Under review as a conference paper at ICLR 2018

CURIOSITY-DRIVEN EXPLORATION BY BOOTSTRAP-
PING FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Curiosity by Bootstrapping Features (CBF), an exploration method
that works in the absence of rewards or end of episode signal. CBF is based on
intrinsic reward derived from the error of a dynamics model operating in feature
space. It was inspired by (,), is easy to implement, and can achieve
results such as passing four levels of Super Mario Bros, navigating VizDoom mazes
and passing two levels of Spacelnvaders. We investigated the effect of combining
the method with several auxiliary tasks, but find inconsistent improvements over
the CBF baseline.

1 INTRODUCTION

Modern reinforcement learning methods work well for tasks with dense reward functions, but in
many environments of interest the reward function may be sparse, require considerable human effort
to specify, be misspecified, or be prohibitively costly to evaluate. In general it is much easier to find
environments that we could train an agent to act in than it is to find sensible reward functions to train
it with. It is therefore desirable to find ways to learn interesting behaviors from environments without
specified reward functions.

() introduced an exploration strategy that leads to sophisticated behavior in several
games in the absence of any extrinsic reward. The strategy involves

1. Learning features using an inverse dynamics prediction task,
2. training a forward dynamics model in the feature space, and
3. using the error of the forward model as an intrinsic reward for an exploration agent.

Inspired by this result we wondered if it was possible to improve the method by using a different task
for learning the features in step 1. To our surprise we found that the choice of feature-learning task
didn’t matter much. In fact when skipping step 1 altogether, we often obtained comparable or better
results. As a result we obtained a method that is simple to implement, and shows purposeful behavior
on a range of games, including passing over four levels of Super Mario Bros without any extrinsic
rewards or end of episode signal (see video /ere). Previous work reported making significant progress
on the first level of this game. In addition we report the results of using our method on VizDoom
maze environment, and a range of Atari games.

2 RELATED WORK

A family of approaches to intrinsic motivation reward an agent based on error (, ;

s : s), uncertalnty(;

,), or 1mprovement (,) of a forward

dynamics model of the environment that gets trained along w1th the agent’s policy. As a result

the agent is driven to reach regions of the environment that are difficult to predict for the forward

dynamics model, while the model improves its predictions in these regions. This adversarial and
non-stationary dynamics can give rise to complex behaviors.

Self-play (,) utilizes an adversarial game between two agents for exploration.
Smoothed versions of state visitation counts can be used for novelty-based intrinsic rewards (
, ; ; ; ; ; ,)-

https://youtu.be/wR-J9eBsD3k

Under review as a conference paper at ICLR 2018

S¢ 2, hy AN a; ¢ - embedding

7 - policy

f - forward dynamics model

| ' r¢ - intrinsic reward at step ¢
Lr=r=|hs1 — ilt+1||2 L5 - loss for the dynamics model

o) ~

Figure 1: Main components of the Curiosity by Bootstrapping Features (CBF) method. s; and s
are environment states at times ¢, t + 1, a; ~ 7(¢(s;)) is the action chosen at time ¢. The red arrows
indicate that the input of that arrow is treated as a constant — no gradients are propagated through it.

Other methods of exploration are designed to work in combination with maximizing a reward function,
such as those utlhzlng uncertainty about value function estimates (, ; ,
), or those using perturbations of the policy for exploration (, ;

;)

() provides a review of some of the earlier work on approaches to intrinsic
motivation.

2.1 DyYNAMICS DRIVEN CURIOSITY

The forward dynamics model takes as input the current state and action and outputs a point estimate
of (or a distribution over) the next state

St, Gt —> §t+1 X St41- (1)

Alternatively the dynamics model could operate in a space of features of the raw observations:

B(st), ar — ¢(/St:) ~ P(sty1) (2)

where ¢ is some embedding function that takes as input a state and outputs a feature vector. One
advantage of the latter approach is that it may be computationally more efficient to train a predictive
model in a lower dimensional feature space. Another is that a good choice of ¢ will exclude irrelevant
aspects of the state. Examples of this approach include () where they learn ¢ by
using an autoencoding objective and () where they use an inverse dynamics task to
learn the embedding. The latter work is the closest to our approach. We outline the main differences
in Appendix 10.

3 METHODS AND NOTATION

3.1 ENVIRONMENT

We consider a discounted, infinite-horizon Markov Decision Process (MDP) given by the tuple
(S, A, R,po,p,7), where S is the state space, A is the action space, R : S X A — R is the reward
function, p : S x A — P(S) is the environment transition function, py is the initial state distribution,
and - is the discount factor. Normally we would try to produce a policy 7 : S — P(.A) maximizing
the expected discounted returns, but we treat the reward function as being unknown, and instead
produce a policy maximizing a surrogate reward function. We will write s;, a;, r; for the state, action,
and the surrogate reward received at time ¢.

3.2 NETWORKS AND PARAMETERS
Our method employs the following components:

e Embedding network ¢ : S — H C R? parametrized by 6, where H is the embedding
space,

Under review as a conference paper at ICLR 2018

e policy network 7 : H — P(.A) parametrized by 6, that outputs probability distributions
over A,

o forward dynamics model f : H x A — H parametrized by 6, and

e (optionally) an auxiliary prediction task for learning ¢ implemented by a network g with
parameters 6,. The exact functional form will depend upon the prediction task.

3.3 LOSSES AND GRADIENTS

The intrinsic reward that we replace the extrinsic reward with is a function of the embeddings
he = @(st), hir1 = d(si4+1) of consecutive states s¢, s¢41 and the chosen action a;. Given the output

of the forward dynamics model /41 = f(hy, a;) the reward is defined as 7y = ||y — hyp1||2 (see
figure 1). This reward is identical to the loss of the forward dynamics model. The policy attempts to
maximize the reward by finding unexpected transitions, while the dynamics model tries to minimize
its prediction error (identical to the reward) with respect to its own parameters. We optimize this
dynamics loss only with respect to the parameters of the dynamics model 6 and not with respect to
the parameters of the embedding network 64 to avoid issues with features incentivised to become
predictable by collapsing to a constant.

The loss for the policy network depends upon what reinforcement learning algorithm we use. In
this paper we use the Proximal Policy Optimization (PPO) algorithm described by

(). The loss is as described there using the rewards r; defined above. When we do joint training
of features and policy we optimize the policy loss with respect to both 6, and 6. Otherwise we take
gradients only with respect to ;.

We explore several choices of auxiliary losses to train ¢ with. These are detailed in Section 6. These
losses get optimized with respect to 64 and 6.

With this setup the parameters of the embedding function ¢ get optimized with respect to a combina-
tion of the auxiliary loss (if any) and policy network loss (when training jointly). In the case where
there is no auxiliary task and we are not training the features jointly with the policy, ¢ is simply a
fixed function with randomly initialized parameters 6.

The forward dynamics model would prefer to have features of small norm to reduce its error, and
the policy network would prefer to have features of large norm to increase its reward. It is important
to note however that the forward model’s loss does not optimize the parameters of the embedding
network, and the policy network can only optimize with respect to the actions it takes, not directly
manipulate the reward function by increasing the norm of the features.

The overall training process is described in Algorithm 1.

4 CHALLENGES

4.1 STOCHASTICITY

The intrinsic motivation coming from the errors of a deterministic forward dynamics model could
be inadequate in some stochastic environments. Previous works have discussed the problem of “TV
static”. The “TV static” refers to stochastic transitions in the environment (like the white noise
static of a TV) that have no causal relationship with the past or the future. In the presence of such
stochasticity the forward dynamics model will mispredict the next state, and the agent will be drawn
to explore the stochastic subset of the environment, possibly at the expense of other aspects that
it could explore instead. Predicting the dynamics in feature space can alleviate the problem if the
features don’t contain information about the irrelevant aspects of the environment that are stochastic.

Another problem is the presence of a “lottery”, i.e. a stochastic transition from a particular state
to states with meaningfully different possible outcomes (e.g. if the future of the agent depends in
some important ways on the outcome of a roll of a die). Since the future of the agent depends on
the unpredictable outcome, the different outcomes must be represented differently in feature space.
In this case the agent will receive high reward for participating in the “lottery”. Such a situation
can arise in games when an agent passes a level, and transitions to a level with random positions of
obstacles and enemies. Sometimes this effect can be advantageous to exploration, but sometimes

Under review as a conference paper at ICLR 2018

it is not, as discussed in section 5. In such situations a stochastic dynamics model would be more
appropriate.

4.2 MEASURING PROGRESS

There is no definite way of measuring the progress of exploration. Some possible goals for exploration
include learning about the dynamics of the environment, obtaining policies that can control aspects
of the environment, obtaining policies that can be easily fine-tuned to optimize a particular reward
function, producing agents that exhibit complex and nuanced behaviors, discovering unexpected
aspects of the environment etc. Corresponding to such goals one could think of multiple proxies
for measuring the progress on achieving them. In environments with a particular environmental
reward function that we choose to ignore at training time, progress at achieving high returns often
can be a reasonable measure of exploration. This is because many games and tasks are such that the
rewarding behavior is also complex, nuanced, requires knowledge of the environment’s dynamics,
and the ability to control it. Other measures of progress include counts of visited states, and amount
of time staying alive (if staying alive is challenging in the particular environment).

5 EXPLORATION WITH MINIMAL REQUIREMENTS OF THE ENVIRONMENT

Besides using the reward signal, it is common practice to include other environment-specific clues
to facilitate learning. We tried to remove such clues, as they can be laborious to specify in a new
unfamiliar environment.

In several Atari games such as Breakout the game doesn’t properly begin until the agent presses fire,
and so it is common to add a wrapper to the environment that automatically does this to avoid the
agent getting stuck (,). We don’t use such wrapper, since being stuck is predictable
and unrewarding to our agents.

In addition we switch to a non-episodic infinite horizon formulation. From the agent’s perspective,
death is just another transition, to be avoided only if it is boring. In some games the end of episode
signal provides a lot of information, to the extent that attempting to stay alive for longer can force the
agent to win the game even in the absence of other rewards as noted by the authors of (

))'

In our experiments we don’t communicate the end of episode signal to our agents. Despite that we
find that agents tend to avoid dying after some period of exploration, since dying brings them back to
the beginning of the game — a region of state space the dynamics model has already mastered.

In some environments however the death is a stochastic transition — the positions of entities in the
game might be randomized at the beginning of the game. This poses a challenge for exploration
based on deterministic dynamics models, which is drawn to seek out the stochastic transition from
the end to the beginning of the game. In the environments that we dealt with it wasn’t a problem, so
we leave using a stochastic dynamics model for future work.

6 FEATURE LEARNING METHODS

6.1 HINDSIGHT EXPERIENCE REPLAY (HER) (()

HER is a recent method for learning a policy capable of going from any state to any state (or more
generally any goal). It learns offline from an experience replay buffer of environment transitions.
We only use this method as a way of training the embedding network ¢, not to use it for actually
achieving any goals.

The loss for HER is based on the Bellman loss for the goal-conditioned state-action value function
with respect to a reward function defined by

1 s =
(8¢, 81415 9) = { 0 ottgelrwisge ®)

4

Under review as a conference paper at ICLR 2018

Given a discount factor 7y € [0, 1], the optimal state-action value function Q* (s, a; g) for a determin-
istic environment is 4™ where n is the length of the shortest path from state s to goal state g that takes
action a in state s.

HER is an off-policy algorithm that learns the state-action values of states with respect to goals that
can be chosen from the future of the state’s trajectory. When we train our model we first sample a
random transition s, S¢11, a; from the replay buffer, then a goal g which is s, with probability 0.5
and s, with probability 0.5 where k is sampled from —100 to 100 uniformly at random.

In our implementation of HER we use a goal-conditioned state-action value function ¢(s, a; g) which
is a function of (¢(s), #(g), a). The motivation for this method of learning embeddings is that the
network is encouraged to represent aspects of the environment that can be controlled and are useful
for control.

6.2 INVERSE DYNAMICS FEATURES (IDF)

Given a transition (s¢, st.11, a;) the inverse dynamics task is to predict the action a; given the previous
and next states s; and s;1. Features are learned using a common neural network ¢ to first embed s,
and s;41. The intuition is that the features learned should correspond to aspects of the environment
that are under the agent’s immediate control. This feature learning method is easy to implement and
in principle should be invariant to certain kinds of noise (see () for a discussion). A
potential downside could be that the features learned may be myopic, that is they do not represent
important aspects of the environment that do not immediately affect the agent.

6.3 NO AUXILIARY TASK

Instead of using auxiliary tasks to learn embeddings of observations, we could instead learn the
features only from the optimization of the policy, or not change them at all after the initialization. We
refer to the exploration method using an embedding network that is fixed during training as Fixed
Random Features (FRF). We refer to the algorithm that uses features that learn only from the policy
optimization Curiosity by Bootstrapping Features (CBF).

We speculate that Curiosity by Bootstrapping Features works via a bootstrapping effect where the
features encode increasing amounts of relevant aspects of the environment, whereas the forward
model learns to predict the transitions of those relevant features. Initially the features encode little
information about the environment. By trying to find unpredictable transitions of those vague features,
the policy has to attend to some additional aspects of the environment that were not previously
encoded in the features. These aspects of the environment now become part of the feature space,
and hence the dynamics model now has to predict their transitions as well. Even more aspects of
the environment then become relevant for finding surprising transitions in the feature space, and the
cycle continues.

One fixed point of this process is when features are constant, and the dynamics model has to predict
constant transitions. Empirically we find that this fixed point is in fact unstable — if features
initially contain some amount of information about the environment, eventually they start encoding
increasingly more aspects of the environment (as evidenced by looking at pixel reconstructions from
a separately trained decoder trained to decode the features into the pixel space).

7 EXPERIMENTAL RESULTS

For details on the experimental setup such as hyperparameters and architectures see Appendix 9. We
implemented the models using Tensorflow (()) and interfaced to the environments
using the OpenAl Gym (().

7.1 EVALUATION

We use the mean (across three random runs) best extrinsic return of the agent as a proxy for exploration.
In general there is no a priori reason why extrinsic return should align well with an intrinsic measure
of interestingness based on the dynamics, but it often turns out to be the case.

Under review as a conference paper at ICLR 2018

Algorithm 1 CBF with optional auxiliary losses

N < number of rollouts
Nope < number of optimization steps
K < length of rollout
t=0
Sample state so ~ po(so)
fori =1to N do
for j = 1to K do
sample a; ~ 7(at|st)
sample s;11 ~ p(st41|s¢, ar)

calculate intrinsic reward 7y = ||¢(si41) — f(H(s¢), ar)|?
add s, sy41, at, 1y to replay buffer R and to optimization batch B;
t+=1

end for

for j = 1to Ny do
optimize 6, and optionally 6, wrt PPO loss* on batch B;
sample minibatch M from replay buffer R
optimize 07 wrt forward dynamics loss on M
optionally optimize 84, 0 4 wrt to auxiliary loss
end for
end for
*PPO loss is modified so as not to include the end of episode signals or ‘dones’.

Episode length

Figure 2: Left: Pong results measured by game score. Center: Pong results measured mean episode
length. Right: Breakout results measured by game score..

7.2 ABBREVIATIONS

In the figures we use abbreviations for the method names: IDF = inverse dynamics auxiliary task
without joint training, IDF Joint = inverse dynamics auxiliary task with joint training, HER =
Hindsight Experience Replay auxiliary task without joint training, HER Joint = Hindsight Experience
Replay auxiliary task with joint training, CBF = no auxiliary task with joint training, FRF = no
auxiliary task without joint training, RAND = random agent.

We have chosen most hyperparameters for our experiments based on open-sourced implementations
of PPO and DQN (,). We have changed the entropy bonus coefficient and number
of optimization steps for PPO, as well as algorithm-specific learning rates after some initial results
on Pong and Breakout. We used those chosen hyperparameters on all the other environments (see
appendix 9 for more details).

We test various approaches on the games Super Mario Bros and VizDoom (()
considered in (), as well as some additional Atari games from the Arcade Learning
Environment (()

Under review as a conference paper at ICLR 2018

Super Mario Bros

VizDoom

10000

8000

CBF

FRF

HER

HER Joint
IDF

IDF Joint
RAND

Best return

000

2000

Best return

CBF

FRF

HER

HER Joint
IDF

IDF Joint
RAND

150

o i B3
Training frames

Figure 3: Left: results on Super Mario Bros measured by
on VizDoom measured by game score.

RiverRaid

150

maximum distance travelled. Right: results

Seaquest

| — CBF

—— IDF Joint
- RAND

Best return

—— HER Joint

—

— CBF
— HER Joint
—— IDF Joint
RAND

Best return

Figure 4: Left: Results on Riverraid measured by game score. Center

Training frames

Training frames

ol — CBF
—— HER Joint
—— IDF joint

Best return

—

Training frames

: Results on Spacelnvaders

measured by game score. Right: results on Seaquest mesaured by game score.

HER IDF FRF RAND
2000
1750 4 =
1500 4
3 12501 emfom e L
2
> 1000 HER Joint IDF Joint CBF Layout
I3
© 7504 —-
wn p——
500 - —— HER Joint
| —-- IDF
250 —— IDF Joint
04 — RAND
0.00 025 050 075 1.00 125 150 175 2.00
Training frames 1e8

Figure 5: Additional VizDoom results. Left: Results as measured by number of unique locations
visited. Right: Results shown as all locations visited by all of the three runs.

Under review as a conference paper at ICLR 2018

7.3 PONG

The results for the Pong experiments are shown in Figure 2 on the left. We see that joint training
with IDF performs the best (see a video /ere). From watching the rollouts we observe that the policy
seems to be optimizing for long rallies with many ball bounces rather than trying to win (see figure
2 in the center). We also see that joint training methods do better than their respective non-joint
analogues. Some of the runs have encountered an unexpected feature of the environment: after 9
minutes and 3 seconds of continuous play in one episode, the ball disappears and the background
colors start cycling in seemingly random order (see video here). We suspect this is a bug of the Atari
emulator that we used, but we haven’t investigated the issue further.

7.4 BREAKOUT

The results for the Breakout experiments are shown in Figure 2 on the right. We see that the methods
without joint training perform little better than random agent, with the exception of the HER feature
learning method. HER with joint training performs very well, coming close in some runs to a perfect
score (see a video here).

7.5 SUPER MARIO BROS

We investigated using the same version of Super Mario Bros used in () namely

(), but found that we could not run the environment as fast as we would like. For this
reason we switched to using an internal version with an action wrapper replicating the action space
used in (). We also ran the released code for () on both versions
of the game and found that the agent was in both cases able to make progress on, but unable to pass,
the first level, consistent with the authors’ reported results.

The metric we use for monitoring progress is the total distance the agent travels to the right over
the course of the game. Larger returns correspond to passing more levels and getting further in
those levels. The results are shown in Figure 3 on the left. Every method (apart from random agent)
considered was able to pass the first level. Our best method CBF was able to pass the first 4 levels,
defeating the boss Bowser and moving onto the second world in the game (see video here). The
same agent also found the secret warp room on level 2 and visited all of the pipes leading to different
worlds. All of the methods without joint training performed relatively poorly.

7.6 VizDooM

We use the same setup as in () with ‘DoomMyWayHome VerySparse’ environment,
a VizDoom scenario with 9 connected rooms. The agent is normally given an extrinsic reward of
—0.0001 per timestep, a timelimit of 2100 steps, and a reward of +1 for getting the vest. We use the
‘very sparse’ version where the agent always spawns in the same room maximally far from the vest.
There are five actions: move forward, move backwards, move left, move right, and no-op.

Looking at Figure 3 on the right, we see that all of the methods (but not random agent) are able to
reach the vest in at least one of the runs, and that HER, joint HER and CBF methods are able to
do so reliably (see the video here). To get a finer-grained notion of progress we recorded the (z, y)
coordinates of the agents over the course of training. We then binned these into a 100 x 100 grid. In
Figure 5 you can see a visualization of the locations visited by each method. We see that most of the
methods achieve good coverage of the maze, even random agent performs surprisingly well. Training
on fixed random features however results in poor exploration. In addition in Figure 5 on the left we
show how the number of unique bins visited increases with training for each method. Overall the
success of random agent indicates that harder tasks should be used to evaluate exploration in future
work.

7.7 RIVERRAID

In Figure 4 on the left we see that all methods are considerably better than random, but IDF performs
the best (see the video here).

https://youtu.be/uXBV8Sl88oQ
https://youtu.be/hem7WtRIaWs
https://youtu.be/gvBSYfahErI
https://youtu.be/wR-J9eBsD3k
https://youtu.be/31VudM1nH_A
https://youtu.be/mvI_dmtK-Y8

Under review as a conference paper at ICLR 2018

7.8 SPACEINVADERS

We see in Figure 4 in the center that all methods are considerably better than random, IDF performs
the best, one of the better runs was able to pass almost 4 levels (see the video /ere).

7.9 SEAQUEST

We see in Figure 4 on the right that all methods are better than random agent and IDF performs the
best. The agents pursue an interesting strategy that we were not previously aware was possible: by
hovering immediately below the water’s surface, the agent is able to survive indefinitely without
running out of air while still being able to shoot at enemies (see the video &ere).

8 CONCLUSIONS AND FUTURE DIRECTIONS

Our experiments have shown that any of the joint training methods can work well for exploration.
The fact that a method as simple as CBF performs so well, however, suggests that the success of the
method of () comes to a great extent from a feature-bootstrapping effect, and the
utility of an auxiliary task, if any, is to stabilize this process.

Some immediate future research directions include trying CBF on environments with continuous
action spaces, and investigating feature-bootstrapping for count-based exploration methods such as

(). We would also like to research exploration of environments with greater
amounts of stochasticity.

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/.

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv:1703.01732, 2017.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in Neural Information Processing Systems, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
Jun 2013.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471-1479, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl gym, 2016.

Richard Y Chen, John Schulman, Pieter Abbeel, and Szymon Sidor. UCB and infogain exploration
via g-ensembles. arXiv:1706.01502, 2017.

Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. arXiv:1706.03741, 2017.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy networks for exploration. arXiv:1706.10295, 2017.

https://youtu.be/klz41C6aFpU
https://youtu.be/uryL2BZNQTM
https://www.tensorflow.org/

Under review as a conference paper at ICLR 2018

Justin Fu, John D Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for deep
reinforcement learning. arXiv:1703.01260, 2017.

Christopher Hesse, Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
OpenAl baselines. https://github.com/openai/baselines, 2017.

Rein Houthooft, Xi Chen, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
VIME: Variational information maximizing exploration. In Advances In Neural Information
Processing Systems, pp. 1109-1117. 2016.

Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. ViZ-
Doom: A Doom-based Al research platform for visual reinforcement learning. In IEEE Conference
on Computational Intelligence and Games, pp. 341-348, Santorini, Greece, Sep 2016. IEEE.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Advances in Neural
Information Processing Systems, pp. 206-214, 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, February 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928-1937, 2016.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. In Advances in Neural Information Processing Systems, pp. 4026—4034, 2016.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. arXiv:1703.01310, 2017.

Philip Paquette. Super Mario Bros. https://github:ppaquette/gym-super-mario,
2016.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv:1706.01905, 2017.

Jiirgen Schmidhuber. Curious model-building control systems. In Neural Networks, 1991. 1991 IEEE
International Joint Conference on, pp. 1458-1463. IEEE, 1991a.

Jiirgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers, 1991b.

Jirgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). /[EEE
Transactions on Autonomous Mental Development, 2(3):230-247, 2010.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.
06347.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. Advances in Neural Information Processing Systems
Workshop, 2015.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforcement
learning. Theory in Biosciences, 131(3):139-148, 2012.

10

https://github.com/openai/baselines
https://github:ppaquette/gym-super-mario
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2018

Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam, and Rob Fergus. Intrinsic motivation and
automatic curricula via asymmetric self-play. arXiv:1703.05407, 2017.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #Exploration: A study of count-based exploration for deep
reinforcement learning. Advances in Neural Information Processing Systems, 2017.

9 APPENDIX: EXPERIMENTAL DETAILS

PREPROCESSING

We followed the standard preprocessing for Atari games (see wrappers used in the DQN implementa-
tion in ()) for all of our experiments, except for not using the automatic “press fire”
in the beginning of the episode wrapper. For Mario and VizDoom we downscaled the observations to
84 by 84 pixels, converted them to grayscale, stacked sequences of four frames as four channels of
the observation, and used a frame skip of four. We also used an action wrapper replicating the action
space used in ().

ARCHITECTURES

Both our implementation of HER and PPO were based on the code in () with HER
following the implementation of DQN.

The embedding network ¢ consisted of three convolutional layers followed by a dense layer similar
to the DQN implementation in ().

The policy network 7 consisted a dense layer followed by two output heads for action probabilities
and values.

The forward dynamics head f concatenates the state embedding with a one-hot representation of
action and is followed by two dense layers with a residual connection to the output.

The auxiliary DQN head for the HER task concatenates the embeddings of the state and goal followed
by a dense hidden layer followed by an output layer.

The auxiliary IDF head concatenates the state and next state embeddings, followed by two dense
layers and an output softmax layer.

HYPERPARAMETERS

We used the same hyperparameters for all experiments. We used the default hyperparameters from
the PPO implementation in () except for the entropy bonus, which we decreased to
0.001 and the number of optimization steps per epoch, which we increased to 8.

For HER we used a discount factor of 0.99. We used stabilization technique for the target value in
the Bellman loss: we used a Polyak-averaged version of the value function with decay rate 0.999.
The learning rate for the HER task was 10~%.

The experience replay buffer contained 1000 timesteps per environment (of which there are 32 by
default).

The learning rate for the forward dynamics model was 107>,
The minibatch size for the forward dynamics and auxiliary loss training step was 128.

Each training run consisted of 50e6 steps which is 200e6 frames since we used the standard frame-skip
of 4.

10 APPENDIX: COMPARISON WITH ()

Besides the use of a different set of auxiliary losses for learning the features, we note some of the
salient differences with the work (,).

11

Under review as a conference paper at ICLR 2018

e We don’t propagate the gradients from the dynamics model to the parameters of the embed-
ding network.

o We use PPO as our reinforcement learning algorithm instead of A3C (()
since in our experience PPO requires little tuning.

e We used 32 parallel environments rather than 16. We initially ran experiments with only
8 or 16 environments and got qualitatively similar results, but in general found that more
parallel environments resulted in stabler learning.

e We trained our next state predictor and any auxiliary losses on an experience replay rather
than online. We used a small experience buffer (only 1000 timesteps per environment) that
may have decorrelated the data and stabilized the learning dynamics.

e We used a CNN for our policy rather than an LSTM. We judged that a small amount of
partial observability in the environment was worth the tradeoff since LSTMs are typically
slower and more difficult to train.

12

	Introduction
	Related Work
	Dynamics Driven Curiosity

	Methods and Notation
	Environment
	Networks and Parameters
	Losses and Gradients

	Challenges
	Stochasticity
	Measuring progress

	Exploration with minimal requirements of the environment
	Feature Learning Methods
	Hindsight Experience Replay (HER) (her)
	Inverse Dynamics Features (IDF)
	No Auxiliary Task

	Experimental Results
	Evaluation
	Abbreviations
	Pong
	Breakout
	Super Mario Bros
	VizDoom
	Riverraid
	SpaceInvaders
	Seaquest

	Conclusions and Future Directions
	Appendix: Experimental Details
	Appendix: Comparison with curiositydeepak

