based training enables models to learn prior knowledge from the video
data. As a result, they may suffer from biased or discriminatory features present in the video datasets,
which calls for future researchers to more carefully consider the data used for training.

22



E2VID+ (Baseline) V2V-E2VID-10K (Ours) Ground Truth

EVAID / toy

EVAID / box

EVAID / building

EVAID / room1

EVAID / wall

EVAID / traffic

Figure 13: Qualitative results on the EVAID dataset.
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E2VID+ (Baseline) V2V-E2VID-10K (Ours) Ground Truth

HQF / boxes

HQF / desk_hand_only

HQF / engineering_posters

HQF / high_texture_plants

HQF / reflective_materials

Figure 14: Qualitative results on the HQF dataset.
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E2VID+ (Baseline) V2V-E2VID-10K (Ours) Ground Truth

IJRR / slider_depth

IJRR / office_zigzag

IJRR / calibration

IJRR / boxes_6dof

IJRR / poster_6dof

Figure 15: Qualitative results on the IJRR dataset.
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E2VID+ (Baseline) V2V-E2VID-10K (Ours) Ground Truth

MVSEC / outdoor_day2

MVSEC / indoor_flying3

MVSEC / indoor_flying2

MVSEC / indoor_flying1

MVSEC / outdoor_day1

Figure 16: Qualitative results on the MVSEC dataset.
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Image Ground Truth EvFlowNet+ V2V-EvFlowNet

MVSEC/indoor_flying1

Image RAFT EvFlowNet+ V2V-EvFlowNet

HQF/slow_hand

IJRR/boxes_6dof

EVAID/box

Figure 17: Qualitative results of V2V-EvFlow.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We claim to contribute the V2V module, which enables efficient, flexible and scalable
video-based event vision model training. These claims are validated by our experiments.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in the appendix.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Our main theoretical result is the feasibility of converting videos directly to discrete
voxel grids. We conducted an analysis and pointed out that its basis is an event representation that
discards intra-bin temporal information.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear
in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We described the V2V model in detail, and we promise to release corresponding
code.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We promise to release our code on Github after paper acceptance.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We explained the experiment settings in our paper, and will release experiment
configurations with the code for further clarification.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We provide training details including computer resources in the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper does not propose new datasets and does not involve human subjects.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential societal impacts in the appendix, both positive and negative.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for
monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We cite the original papers of all code and datasets used. We also mention the
licenses and terms of use in the appendix. MVSEC [43] is released under the CC BY-SA 4.0
license. IJRR [25] is released under the CC BY-NC-SA 3.0 license. HQF [33] did not include
a license. WebVid [2] states on its website (https://github.com/m-bain/webvid) that the dataset
can be used for non-commercial purposes. Since our research is non-commercial and we do not
redistribute the datasets, the paper respects the licenses.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code related to the V2V module will be released with detailed documentation.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The original ideas were developed by human mind, and all experiments were
conducted with human operation.
Guidelines:
• The answer NA means that the core method development in this research does not involve LLMs

as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what

should or should not be described.
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