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Abstract

We study the problem of sequential prediction and online minimax regret with stochastically gen-
erated features under a general loss function. In an online learning setting, Nature selects features
and associates a true label with these features. A learner uses features to predict a label, which is
compared to the true label, and a loss is incurred. The total loss over T rounds, when compared
to a loss incurred by a set of experts, is known as a regret. We introduce the notion of expected
worst case minimax regret that generalizes and encompasses prior known minimax regrets. For such
minimax regrets, we establish tight upper bounds via a novel concept of stochastic global sequential
covering. We show that for a hypothesis class of VC-dimension VC and i.i.d. generated features
over T rounds, the cardinality of stochastic global sequential covering can be upper bounded with
high probability (w.h.p.) by eO(VC·log2 T ). We then improve this bound by introducing a new com-
plexity measure called the Star-Littlestone dimension, and show that classes with Star-Littlestone
dimension SL admit a stochastic global sequential covering of order eO(SL·log T ). We further estab-
lish upper bounds for real valued classes with finite fat-shattering numbers. Finally, by applying
information-theoretic tools for fixed design minimax regrets, we provide lower bounds for expected
worst case minimax regret. We demonstrate the effectiveness of our approach by establishing tight
bounds on the expected worst case minimax regrets for logarithmic loss and general mixable losses.

1 Introduction
Online learning (Shalev-Shwartz & Ben-David, 2014) can be viewed as a game between Nature and predictor/learner.
At each time step t, Nature selects feature xt ∈ X and presents it to the learner. The learner then makes a prediction
ŷt ∈ Ŷ based on history xt = {x1, · · · , xt} and yt−1 = {y1, · · · , yt−1}, where xt and yt−1 are the features up to time
t, and the true labels up to time t − 1, respectively. Nature then reveals the true label yt ∈ Y and the learner incurs
some loss ℓ(ŷt, yt), where we assume ℓ(·, yt) is convex for all yt ∈ Y . The game continues up to time T and the goal
is to minimize the pointwise regret defined as:

R(ŷT , yT , H | xT ) =
T∑

t=1
ℓ(ŷt, yt) − inf

h∈H

T∑
t=1

ℓ(h(xt), yt),

where ℓ : Ŷ × Y → R+ is a loss function and H ⊂ ŶX is a class of experts. We say sequences xT and yT are
realizable if for some h ∈ H we have h(xt) = yt for t ∈ [T ], and agnostic otherwise.

Regret analysis for a general class H of experts is often studied via a sequential cover G of H, which is defined as
a set of functions mapping X ∗ → Ŷ (where X ∗ is the set of all finite sequences over X ) such that for all h ∈ H
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and xT ∈ X T , there exists g ∈ G satisfying h(xt) = g(xt) for all t ∈ [T ]. In the seminal work of Ben-David et al.
(2009), the authors established a striking connection between the regrets of agnostic and realizable cases through the
concept of sequential covering. One of the core arguments of Ben-David et al. (2009) is the following observation (see
Lemma 2 for more formal assertion):

If a binary valued class H admits a predictor with cumulative error upper bounded by B for realiz-
able samples of length T , then H has a sequential cover G of size O(T B+1).

This is established by considering all the possible error patterns of the predictor in the realizable case. Using standard
expert algorithms (e.g., Exponential Weighted Average), one then relates agnostic regrets to the size of G. For example,
for absolute loss, the regret bound is of the form O(

√
T log |G|) = O(

√
BT log T ), while for general mixable losses

one finds O(log |G|) = O(B log T ). In Ben-David et al. (2009), the authors derived upper bounds for B through
Littlestone dimension. This was further generalized in Daniely et al. (2011) to multi-label cases, and in Rakhlin et al.
(2010) to the real valued case. However, all of these results assumed that features are presented adversarially. This
may be too pessimistic and restrictive for modeling real scenarios of prediction, see e.g. (Rakhlin et al., 2011).

This paper generalizes the adversarial online learning setting into a more relaxed (and broader) stochastic scenario
by restricting the adversary to generate the features xT from some unknown distribution µ over X T (not necessarily
i.i.d.) in a known class P of distributions (i.e., the so called universal or distribution blind scenario). We introduce a
novel general expected worst case regret defined as:

r̃T (H, P, ϕT ) = sup
µ∈P

ExT ∼µ

[
sup
yT

R(ŷT , yT , H | xT )
]

,

where ϕt : X t × Yt−1 → Ŷ is any (deterministic) prediction rule (i.e., algorithm), and ŷt = ϕt(xt, yt−1). We also
define the following expected worse case minimax regret:

r̃T (H, P) = inf
ϕT

r̃T (H, P, ϕT ),

where ϕT runs over all possible (deterministic) prediction rules. The expected worst-case regret not only recovers
previously known regrets by considering different classes of P (see Proposition 1), but also provides a new analysis
framework for regret analysis in broader stochastic scenarios.

To capture the stochastic nature of the expected worst-case regret, we introduce a novel concept that we term stochas-
tic (global) sequential covering that generalizes the classical (adversary) sequential covering. We say a class G of
functions X ∗ → Ŷ is a stochastic (global) sequential covering of H w.r.t. P at scales α ≥ 0 and confidence δ > 0, if
for all µ ∈ P , we have:

PrxT ∼µ

[
∃h ∈ H ∀g ∈ G∃t ∈ [T ] s.t. |h(xt) − g(xt)| > α

]
≤ δ.

Similar to the adversarial case, we will show that the expected worst case minimax regret can be upper bounded
by the size of a stochastic (global) sequential covering set G via standard expert algorithms. For instance, if H is
binary valued and G is a stochastic sequential covering of H at scale α = 0 and δ = 1

T , for absolute loss, we show
that r̃T (H, P) = O(

√
T log |G|), while for logarithmic loss and general mixable loss (e.g., square loss), we find

r̃T (H, P) = O(log |G|); see Theorem 1 and 2 for more general statements of this fact.

Our goal is to derive tight regret bounds that go beyond the conventional
√

T bounds for a general loss and provide
explicit prediction rules (algorithms) that achieve such upper bounds. To retain focus, we will mainly consider the
case when P is the class of all i.i.d. distributions over X T . We emphasize that our results also work for general
exchangeable distributions (Aldous, 1985).

Summary of main contributions. We formulate the notion of expected worst case regret that generalizes and en-
compasses prior known online regret into a unified framework, which allows us to study broader classes of feature
generating processes, e.g., the distribution blind (i.e., universal) scenarios. We provide a comprehensive analysis of
the expected worst case regret when the processes are i.i.d. (and more generally the exchangeable processes) for a
wide range of hypothesis classes and losses, via a novel concept of stochastic sequential covering. This allows us
to derive tighter regret bounds and design new algorithms that achieve these bounds in both previously studied and
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novel settings. Specifically, for binary valued class H of finite VC-dimension, we show that the stochastic sequential
covering number is upper bounded w.h.p. by O(VC(H) log2 T ) under i.i.d. processes; this is tight upto a log T factor.
Using this result we establish an O(VC(H) log2 T ) regret bound for expert classes generated by embedding H into
real valued classes under logarithmic loss. This improves substantially the O(

√
VC(H)T ) regret bound in Bhatt &

Kim (2021), and subsumes the average (and well-specified) regrets implied by Bilodeau et al. (2021). We then extend
this result in several directions. We show that the stochastic sequential covering number for binary valued classes is
upper bounded by O(SL(H) log T ), where SL(H) is the Star-Littlestone dimension of H – a new dimension measure
introduced in this paper. This bound is optimal on the logarithmic factor, and the technique for establishing this result
is new in literature, and of independent interest. For small real valued classes H of finite Pseudo-dimension P(H), we
show that the stochastic sequential covering at scale α is upper bounded w.h.p. by O(P(H) log2(T/α)). For general
real valued class H with α-fat-shattering numbers (i.e., the scale sensitive VC-dimension) of order d(α), we show
that the stochastic sequential covering at scale α is upper bounded w.h.p. by Õ(d(α/32)). Using this result, we show
that the expected worst case regret under logarithmic loss is upper bounded by Õ(T l/(l+1)) if d(α) = O(α−l); this is
tight up to a poly-logarithmic factor. Finally, we introduce a general approach for lower bounding the expected worst
case regret via the fixed-design regret introduced in Wu et al. (2022b) that provides matching (upto poly-logarithmic
factors) lower bounds for most of the our upper bounds presented above.

Related work. Regret analysis of online learning problems dates back to the work of Littlestone & Warmuth (1994)
and Vovk (1990), where the authors developed a general framework for the Exponential Weighted Average algorithm
for finite expert classes. We refer to (Cesa-Bianchi & Lugosi, 2006) for an excellent discussion of this topic and its
extensions. In Ben-David et al. (2009), the authors extended the framework to infinite classes with binary labels via the
concept of sequential covering and subsequently generalized to the multi-class case in Daniely et al. (2011). In a series
of papers Rakhlin et al. (2010); Rakhlin & Sridharan (2015); Rakhlin et al. (2015); Rakhlin & Sridharan (2014), the
authors established a comprehensive framework for regret analysis of real valued classes via the concept of sequential
Rademacher complexity. One of the core techniques in this line of work is to express regret in terms of an iterated
minimax formulation, which is then be controlled by an expected majorizing of martingales via the minimax theorem.
The latter is then computed using a sequential covering 1 number and the standard technique of chaining and Dudley
integral. However, all of these efforts consider adversarial cases that may be too restrictive for real word scenarios.

In Lazaric & Munos (2009), the authors introduced a scenario where the features are generated by an unknown i.i.d.
source but the labels are still presented adversarially. In particular, Lazaric & Munos (2009) showed that for finite
VC-dimensional classes and for absolute loss, regret grows as O(

√
VC(H)T log T ). One of the core techniques in

this work is an epoch approach that reduces infinite class to a finite class case using successive covering. However,
their upper bound is dominated by a

√
T term of the approximation error of covering that is too loose for many loss

functions, e.g., logarithmic loss. Indeed, the same epoch approach (and its analysis of the approximation error) was
used in Bhatt & Kim (2021) for logarithmic loss, resulting an O(

√
T ) regret bound. In Bilodeau et al. (2021), the

authors showed that for logarithmic loss and finite VC-dimensional classes, the risk grows as O((VC(H) log2 T )/T ).
However, their proof applies only to the average case minimax regret (see Section 2) and in the realizable (i.e., well-
specified) case. In Rakhlin et al. (2011), the authors considered a scenario where at each time step Nature selects
adversarially some distribution to sample, from a restricted class of distributions that are determined by previously
generated samples (not previously selected distributions). This is characterized by the concept of distribution depen-
dent Rademacher complexity, using a similar minimax approach as discussed above. However, their result only holds
for the distribution non-blind case (i.e., when the distribution is known in advance), see (Rakhlin et al., 2011, Section
7). Note that all regrets analyzed in this paper are for the distribution blind case. We note also a recent line of research
on smooth adversaries in Rakhlin et al. (2011); Haghtalab et al. (2020; 2022); Block et al. (2022) that share some
technical similarity (e.g., symmetries of samples) with our work.

2 Problem Formulation

Let X be a feature space, Y be the true label space, and Ŷ be the space of outputs of the learner. We assume throughout
the paper that Ŷ = [0, 1]. We denote by H ⊂ ŶX a class of functions X → Ŷ , which is also referred to as a hypothesis
or experts class. For any time horizon T , we consider a class P of distributions over X T . We consider the following
game between Nature and predictor. At the beginning of the game, Nature selects a distribution µ ∈ P and samples

1Note that the sequential covering as in Rakhlin et al. (2010) is slightly different from the one we adopt in our work, since their definition relies
on some underlying trees.
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an input sequence xT ∼ µ, where xT ∈ X T . At each time step t ≤ T , Nature reveals the t-th sample xt of xT to
the predictor. The predictor then makes a prediction ŷt ∈ Y using a strategy ϕt : X t × Yt−1 → Ŷ potentially using
the history observed thus far, that is, ŷt = ϕt(xt, yt−1). After the prediction, Nature reveals the true label yt and the
predictor incurs a loss ℓ(ŷt, yt) for some predefined convex loss function ℓ : Ŷ × Y → [0, ∞). We are interested in
the following expected worst case minimax regret:

r̃T (H, P) = inf
ϕT

sup
µ∈P

ExT ∼µ

[
sup
yT

(
T∑

t=1
ℓ(ŷt, yt) − inf

h∈H

T∑
t=1

ℓ(h(xt), yt)
)]

, (1)

where worst case indicates the predictor needs to compete with the best expert in H for any xT .

We now introduce two particular convex losses, the absolute loss and logarithmic loss as defined:

1. Let Y ⊂ Ŷ = [0, 1], the absolute loss is defined as ℓ(ŷ, y) = |ŷ −y|. Note that when Y = {0, 1}, the absolute
loss can be interpreted as the expected miss-classification loss, i.e., ℓ(ŷ, y) = Eb∼Bernoulli(ŷ)[1{b ̸= y}],
see (Shalev-Shwartz & Ben-David, 2014, Chapter 21);

2. Let Y = {0, 1} and Ŷ = [0, 1]; the logarithmic loss (Log-loss) is defined as ℓ(ŷ, y) = −y log(ŷ) − (1 −
y) log(1 − ŷ). The Log-loss appears naturally in many different scenarios, e.g., sequential probability assign-
ment and portfolio optimization, see (Cesa-Bianchi & Lugosi, 2006, Chapter 9 & 10).

We note that the expected worst case minimax regret r̃T (H, P) recovers previously known minimax regrets by se-
lecting appropriate distribution class P . Indeed, in Shamir & Szpankowski (2021); Jacquet et al. (2021); Wu et al.
(2022a), the following regrets are defined. The fixed design minimax regret for any given xT ∈ X T is:

r∗
T (H | xT ) = inf

ϕT
sup
yT

(
T∑

t=1
ℓ(ŷt, yt) − inf

h∈H

T∑
t=1

ℓ(h(xt), yt)
)

. (2)

The maximum fixed design minimax regret is then: r∗
T (H) = supxT r∗

T (H | xT ). Furthermore, the sequential minimax
regret is

ra
T (H) = inf

ϕT
sup

xT ,yT

(
T∑

t=1
ℓ(ŷt, yt) − inf

h∈H

T∑
t=1

ℓ(h(xt), yt)
)

(3)

which is equivalent2 to the iterated minimax regret as in Rakhlin et al. (2010).

We also introduce the following expected average case minimax regret:

r̄T (H, P) = inf
ϕT

sup
µ∈P,h∈H

ExT ∼µ

[
sup
yT

(
T∑

t=1
ℓ(ŷt, yt) − ℓ(h(xt), yt)

)]
(4)

where the main difference with r̃T (H, P) is the position of suph. Note that this concept subsumes the setups of Bhatt
& Kim (2021); Bilodeau et al. (2021) except that the authors of Bhatt & Kim (2021); Bilodeau et al. (2021) consider
a weaker well-specified setting for generating yT .

The following observation is easy to prove and shows that r̃T is indeed a more general concept:

Proposition 1. If P is a class of all singleton distributions over X T , then r̃T (H, P) = ra
T (H) for all H. If P is the

singleton distribution that assigns probability 1 for xT , then r̃T (H, P) = r∗
T (H | xT ). Furthermore, r̃T (H, P) ≥

r̄T (H, P), for any H and P .

Example 1. To understand differences between r̃T and r̄T , we consider the following example. Let H be the class of
all functions [0, 1] → {0, 1} that takes value 1 on at most T positions and 0 otherwise. Let ν be the uniform distribution
over [0, 1], and ℓ(ŷt, yt) = |ŷt − yt|, where ŷt ∈ [0, 1] and yt ∈ {0, 1}. We will denote by νT the i.i.d distribution
of length T with marginal ν. We have r̄T (H, {νT }) = 0, since for any h, w.p. 1 we have h(xt) = 0 for all t ∈ [T ],
meaning that a strategy that predicts 0 all the time incurs 0 regret. However, we also have r̃T (H, {νT }) ≥ T

2 . To see
this, we choose yT ∈ {0, 1}T uniformly at random and observe that any strategy will make at least T

2 accumulated
losses, however, for any xT and yT , there exists h ∈ H such that ∀t ∈ [T ], h(xt) = yt.

2The equivalence is a well-known result, see e.g., (Cesa-Bianchi & Lugosi, 2006, Exercise 2.18) or (Wu et al., 2022a, Lemma 2).
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Remark 1. We should remark that our definition of both r̃T and r̄T are distribution blind in the sense of (Rakhlin
et al., 2011, Section 7), since the dependency of marginals of µ is not just through previously generated samples as
in Rakhlin et al. (2011). For instance, suppose P is the class of all i.i.d. processes, one may express the regret in the
following iterated minimax manner:

sup
ν

Ex1∼ν inf
ŷ1

sup
y1

· · ·ExT ∼ν inf
ŷT

sup
yT

R(ŷT , yT , H | xT ).

We note that this expression implicitly assumed that the distribution ν is known to the learner (otherwise the optimiza-
tion function for each inf ŷt

is not well defined).

3 Stochastic Sequential Cover

Let X ∗ be the set of all finite sequences over X . We introduce one of our main technical ingredient of this paper, i.e.,
the stochastic (global) sequential covering, as follows:

Definition 1 (Stochastic sequential cover). We say a class G of functions X ∗ → [0, 1] is a stochastic global sequential
cover of a class H ⊂ [0, 1]X w.r.t. the class P of distributions over X T at scale α > 0 and confidence δ > 0, if for all
µ ∈ P , we have

PrxT ∼µ

[
∃h ∈ H ∀g ∈ G ∃ t ∈ [T ] s.t. |h(xt) − g(xt)| > α

]
≤ δ.

We define the minimal size of G to be the stochastic global sequential covering number of H.

Note that the distribution class P in Definition 1 is completely general and recovers the classical sequential covering
as in Ben-David et al. (2009); Rakhlin et al. (2010) if P is the class of all singleton distributions over X T . Likewise,
all the results established in this section hold for any distribution class P .

To begin with, we first establish the following simple (but useful) composition property of stochastic sequential cover.
Let H1, · · · , Hm ⊂ [0, 1]X be m function classes over the same domain and Θ be a parameter space equipped
with some norm || · ||. For any function F : [0, 1]m × Θ → [0, 1] such that ∀z1, z2 ∈ [0, 1]m, θθθ1, θθθ2 ∈ Θ we
have F (z1, θθθ1) − F (z2, θθθ2) ≤ L max{||z1 − z2||∞, ||θθθ1 − θθθ2||} for some constant L ∈ R+, the F -composition of
H1, · · · , Hm and Θ is defined to be the class:

H = {h(x) = F (h1(x), · · · , hm(x), θθθ) : ∀i ∈ [m], hi ∈ Hi and θθθ ∈ Θ}.

Proposition 2. Let H1, · · · , Hm ⊂ [0, 1]X be any classes, Θ be any parameter space equipped with norm || · ||, and
F be any function satisfying the conditions above. If ∀i ∈ [m], Hi admits a statistical sequential covering set Gi at
scale α/L and confidence δ/m w.r.t. distribution class P , and Θ admits an α/L cover C under norm || · ||, then the
F -composition class H of H1, · · · , Hm and Θ admits a statistical sequential covering set G w.r.t. P at scale α and
confidence δ such that:

|G| ≤ |C|
m∏

i=1
|Gi|.

Proof. For any tuple of indices (j1, · · · , jm) with ji ∈ [|Gi|] and θθθ′ ∈ C, we construct a function g such that:

g(xt) = F (gj1(xt), · · · , gjm
(xt), θθθ′),

where gji is the jith function in Gi. The covering set G is defined to be the class containing of all such functions
g. For any function h ∈ H, there exist h1, · · · , hm with hi ∈ Hi and θθθ ∈ Θ such that for all x ∈ X , h(x) =
F (h1(x), · · · hm(x), θθθ). By union bound and definition of stochastic sequential covering of Gi, w.p. ≥ δ over xT , for
all i ∈ [m], there exist gji

∈ Gi such that ∀t ∈ [T ], |gji
(xt) − hi(xt)| ≤ α/L. One can verify that the function g

corresponding to (j1, · · · , jm) and θθθ′ ∈ C closest to θθθ under || · || is the desired function that covers h on xT , due to
the L-Lipschitz property of F .

We provide several examples below that demonstrate how F -composition can be exploited to generate interesting
complex classes from simple classes.
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Example 2. Let Θ = [0, 1]2 and H1 ⊂ {0, 1}X be a binary valued class of finite VC-dimension. If we take F (y,θθθ) =
yθ1 + (1 − y)θ2 for y ∈ {0, 1} and θθθ ∈ [0, 1]2, the F -composition class H ⊂ [0, 1]X of H1 and Θ recovers the setup
of Bhatt & Kim (2021). We note that in this case the set Θ admits an α-covering set of size O(α−2) under L∞ norm
for all α > 0 and F is 1-Lipschitz in the sense of Proposition 2.

Example 3. Let Θ = {θ1 + · · · + θd ≤ 1 : θθθ ∈ [0, 1]d} for some d ∈ N+ and H1, · · · , Hd ⊂ {0, 1}X be d
binary valued classes of finite VC-dimension. If we take F (yd, θθθ) = ⟨θθθ, yd⟩ for yd ∈ {0, 1}d and θθθ ∈ Θ, the F -
composition class H ⊂ [0, 1]X of His and Θ defines a natural class. We note that in this case Θ is α-covered by a
set of size α−d under L1 norm and F is 1-Lipschitz in the sense of Proposition 2. Moreover, if we take d = 2 and
H2 = {1 − h(x) : h ∈ H1} we subsume the setup of Example 2.

Example 4. Let Θ be empty, X = Rd and Hi = {h[a,b](x) = 1{x[i] ∈ [a, b]} : [a, b] ⊂ [0, 1], x ∈ Rd} for i ∈ [d],
i.e., Hi is the class of indicators of interval on the ith coordinate of x. If we take F (y1, · · · , yd) =

∏d
i=1 yi for

yd ∈ {0, 1}d, the F -composition class H ⊂ {0, 1}X of His defines the class of indicators of rectangular cuboids in
Rd and F is 1-Lipschitz.

3.1 Upper bounds on regret via stochastic sequential covering

We now prove two general results below that demonstrate how a bound on the stochastic sequential covering number
implies bounds on the expected worst case regret r̃T in an algorithmic fashion.

Theorem 1. Let H be a set of functions mapping X → [0, 1] and Gα be a stochastic global sequential covering of H
at scale α and confidence δ = 1/T w.r.t. distribution class P . If ℓ(·, y) is convex, L-Lipschitz and bounded by 1 on Ŷ
for any y ∈ Y , then:

r̃T (H, P) ≤ inf
0≤α≤1

{
αLT +

√
(T/2) log |Gα| + 1

}
.

If, in addition, ℓ is η-Mixable (Cesa-Bianchi & Lugosi, 2006, Chapter 3.5) then:

r̃T (H, P) ≤ inf
0≤α≤1

{
αLT + 1

η
log |Gα| + 1

}
.

Proof. We run the Exponential Weighted Average (EWA) algorithm (Cesa-Bianchi & Lugosi, 2006, Page 14) on Gα.
We split the regret into two parts, one that is incurred by the predictor against Gα and the other that is incurred by the
discrepancy between Gα and H. For the first term, we have by standard result (Cesa-Bianchi & Lugosi, 2006, Theorem
2.2) that with probability 1 on xT :

T∑
t=1

ℓ(ŷt, yt) ≤ inf
g∈Gα

T∑
t=1

ℓ(g(xt), yt) +
√

(T/2) log |Gα|.

For the second term, we denote by A the event described in the probability of Definition 1. Since Pr[A] ≤ 1
T and

ℓ(ŷ, y) ≤ 1 by assumption, the expected regret contributed by the event A is at most 1. We now condition on the event
that A does not happen. By Definition 1, we obtain ∀h ∈ H∃g ∈ Gα∀t ∈ [T ], |h(xt)−g(xt)| ≤ α. Since ℓ is bounded
by 1 and L-Lipschitz, we have:

inf
h∈H

T∑
t=1

ℓ(h(xt), yt) ≥ inf
g∈Gα

T∑
t=1

ℓ(g(xt), yt) − αLT.

The result follows by combining these inequalities.

For η-mixable loss, we replace the EWA algorithm with the Aggregation Algorithm of Cesa-Bianchi & Lugosi (2006,
Chapter 3.5) and apply the result in Cesa-Bianchi & Lugosi (2006, Proposition 3.2).

Remark 2. We assume the loss to be convex for clarity of presentation. However, the result in Theorem 1 can be easily
extended to bounded non-convex Lipschitz losses by replacing the EWA algorithm with its randomized counterpart as
in Cesa-Bianchi & Lugosi (2006, Chapter 4.2).
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Theorem 2. Let Y = {0, 1}, Ŷ = [0, 1] and ℓ be the logarithmic loss. If for all α ≥ 0 there exists a stochastic
sequential covering set Gα of class H ⊂ [0, 1]X w.r.t. distribution class P at scale α and confidence δ = 1

T , then:

r̃T (H, P) ≤ inf
0≤α≤1

{2αT + log(|Gα| + 1) + log(|Gα| + 1)/T + 1} .

Proof. The proof is similar to the proof of Theorem 1, but replacing the EWA algorithm with the Smooth truncated
Bayesian Algorithm introduced recently in Wu et al. (2022b) and running the algorithm on Gα ∪ {u} with truncation
parameter α and uniform prior, where u is the function that maps to 1

2 for all xt. We again split the regret into two
parts, one incurred by the Smooth truncated Bayesian Algorithm, and the other incurred by the error of covering.
By Wu et al. (2022b, Theorem 1), the first term is upper bounded by 2αT + log(|Gα| + 1). For the error term, we
note that we have added all 1

2 valued functions u into the expert class when running the Smooth truncated Bayesian
Algorithm. This implies that the prediction rule can only incur the actual accumulated losses upper bounded by
T + log(|Gα| + 1). Therefore, when the event A (defined in Theorem 1) happens, the expected regret only contributes
(T + log(|Gα| + 1)) · Pr[A] ≤ (T + log(|Gα| + 1))/T. The result follows by combining the inequalities.

4 Stochastic Cover for Binary Valued Classes
This section focuses on the stochastic sequential covering number of binary valued classes. We assume that P is the
class of all i.i.d. distributions over X T ; however, our results hold for general exchangeable processes (Aldous, 1985)
over X T as well, i.e., distributions that are invariant under permutation of the indexes.

Note that the selection of H being binary valued is for clarity of exposition for bounding the stochastic covering num-
ber, since binary valued classes present arguably the simplest case yet provide enough structure to develop interesting
insights. It is easy to extend the results established in this section to the real valued case via the composition property
as in Proposition 2.

4.1 Stochastic sequential cover for finite VC-class
Let H ⊂ {0, 1}X be binary valued class with finite VC-dimension. We write VC(H) for the VC-dimension of H. We
show that the stochastic global sequential covering number can be upper bounded by eO(VC(H) log2 T ) w.h.p. using the
1-inclusion graph algorithm that was introduced in Haussler et al. (1994). Without going into the technical details of
the 1-inclusion graph algorithm, we can understand it as a function that maps (X × {0, 1})t−1 × X → {0, 1}, for
any given t ≥ 1. For H of finite VC-dimension and any function Φ : (X × {0, 1})t−1 × X → {0, 1}, we define the
following quantity (here, we follow the notation in Haussler et al. (1994)):

ˆ̂
MΦ,H(t) = sup

xt∈X t

sup
h∈H

Eσ

[
1{Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))}

]
,

where σ is the uniform random permutation over [t], xσ(t) = {xσ(1), · · · , xσ(t)} and h({xσ(t−1)}) =
{h(xσ(1)), · · · , h(xσ(t−1))}. The main result of Haussler et al. (1994) is stated as follows:

Theorem 3 (Haussler et al., Theorem 2.3(ii)). For any binary valued class H of finite VC-dimension and for any
t ≥ 1, there exists a function Φ : (X × {0, 1})t−1 × X → {0, 1}, i.e., the 1-inclusion graph algorithm, that satisfies

ˆ̂
MΦ,H(t) ≤ VC(H)

t
.

Our main result for this part is as follows, with the proof presented below Lemma 2.

Theorem 4. For any binary valued class H with finite VC-dimension, there exists a global sequential covering set G
of H w.r.t. the class of all i.i.d. distributions over X T at scale α = 0 and confidence δ such that for T ≥ e5 we have:

log |G| ≤ 5VC(H) log2 T + log T log(1/δ) + log T.

The main idea for proving Theorem 4 is to show that for the 1-inclusion graph predictor Φ, we have w.p. ≥ 1 − δ

over the sample xT i.i.d∼ µ, the cumulative error is upper bounded by O(VC(H) log T + log(1/δ)). Assuming this
holds, one will be able to construct the covering functions in a similar fashion as Ben-David et al. (2009, Lemma 12).
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The bound will follow by counting the error patterns. However, a direct application of Theorem 3 will only give us
an expected VC(H) log T error bound. The main challenge follows from the fact that even though the samples xT

are generated i.i.d., the predictions made by the 1-inclusion predictor are not independent (neither a martingale), and
therefore the standard concentration inequalities do not apply directly.

Our main proof technique exploits permutation invariance of the 1-inclusion graph predictor, which allows us to
relate the cumulative error to a reversed martingale3. Using Bernstein inequality for martingales, we then establish the
following key lemma, see Appendix A for a detailed proof.

Lemma 1. Let Φ : (X ×{0, 1})∗ ×X → {0, 1} and h : X → {0, 1} be functions such that Φ is permutation invariant
on (X × {0, 1})∗. If for all t ∈ [T ] and xt ∈ X t we have:

Prσt

[
Φ(xσt(t), h({xσt(t−1)})) ̸= h(xσt(t))

]
≤ C

t
,

where σt is the uniform random permutation on [t] and C ∈ N+, then for all δ > 0 and T ≥ e5

PrσT

[
T∑

t=1
1{Φ(xσT (t), h({xσT (t−1)})) ̸= h(xσT (t))} ≥ 4C log T + log(1/δ)

]
≤ δ.

Lemma 2 (From error bound to covering). Let H ⊂ {0, 1}X be a binary valued class and err ∈ N+. For any Ω ⊂ X T ,
suppose there exists a prediction rule Φ such that ∀h ∈ H, ∀xT ∈ Ω,

∑T
t=1 1{Φ(xt, h({xt−1})) ̸= h(xt)} ≤ err.

Then, there exists a covering set G ⊂ {0, 1}X ∗
such that for all xT ∈ Ω and h ∈ H one can find g ∈ G that satisfies

g(xt) = h(xt) for all t ∈ [T ], and

|G| ≤
err∑

t=0

(
T

t

)
≤ T err+1.

Proof. For any I ⊂ [T ] with |I| ≤ err, we construct a function gI as follows. Let xt be the input, if t ∈ I ,
we set gI(xt) = 1 − Φ(xt, gI({xi}t−1

i=1)), else, we set gI(xt) = Φ(xt, gI({xi}t−1
i=1)) where gI({xi}t−1

i=1) =
{gI(x1), · · · , gI(xt−1)}. We claim that the set G that consists of all such gIs is the desired covering set. To see this,
for any h ∈ H and xT ∈ Ω we have

∑T
t=1 1{Φ(xt, h({xt−1})) ̸= h(xt)} ≤ err. Let I be the positions i ∈ [T ] for

which Φ(xi, h({xi−1})) ̸= h(xi), where |I| ≤ err. By construction, it is easy to check that ∀t ∈ [T ], gI(xt) = h(xt).
The upper bound for |G| follows by counting the number of Is. See (Ben-David et al., 2009, Lemma 12).

Proof of Theorem 4. Let Φ be the 1-inclusion graph predictor. We have that Φ is permutation invariant, since the nodes
in the 1-inclusion graph are determined by subsets of X that do not depend on the order of elements in the set. By
symmetries of i.i.d. distributions, for any event A(xT ) on xT i.i.d.∼ µ, we have:

Pr[A(xT )] = Eσ[PrxT [A(xσ(1), · · · , xσ(T ))]] = EσExT 1{A(xσ(1), · · · , xσ(T ))} = ExT Eσ1{(A(xσ(1), · · · , xσ(T ))}
≤ sup

xT

Prσ[A(xσ(1), · · · , xσ(T ))],

where the interchange of the expectations follows from Fubini’s theorem. It is therefore sufficient to show that for any
xT ∈ X T , w.p. ≥ 1 − δ over a random permutation σ on [T ],

sup
h∈H

T∑
t=1

1{Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))} ≤ 5VC(H) log T + log(1/δ).

To see this, we observe that by Sauer’s lemma (Shalev-Shwartz & Ben-David, 2014), there are at most T VC(H) func-
tions of H restricted on any given xT . Let now δ in Lemma 1 be δ

T VC(H) and C = VC(H). When applying Theorem 3
together with a union bound, the error bound w.p. ≥ 1 − δ is of the form 5VC(H) log T + log(1/δ). The upper bound
for the size of covering set G follows from Lemma 2 by taking Ω ⊂ X T to be the set for which Φ makes at most
5VC(H) log T + log(1/δ) accumulated errors, where Pr[Ω] ≥ 1 − δ.

3Note that Vovk et al. (2005, Proposition 10.2) also considers a similar martingale based approach only for an almost sure rate.
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Theorem 4 and Theorem 1 immediately imply the following regret bound.

Corollary 1. Let H ⊂ {0, 1}X be a binary valued class with finite VC-dimension, P be the class of all i.i.d. distribu-
tions over X T and T ≥ e5. If ℓ(·, y) is convex, L-lipschitz and bounded by 1 for all y ∈ Y , then:

r̃T (H, P) ≤
√

3TVC(H) log2 T + O(1).

If in addition ℓ is η-Mixable then

r̃T (H, P) ≤ 6
η

VC(H) log2 T + O(1).

The first bound of Corollary 1 recovers Lazaric & Munos (2009) but with a worse log T term. However, our result
establishes the (essentially) same result by using a completely different technique. Moreover, our technique can be
applied to more general problems than the epoch based approach of Lazaric & Munos (2009). Indeed, our log2 T
sequential covering bound is the key to finding a O(log2 T ) regret for mixable losses while the analysis of Lazaric &
Munos (2009) can only give a O(

√
T ) bound.

For logarithmic loss, we have the following regret bound:

Corollary 2. Let H be a F -composition class of H1, · · · , Hd ⊂ {0, 1}X with Θ as in Example 3, P be the class of
all i.i.d. distributions over X T , and T ≥ e5. If ℓ is the logarithmic loss, then:

r̃T (H, P) ≤ O

((
d +

d∑
i=1

VC(Hi)
)

log2 T

)
.

Proof. Taking α = 1
T , we note that Θ can be α-covered by a set C of size upper bounded by T d under L1 norm.

Applying Proposition 2 and Theorem 4 and noticing that the composition function F is 1-Lipschitz, there exists a
stochastic sequential covering set G of H w.r.t. i.i.d. processes at scale α = 1

T and confidence δ such that:

log |G| ≤ d log T +
(

5
d∑

i=1
VC(Hi) log2 T

)
+ d log T log(d/T ) + d log T.

The result follows by applying Theorem 2 and taking α = δ = 1
T .

Note that when d = 2 and H being the class in Example 2, Corollary 2 substantially improves the O(
√

T ) regret bound
of Bhatt & Kim (2021). Moreover, Bilodeau et al. (2021) derive an O

(
VC(H) log2 T

T

)
risk bound under Log-loss, which

can be converted to an O(VC(H) log3 T ) regret bound via the epoch approach of Lazaric & Munos (2009) 4. This is
off by a log T factor when compared to our regret in Corollary 2. Furthermore, our results hold for general regret r̃T

not average (and well specified) regrets r̄T as in Bhatt & Kim (2021); Bilodeau et al. (2021).

Remark 3. Note that using a similar argument as in the proof of Theorem 4 and the multi-class one-inclusion graph
algorithm in (Rubinstein et al., 2006), one can establish an O(P(H) log2(T/α) + log(T/α) log(1/δ)) stochastic
sequential covering bound for any class H ⊂ [0, 1]X with Pseudo-dimension P(H). See Appendix E.

4.2 Tight bounds for classes with finite Star number

In the previous section, we demonstrated that the stochastic sequential covering number of finite VC class is upper
bounded w.h.p. by eO(log2 T ). We now show that if we assume additional structure on the class, we can improve the
bound to eO(log T ), matching the naive fixed design lower bound for many non-trivial classes. In Appendix F we show
that even for 1-dimensional threshold functions the realizable cumulative error is lower bounded by Ω(log T ), thus
arguing that the error pattern counting argument as in Lemma 2 cannot provide a bound better than eO(log2 T ). To
resolve this issue, we introduce the notion of Star number that was used originally in Hanneke & Yang (2015) for
analyzing the sample complexity of active learning; however, we use it here in a completely different context. For

4We believe the regret bound as in the second part of Bilodeau et al. (2021, Theorem 7) missed a log n factor.
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any binary valued class H and xd ∈ X d, we say H Star-shatters xd if there exist h, h1, · · · , hd ∈ H such that for all
i, j ∈ [d] with j ̸= i we have:

h(xi) ̸= hi(xi) but h(xj) = hi(xj),

i.e., a sequence xd is Star-shattered by H if there exists a function h ∈ H such that any labeling on xd, which differs
by one position from the realization of h, is also realizable by some function hi ∈ H. Such a sequence xd is called a
star set of H. The Star number Star(H) of H is defined to be the maximum number d such that there exists xd that is
Star-shattered by H. Clearly, we have Star(H) ≥ VC(H) for all H.

We now introduce a new notion of certification, which is the key for our following arguments. For any sequence xt

and h ∈ H, we say xt−1 certifies xt under h if:

∀f ∈ H, if ∀i ∈ [t − 1], f(xi) = h(xi) then f(xt) = h(xt).

We have the following property of finite Star number classes w.r.t. certification:

Lemma 3. If H has Star number upper bounded by s, then for any xt ∈ X t and h ∈ H we have:

Prσ

[
{xσ(1), · · · , xσ(t−1)} certifies xσ(t) under h}

]
≥ 1 − s

t
,

where σ is the uniform random permutation over [t].

Proof. We only need to show that there are at most s points in xt that can not be certified by the others under h.
Suppose otherwise, that we have s + 1 such points. Consider the realization of h on these points. By definition of
certification, we can find functions h1, · · · , hs+1 as in the definition of Star-shattering. This contradicts the fact that
the Star number is upper bounded by s.

We now prove a high probability bound on the number of non-certified positions for a finite Star number class, which
is similar to Lemma 1.

Lemma 4. Let H ⊂ {0, 1}X be a class with a finite Star number and T ≥ e5. Then, with probability ≥ 1 − δ over xT

(sampled from some i.i.d. distribution over X T ) for all h ∈ H:

T∑
t=1

1{xt−1 does not certify xt under h} ≤ VC(H) log T + 4Star(H) log T + log(1/δ).

Proof. Note that the event {xt−1 does not certify xt under h} can be viewed as the event {Φ makes an error at step t}
as in Lemma 1 (since certification is permutation invariant). By Lemma 3 and Lemma 1 with C = Star(H), we have,
for all h ∈ H and xT ∈ X T w.p. ≥ 1 − δ over uniform random permutation σ on [T ]:

T∑
t=1

1{xσ(t−1) does not certify xσ(t) under h} ≤ 4Star(H) log T + log(1/δ).

The result then follows from a similar path as in the proof of Theorem 4

Lemma 4 allows us to construct the sequential covering set explicitly without relying on error pattern counting as
shown next.

Theorem 5. Let H be a binary valued class with finite Star number. Then, there exists a stochastic sequential covering
set G of H w.r.t. the class of all i.i.d. distributions over X T at scale α = 0 and confidence δ such that for T ≥ e5:

log |G| ≤ 5Star(H) log T + log(1/δ).
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x1
{h1···h5}
{g1···g8}

x2
{h1···h3}
{g1···g4}

x3
{h1 h2}
{g1 g2}

{h1}
{g1}

0

{h2}
{g2}

1

0

x3
{h3}

{g3 g4}

{h3}
{g3 g4}

0

1

0

x2
{h4 h5}
{g5···g8}

x3
{h4 h5}
{g5···g8}

{h4}
{g5 g6}

0

{h5}
{g7 g8}

1

1

1 h1 h2 h3 h4 h5
x1 0 0 0 1 1
x2 0 0 1 1 1
x3 0 1 0 0 1

Figure 1: Realization tree of H defined in left table and partition of G

Sketch of Proof. We only sketch the main idea here (illustrated in Figure 1) and refer to Appendix B for full proof.
We will construct a set G of sequential functions with index set K. We select K to be fixed with |K| = 2M , where
M = ⌈5Star(H)+log(1/δ)⌉. We will assign sequentially the value gk(xt) for each k ∈ K after observing the samples
xt. To do so, we maintain a binary tree called the realization tree, where at each time after receiving sample xt, we
expand the leaves of the tree with one or two children depending whether the functions in H consistent with the leaf
agree on xt or not. Meanwhile, we also associate with each node in the realization tree a subset of K (i.e., a subset of
G) in a top-down fashion. Initially, we assign K to the root. Any time we encounter a node with one child, we pass the
set associated with that node to its child, else we split the set into two disjoint subsets of equal size and pass them to
its two children, respectively. The process is said to have failed, if a node with two children has the size of associated
set ≤ 1. If the procedure does not fail until time T , for any k ∈ K, there will be exactly one path (from root to leaf) in
the realization tree with nodes that have the associated sets containing k. The value of gk(xt) is determined by tracing
the path. Clearly, if the procedure does not fail, the set {gk : k ∈ K} sequentially covers H. The key observation is
that if we choose M to be large enough, the procedure does not fail with high probability due to Lemma 4 (since only
non-certified positions incur splits on associated sets that reduce the size of the sets for children by 1/2).

Example 5. We illustrate the construction of the realization tree in this example. We set H = {h1, · · · , h5}, as shown
in the table of Figure 1 with sample x1, x2, x3. The realization tree is shown in Figure 1, where each function h ∈ H
is consistent with some path of the tree, and each path has some function h ∈ H consistent with it. We assign a subset
of G for each node in the tree denoted as {·}. Observe that if a node has only one child then the child has the same
assigned set as the parent, else we assign an arbitrary partition of the parent set with equal sizes to its two children.
The final partitions of the set G = {g1, · · · , g8} are in the leaf nodes of the tree. In the figure, binary nodes (i.e., nodes
with two children) are in gray color. The maximum number of binary nodes in any path is 3, by selecting |G| ≥ 23 = 8,
which guarantees that the assigning procedure does not fail until the leaf. Each gk is associated with a unique path
from root to the leaf with (the only) assigned sets on the nodes that contain gk. The values of gk are defined to be the
labels of out edges along the path in the obvious way. One can verify that g1 covers h1, g2 covers h2, g3, g4 covers
h3, g5, g6 covers h4, and g7, g8 covers h5. Generally, by Lemma 4 the number of binary nodes in any path is of order
O(log T ) with high probability (i.e., setting |G| = 2O(log T ) ensures the process success w.h.p.).

Corollary 3. Let H ⊂ [0, 1]X be the F -composition class as in Example 2 with H1 ⊂ {0, 1}X being a class of finite
Star number, P being the class of all i.i.d. distributions over X T . If ℓ is the Log-loss, then:

r̃T (H, P) ≤ O(Star(H1) log T ).

Proof. By Proposition 2 and Theorem 5, H admits a stochastic sequential covering set G at scale α and confidence δ
such that log |G| ≤ 2 log(1/α) + 5Star(H1) log T + log(1/δ). Taking α = δ = 1

T and applying Theorem 2, the result
follows.
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Note that a natural class that has finite star number is the threshold functions H = {1{x ≥ a} : x, a ∈ [0, 1]},
which has Star number 2. Corollary 3 implies the regret under Log-loss is upper bounded by O(log T ). We refer
to (Hanneke & Yang, 2015) for more non-trivial examples. We note also that the O(log T ) regret bound is not likely
to be established by the epoch based approach (which Lazaric & Munos (2009); Bhatt & Kim (2021); Bilodeau et al.
(2021) have used to establish their regret bounds), since the epochs will inevitably introduce an additional log T factor.

We observe that being finite Star number is not a necessary condition to achieve a eO(log T ) cover. To see this, consider
the class that labels only one sample being 1 and zeros otherwise, which admits a (exact) sequential covering of size
T = elog T but has infinite Star number.

4.3 Tight bounds with finite Star-Littlestone dimension

In this section, we introduce a new complexity measure that we call Star-Littlestone dimension 5. The main purpose of
this measure is to incorporate the Star number and Littlestone dimension that goes beyond simple finite Star number,
and allows us to expand the class of H with eO(log T ) cover.

Definition 2 (Star-Littlestone dimension). Let {0, 1}d
∗ be the set of binary sequences of length less than or equal to d.

For any numbers d and s, we say a binary tree τ : {0, 1}d
∗ → X is Star-Littlestone shattered by H at star scale s if for

any path ϵd ∈ {0, 1}d
∗ we have Star(Hϵd) > s, where Hϵd = {h ∈ H : ∀t ∈ [d], h(τ(ϵt−1)) = ϵt} and H = ∪ϵdHϵd .

In words, Star-Littlestone shattering implies that the Star number of the class of hypothesis consistent with any path
in τ has Star number greater than s. We define the Star-Littlestone dimension SL(s) of H at star scale s to be the
maximum number d such that there exists a tree τ of depth d that is Star-Littlestone shattered at star scale s by H.

Applying Theorem 5 and the SOA argument as in Ben-David et al. (2009), we establish our next main theorem with a
detailed proof in Appendix C.

Theorem 6. Let H be a binary valued class with Star-Littlestone dimension SL(s) at star scale s. Then, there exists
a stochastic sequential covering set G of H w.r.t. the class of all i.i.d. distributions over X T at scale α = 0 and
confidence δ such that:

log |G| ≤ O(max{SL(s) + 1, s} log T + log(1/δ)).

Example 6. In this example, we show a class H that has both infinite Star number and Littlestone dimension but
finite Star-Littlestone dimension. Let H = {h[a,b](x) = 1{x ∈ [a, b]} : [a, b] ⊂ [0, 1]} be the indicators of intervals.
It is easy to see that H has both infinite Star number and Littlestone dimension. However we can show that it has
Star-Littlestone dimension 0 at star scale 4. To see this, consider any point x ∈ [0, 1] and the hypothesis class
H1 = {h ∈ H : h(x) = 1}. We show that the Star number of H1 is ≤ 4. For any 5 points in [0, 1], there must
be at least 3 points on the same side relative to x, the restriction of H1 on such points is equivalent to threshold
functions (either of form 1{x ≥ a} or 1{x ≤ b}), thus it cannot Star-shatter these 3 points. This implies that the
global sequential covering size of H is upper bounded by eO(log T ) as in Theorem 6.

Example 7. Let

H =
{

hB(x) = 1{x ∈ B} : B =
d∏

i=1
[ai, bi] ⊂ Rd

}

be the class of indicators of rectangular cuboids in Rd. Note that H has infinite Star-Littlestone dimension for any
finite star scale when d ≥ 2 and the VC-dimension of H is upper bounded by O(d). By Example 4, we have H can
be expressed as a function in terms of indicators of intervals. Applying Proposition 2 and Example 6 we obtain a
covering set G of H with log |G| ≤ O(d log T + d log(d/δ)). This implies a regret bound of mixable losses (including
logarithmic loss) of order O(d log T + d log d).

Remark 4. We leave it as an open problem to determine if the upper bound eO(log T ) can be achieved for any finite
VC-dimensional class. Establishing such a result even for the threshold functions H = {hw(x) = 1{⟨w, x⟩ ≥ a} :
w, x ∈ Rd, a ∈ R} with d ≥ 2 seems to be a hard task.

5This is conceptually similar to the VCL tree as introduced in the recent paper (Bousquet et al., 2021), but they considered a completely different
problem using similar idea.
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5 Real Valued Class with Finite Fat-shattering

We have established tight stochastic sequential covering bound for finite VC-class (and small real valued classes such
as finite Pseudo-dimensional classes) in the previous section. We now assume that H ⊂ [0, 1]X is a general [0, 1]-
valued function class with bounded fat-shattering number.

We first recall the notion of fat-shattering number, which can be viewed as a scale sensitive VC-dimension. For any
class H ⊂ [0, 1]X , we say H α-fat shatters xd ∈ X d if there exists sd ∈ [0, 1]d such that for all I ⊂ [d] there exists
h ∈ H such that for all t ∈ [d]: (i) If t ∈ I , then h(xt) ≥ st + α; and (ii) If t ̸∈ I , then h(xt) ≤ st − α. Then, the
fat shattering number of H at scale α is defined to be the maximum number d := d(α) such that there exists xd ∈ X d

with H α-fat shatters xd.

We now state our main result for this section.

Theorem 7. Let H be a class of functions X → [0, 1] with the α-fat shattering number d(α). Then there exists a
stochastic global sequential covering set G of H w.r.t. the class of all i.i.d. distributions over X T at scale α and
confidence δ such that:

log |G| ≤ O(d(α/32)(log T log(4/α))4 + (log2 T + log T log(4/α)) log(log T/δ)),

where O hides absolute constant which is independent of α, T , and δ.

Remark 5. It is easy to show that for any class H with α-fat shattering number of order d(α), the stochastic sequential
covering number must be lower bounded by d(α). This can be seen by considering the sample xd(α) that is α-fat
shattered by H, since one cannot α-cover any two distinct functions that witness the α-fat shattering on xd(α) using
a single (sequential) function. However, our logarithmic dependency may not be tight, and we leave it as an open
problem to obtain the optimal dependency.

We first introduce the notion of a local α-covering. We say that a class F locally α-covers H at xT ∈ X T if for all
h ∈ H there exists f ∈ F such that:

∀t ∈ [T ], |h(xt) − f(xt)| ≤ α.

Here, we also assume that F ⊂ H (we can always convert α-covering set F of H to a 2α-covering set F̃ ⊂ H such
that |F̃ | ≤ |F|).

The following lemma upper bounds the local α-covering size w.r.t. the α-fat shattering number of H, which is due
to Alon et al. (1997).

Lemma 5. Suppose the α fat-shattering number of H is d(α). Then for all xT ∈ X T , there exists F (which depends
on xT ) that locally α-covers H at xT such that:

|F| ≤ 2
(

T

(
2
α

+ 1
)2
)⌈d(α/4) log

(
2eT

αd(α/4)

)
⌉

≤ 2d(α/4)(log2 T +2 log2(1/α)+O(1)).

Our proof of Theorem 7 is based on the following key lemma (which is an application of the classical symmetrization
argument), and an epoch approach similar to Lazaric & Munos (2009).

Lemma 6. Let H ⊂ [0, 1]X be a class with α-fat shattering number d(α). Let S1, S2 be two i.i.d. samples from the
same distribution over X , both of size k. For any Si with i ∈ {1, 2}, we define a distance for all h1, h2 ∈ H as:

dα
Si

(h1, h2) =
∑
s∈Si

1{|h1(s) − h2(s)| ≥ α}.

Then
PrS1,S2

[
∃h1, h2 ∈ H s.t. dα

S1
(h1, h2) = 0 and d4α

S2
(h1, h2) ≥ r

]
≤ 2Õ(d(α/8))−r,

where Õ(d(α/8)) = 2d(α/8)(log2 k + 2 log2(1/α) + O(1)).
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Proof. We use a symmetrization argument. We denote by A the event that ∃h1, h2 ∈ H such that dα
S1

(h1, h2) = 0 but
d4α

S2
(h1, h2) ≥ r. Let σ be a random permutation that switches the ith positions of S1, S2 w.p. 1

2 and independently
for different i ∈ [k]. By symmetries, it is sufficient to fix S1, S2 and upper bound Prσ[A[σ(S1, S2)]]. By Lemma 5,
we know that there exists a set F that α/2-covers H on S1 ∪ S2 with:

|F| ≤ 2d(α/8)(log2 k+2 log2(1/α)+O(1)).

If the event A happens, then there exist f1, f2 ∈ F such that (using property of covering):

d2α
S1

(f1, f2) = 0 but d3α
S2

(f1, f2) ≥ r.

Clearly, in order for A to happen, any position s ∈ S2 such that |f1(s) − f2(s)| ≥ 3α must not be switched to S1
under σ, which happens with probability upper bounded by 2−r. Applying union bound over all pairs of F , we have

PrS1,S2 [A] ≤ 22d(α/8)(log2 k+2 log2(1/α)+O(1))−r

which completes the proof.

Proof of Theorem 7. We partition the time horizon into epochs, where each epoch s ranges from time step
2s−1, · · · , 2s − 1. For each epoch s, we will construct a covering set Gs. The global covering set G will be con-
structed by considering all the combinations of functions in Gs with s ∈ {1, · · · , ⌈log T ⌉}.

For any epoch s, we construct Gs as follows. Let F ⊂ H be the local α-covering set on the samples x1, · · · , x2s−1−1.
By Lemma 5, we have

|F| ≤ 2d(α/4)(s2+2 log2(1/α)+O(1)).

Let
rs = 2d(α/8)(s2 + 2 log2(1/α) + O(1)) + log(log T/δ).

By Lemma 6 w.p. ≥ 1− δ
log T for any h ∈ H there exists f ∈ F such that f 4α-covers h on samples x2s−1 , · · · , x2s−1

except rs positions (the f ∈ F that α-covers h on x2s−1−1 is the desired function since F is a local α-covering). Let
J be a discretization of interval [0, 1] such that for any a ∈ [0, 1], there exists b ∈ J so that |a − b| ≤ 4α. We have
|J | ≤ ⌈ 1

8α ⌉. Now, for any I ⊂ {2s−1, · · · , 2s − 1} with |I| ≤ rs, {ki}i∈I ∈ J |I| and f ∈ F , we construct a function
fI,k|I| as follows:

1. If t ∈ I , we set fI,k|I|(xt) = kt;

2. If t ̸∈ I , we set fI,k|I|(xt) = f(xt).

The class Gs is defined as the class of all such fI,k|I| . By definition of rs and by Lemma 6, we have w.p. ≥ 1 − δ
log T ,

for all h ∈ H there exists g ∈ Gs such that for all t ∈ {2s−1, · · · , 2s − 1} we have:

|g(xt) − h(xt)| ≤ 4α.

We observe that:

|Gs| ≤ |F| · (2s|K|)rs+1 ≤ 2O(d(α/8)((s log(1/α))3)+(s+log(1/α)) log(log T/δ)).

We now construct the global covering set G as follows. For any index (j1, · · · , j⌈log T ⌉) with js ∈ [|Gs|], we define a
function g such that it uses the js function in Gs to make prediction during epoch s. By union bound on the epochs,
we have w.p. ≥ 1 − δ for any h ∈ H, there exists g such that:

∀t ∈ [T ], |h(xt) − g(xt)| ≤ 4α.

This implies that G is a 4α global sequential covering set of H. Thus

|G| =
⌈log T ⌉∏

s=1
|Gs| ≤ 2O(d(α/8)(log T log(1/α))4+(log2 T +log T log(1/α)) log(log T/δ)).

The result follows by taking α in the above expression to be α/4.
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We complete this section with two results regarding the expected worst case minimax regret.

Corollary 4. Let H be a [0,1]-valued class with α-fat shattering number of order α−l for some l ≥ 0, and P be a
class of all i.i.d. distributions over X T . If ℓ(·, y) is convex, L-Lipschitz and bounded by 1 for all y ∈ Y , then:

r̃T (H, P) ≤ Õ((LT )(l+1)/(l+2))

where Õ hides a poly-log factor.

Proof. Apply Theorem 7 to Theorem 1 to find r̃T (H, P) ≤ inf0≤α≤1

{
αLT + Õ

(√
Tα−l

)}
and taking α =

(LT )−1/(l+2) finishes the proof.

Note that Block et al. (2022, Theorem 3) demonstrated that for known i.i.d. processes one can achieve an Õ(T (l−1)/l)
regret bound (in fact they establish the result for the smooth adversary processes). However, extending such an
chaining based argument to our unknown i.i.d. processes as in Corollary 4 seems to be an non-trivial task, since for
unknown i.i.d. processes one cannot express the expected worst case regret in the iterated minimax formulation as
in Rakhlin et al. (2011) (see Remark 1). We leave it as an open problem to determine if the bound in Corollary 4 is
tight or not for the unknown i.i.d. processes.

Corollary 5. Let H be a [0,1]-valued class with α-fat shattering number of order α−l with l ≥ 0, and P be the class
of all i.i.d. distributions over X T . If ℓ is Log-loss, then r̃T (H, P) ≤ Õ(T l/l+1).

Proof. Applying Theorem 7 to Theorem 2, we have r̃T (H, P) ≤ inf0≤α≤1
{

2αT + Õ(α−l)
}

, and taking α =
T −1/(l+1) completes the proof.

We can show that the regret bound in Corollary 5 is actually tight upto poly-logarithmic factors for general classes of
α-fat shattering number of order α−l (with l ≥ 1), see Proposition 3 in Section 6. However, it is known by Bilodeau
et al. (2020); Wu et al. (2022b) that this bound is not tight for all classes even for the adversary case. Comparing to
the results in Bilodeau et al. (2021), Corollary 5 shows that the regret behaviour under Log-loss for r̃T is closer to the
adversary case as in Wu et al. (2022b) instead of the (well-specified) average case as in Bilodeau et al. (2021).

6 Lower Bounds For Regret

We now provide a general approach for lower bounding the regret r̃(H, P) using the fixed design regret defined in (2)
and analyzed in Wu et al. (2022b) as well as Shamir (2020); Shamir & Szpankowski (2021); Jacquet et al. (2021). We
will assume throughout this section that H ⊂ [0, 1]X is a general real valued function class and P is the class of all
i.i.d. processes over X T . We first introduce the following well known tail bound for the coupon collector problem,
see e.g. (Doerr, 2020, Theorem 1.9.2).

Lemma 7. Let X1, X2, · · · be i.i.d. samples from the uniform distribution over [T ], and ρ be the first time such that
[T ] ⊂ Xρ

1 . Then for any c ≥ 0 we have Pr[ρ ≥ T log T + cT ] ≤ e−c.

For any function Φ that maps sequences from X ∗ to R, we say Φ is monotone if for any xT ⊂ zT1 we have Φ(xT ) ≤
Φ(zT1), where xT ⊂ zT1 means that for any s ∈ X , the number of s appearances in xT is no more than the number of
appearances of s in zT1 . We also assume a regularity condition for the loss ℓ such that for all ŷ1, ŷ2 ∈ Y there exists
y ∈ Y with ℓ(ŷ1, y) ≥ ℓ(ŷ2, y). We also recall that r∗

T (H) = supxT r∗(H|xT ).

Theorem 8. Let H be any [0, 1]-valued class. If the fixed design regret r∗
T (H | xT ), as defined in (2), is monotone

over xT and ℓ satisfies the above regularity condition, then:

r̃T (H, P) ≥ (1 − O(1/ log T ))r∗
κ−1(T )(H) ≥ (1 − O(1/ log T ))r∗

(T/ log T )(H),

where P is the class of all i.i.d. distributions over X T and κ(T ) = T log T + T log log T .
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Proof. Let x̃T be the feature that achieves the maximum of r∗
T (H | x̃T ) (i.e., r∗

T (H)). We define the distribution ν to
be the uniform distribution over {x̃1, · · · , x̃T } (with possibly repeated elements). Let T1 = T log T + T log log T . We
have

r̃T1 (H, P) = inf
ϕT1

sup
µ∈P

ExT1 ∼µ

[
sup
yT1

(
T1∑

t=1

ℓ(ŷt, yt) − inf
h∈H

T1∑
t=1

ℓ(h(xt), yt)

)]
(5)

≥ inf
ϕT1

ExT1 ∼νT1

[
sup
yT1

(
T1∑

t=1

ℓ(ŷt, yt) − inf
h∈H

T1∑
t=1

ℓ(h(xt), yt)

)]
(6)

(a)
≥ inf

ϕT1
Pr[x̃T ⊂ xT1 ] · E

[
sup
yT1

(
T1∑

t=1

ℓ(ŷt, yt) − inf
h∈H

T1∑
t=1

ℓ(h(xt), yt)

)
| x̃T ⊂ xT1

]
(7)

(b)
≥ Pr[x̃T ⊂ xT1 ] · E

[
inf
ϕT1

sup
yT1

(
T1∑

t=1

ℓ(ŷt, yt) − inf
h∈H

T1∑
t=1

ℓ(h(xt), yt)

)
| x̃T ⊂ xT1

]
(8)

= Pr[x̃T ⊂ xT1 ] · E
[
r∗

T1 (H | xT1 ) | x̃T ⊂ xT1
]

(9)
(c)
≥ Pr[x̃T ⊂ xT1 ]r∗

T (H | x̃T )
(d)
≥
(

1 − 1
log T

)
r∗

T (H), (10)

where (a) follows by conditioning on the event {x̃T ⊂ xT1} and observing that the regret is positive for all xT1 , (b)
follows by inf E ≥ E inf , (c) follows from the fact that r∗

T1
(H | xT1) ≥ r∗

T (H | x̃T ) which further follows from the
monotonicity of r∗

T (H | xT ), (d) follows by Lemma 7. To complete the proof we have T = κ−1(T1) and notice that
κ−1(T1) ≥ T1

log T1
.

The following lemma shows the monotonicity for Log-loss 6.

Lemma 8. For Log-loss we have r∗
T1

(H | xT1) ≥ r∗
T (H | x̃T ), so long as x̃T ⊂ xT1 .

Proof. Note that for any xT , we have (Jacquet et al., 2021):

r∗
T (H | xT ) = log

∑
yT

sup
h∈H

T∏
t=1

h(xt)y1(1 − h(xt))1−yt .

Therefore, any permutation over xT does not change the value r∗
T . Now, suppose x̃T ⊂ xT1 ; we can permute xT1 so

that the first T samples match with x̃T . The result follows from the fact that playing more rounds does not decrease the
regret. To see this, we let h ∈ H to be the hypothesis that achieves minimal accumulated loss in the first T rounds, we
then select the label yt for which ℓ(ŷt, yt) ≥ ℓ(h(xt), yt) for the following steps t > T , which ensures non-decreasing
regret.

Finally, we apply the above general lower bound to the expected worst case minimax regret.

Corollary 6. Assume ℓ is the Log-loss. If r∗
T (H) ≥ C logα T then

r̃T (H, P) ≥ C logα T − o(logα T ),

where P is the class of i.i.d. distributions. If r∗
T (H) ≥ CT α, then

r̃T (H, P) ≥ CT α

logα T
− o(T α/ logα T ).

Remark 6. A question arises whether the log T factor in Corollary 6 can be eliminated. We do not have a complete
answer for this question at this point; however, we will show in Appendix D that there exists a class H such that
r̃T (H, P) ≤ (1−e−1)r∗

T (H), where P is the class of all i.i.d. processes. Meaning that the reduction as in Corollary 6
will necessarily introduce a factor < 1 for polynomial regrets r∗

T (H).

6Using the result in Cesa-Bianchi & Lugosi (2006, Theorem 8.1), one can establish similar result for absolute loss.
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We refer to (Wu et al., 2022b) for the lower bounds on r∗
T (H) of various classes H under Log-loss. In particular, the

following lower bound is a complement to Corollary 5.

Proposition 3. For any l ≥ 1, there exists a [0, 1]-valued class H with α-fat-shattering number of order O(α−l) and
P is the class of all i.i.d. distributions over X T , such that

r̃T (H, P) ≥ Ω̃(T l/(l+1)),

under logarithmic loss.

Proof. Let X = [T ]; we define H = {h ∈ [0, 1]X :
∑T

t=1 h(t)l ≤ 1}. We claim that the α-fat shattering number
of H is upper bounded by α−l. To see this, we assume there exist d points xd ∈ [T ] such that d > α−l and xd

is α-fat shattered by H. By definition of α-fat shattering, there exist two functions h1, h2 ∈ H such that ∀i ∈ [d],
|h1(xi) − h2(xi)| ≥ 2α. This implies that

∑T
t=1 |h1(t) − h2(t)|l ≥ d · (2α)l > 2l, i.e., ||h1 − h2||l > 2. However,

this contradicts the fact that ||h1 − h2||l ≤ ||h1||l + ||h2||l ≤ 2 by the triangle inequality of Ll norm. In conclusion,
by Wu et al. (2022b, Theorem 6) we have r∗

T (H) ≥ Ω(T l/(l+1)). Invoking Corollary 6, and the result follows.

Note that Proposition 3 only shows that the lower bound Ω̃(T l/(l+1)) holds for certain hard classes. We prove in the
following proposition a lower bound that holds for all classes.

Proposition 4. Let l ≥ 1, H be any [0, 1]-valued class with α-fat-shattering number of order Ω(α−l) and P is the
class of all i.i.d. distributions over X T . Then

r̃T (H, P) ≥ Ω̃(T (l−1)/l),

under logarithmic loss.

Proof. Let xT be samples that are α-fat-shattered by H and witnessed by sT , where α ≥ Ω(T −1/l). We now describe
an adversary strategy that achieves the Ω(T (l−1)/l) lower bound for the fixed design regret r∗

T (H | xT ). To see this,
for any t ∈ [T ], if the predictor predicts ŷt ≥ st, we set yt = 0, else, we set yt = 1. By definition of α-fat shattering,
there exists h ∈ H such that ∀t ∈ [T ], |h(xt) − ŷt| ≥ α and ℓ(ŷt, yt) ≥ ℓ(h(xt), yt). We assume without loss of
generality, yt = 1. By definition of Log-loss, we have:

ℓ(ŷt, yt) − ℓ(h(xt), yt) = log(h(xt)/ŷt) ≥ log((ŷt + α)/ŷt) ≥ α/2,

The last inequality follows by log(1 + x) ≥ x/(x + 1). Therefore, we have r∗
T (H | xT ) ≥ Tα/2 ≥ Ω(T (l−1)/l). The

proposition now follows by Corollary 6.

Note that when l ≥ 2 the lower bound in Proposition 4 is achieved by Logistic regression (Foster et al., 2018, Example
2). Therefore, the lower bound is not universally improvable (this is similar to Corollary 5).

Example 8 (Well-specified v.s. worst case yT ). In this example we demonstrate that the expected worst case regret
r̃T can be substantially different than the well-specified average case regret r̄T as in Bilodeau et al. (2021). This will
explain why our Theorem 8 is a necessary technique for establishing lower bonds for r̃T . To see this, for any X with
|X | ≥ T we define:

H =
{

hb(x) = 1
2 + b(x)√

T
: b ∈ [−1, 1]X

}
.

This class admits an O(1) uniform KL-cover at scale O(1/T ), and therefore by Bilodeau et al. (2021), the well-
specified regret is of order O(1). However, by Wu et al. (2022b, Page 6), the fixed design regret r∗

T (H) ≥ 2(1/
√

T )T ≥
Ω(

√
T ). Invoking Corollary 6, this implies an Ω̃(

√
T ) lower bound for r̃T . This also demonstrates that the KL-cover

(or equivalently the Hellinger cover) as in Bilodeau et al. (2021) cannot capture the behaviour of r̃T under Log-loss
even with values bounded away from 0.
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7 Conclusion
In this paper we introduced a general minimax regret called the expected worst case minimax regret when the features
are generated by a stochastic source. This new minimax regret recovers previously known online minimax regrets in
a unified way. We analyzed the regret via a novel concept of stochastic global sequential covering and provide tight
bounds on the covering size when the underlying process is i.i.d.. A direct generalization is to extend our results to
some interesting general random processes. We also expect that the technique of stochastic global sequential covering
can be exploited beyond problems studied in this paper, e.g., for contextual bandits with general reference policy sets.
From an algorithmic perspective, our prediction rules derived from Theorems 1 and 2 are based on the Exponential
Weighted Average algorithm, which is generally not computationally efficient. We believe that investigating compu-
tationally efficient algorithms (such as the oracle efficient algorithms in Block et al. (2022)) represents an intriguing
direction for future research. We leave these extensions and applications to future work.
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A Proof of Lemma 1

For any t ∈ [T ], we denote It = 1{Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))}, where σ is a uniform random permutation
over [T ]. For all t ∈ [T ], we define the reversed sequence of indicators I ′

t = IT −t+1. We observe that for all t ∈ [T ],
the indicator I ′

t only depends on the realizations of xσ(T ), xσ(T −1), · · · , xσ(T −t+1) since Φ is permutation invariant on
xσ(1), · · · , xσ(T −t). Therefore,

E[I ′
t | I ′

1, · · · , I ′
t−1] = E[I ′

t | xσ(T ), · · · , xσ(T −t+2)] ≤ min
{

C

T − t + 1 , 1
}

,

where the last inequality follows from the assumption of Φ and noticing that conditioning on xσ(T )
σ(T −t+2) the per-

mutation σ restricted on xT \{xσ(T ), · · · , xσ(T −t+2)} is also a uniform random permutation. For any realization
I ′

1, · · · , I ′
t−1, we define I ′′

t = I ′
t − E[I ′

t | I ′
1, · · · , I ′

t−1]. We now observe that the indicators I ′′
t are (Doob) martingale

differences, i.e., we have ∀t ∈ [T ]:
E[I ′′

t | I ′′
1 , · · · , I ′′

t−1] = 0.

By the Bernstein inequality for martingales (Cesa-Bianchi & Lugosi, 2006, Lemma A.8), we find:

Pr
[

T∑
t=1

I ′′
t > k and Σ2 ≤ v

]
≤ e− k2

2(v+k/3) ,

where

Σ2 =
T∑

t=1
E[I ′′

t
2 | I ′′

1 , · · · , I ′′
t−1].

We now observe that conditioning on I ′
1, · · · , I ′

t−1, the indicator I ′
t is a Bernoulli random variable with parameter

pt ≤ min
{

C
T −t+1 , 1

}
. This implies that if I ′

t = 1 then I ′′
t ≤ 1 and if I ′

t = 0 then |I ′′
t | ≤ pt. Using elementary

algebra, we have with probability 1 that

T∑
t=1

E[I ′′
t

2 | I ′
1, · · · , I ′

t−1] ≤
T∑

t=1
pt + (1 − pt)p2

t ≤ C log T + 3C.

Plugging it into the Bernstein inequality with k = 2(C log T +3C)+log(1/δ)) and v = C log T +3C, with probability
≥ 1 − δ, we have:

T∑
t=1

It =
T∑

t=1
I ′

t ≤
T∑

t=1
I ′′

t + E[I ′
t | I ′

1, · · · , I ′
t−1]

≤ k +
T∑

t=1
min

{
C

T − t + 1 , 1
}

≤ 3C log T + 5C + log(1/δ).

Here, we used the following elementary inequality:

∀a, b ≥ 0,
(2a + b)2

2(a + (2a + b)/3) ≥ b.

The Lemma now follows from the fact that C log T ≥ 5C when T ≥ e5 and C ≥ 1.

B Proof of Theorem 5

We will construct a covering set G directly without relying on the error pattern counting as in Lemma 2. This is the
key to removing the extra log T factor. We will introduce a set K to index the functions in G, we assume that K is
fixed and |K| = 2M for some M to be chosen later. For any k ∈ K, we will construct a sequential function gk as
follows:
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Let xT be a realization of the sample from an i.i.d. source. The realization tree T of H on xT is a leveled binary tree
of depth T + 1, with each node at level t being labeled xt (where level 1 has only the root v1), each left edge being
labeled 0 and each right edge being labeled 1, such that any node vt ∈ T at level t has left (respectively right) child
if and only if there exist h ∈ H such that h(xt) = 0 (respectively h(xt) = 1) and h(xi) = L(vi → vi+1) for all
i ≤ t − 1, where v1 → v2 → · · · → vt = v is the path from root v1 to v and L is the edge label function. Note that
different realizations of xT will result in different realization trees.

We now assign values of the functions gk with k ∈ K using the following procedure. For any node v in the realization
tree T , we will associate a set K(v) ⊂ K using the following rule (starting from root):

1. If v is the root, then K(v) = K;

2. If v has only one child u, then K(u) = K(v);

3. If v has two children u1, u2, we assign the sets to u1, u2 being an arbitrary partition of K(v) of equal sizes,
i.e., |K(u1)| = |K(u2)|, K(u1) ∩ K(u2) = ∅ and K(u1) ∪ K(u2) = K(v).

Clearly, the value K(v) for any node v at level t can be determined with only the realization of xt and the values of
K of all nodes at level t form a partition of K. The procedure K fails if there exists some node v with two children
such that |K(v)| < 2. Suppose the procedure K does not fail. We have for any k ∈ K, there exists a unique path
v1 → v2 → · · · → vT +1 with v1 being the root, such that for all t ≤ T + 1 we have k ∈ K(vt). For any such k, we
assign the value of gk on xt as:

gk(xt) = L(vt → vt+1),

where L is the edge label function as discussed above. If the procedure K fails at some node vt, we assign the value
of gk(xj) arbitrarily for j ≥ t.

By definition of the realization tree, for any h ∈ H there must be a unique path v1 → · · · → vT +1, with v1 being root
such that h(xt) = L(vt → vt+1) for all t. Therefore, if the procedure K does not fail, then for k ∈ K(vT +1), we have
h(xt) = gk(xt) for all t ≤ T by definition of gk. We now show that by setting M = ⌈5Star(H) + log(1/δ)⌉, w.p.
≥ 1 − δ over xT , the procedure K will not fail, thus proving that the class G = {gk : k ∈ K} is a stochastic sequential
covering of H with confidence δ. To see this, we note that the procedure K fails at node vt at level t if and only if
there are ≥ M + 1 nodes with two children in the (unique) path v1 → · · · → vt, where v1 is root, since only rule 3
will reduce the size of value of K by 1/2. Assume now the procedure K fails at node vt. Let h ∈ H be a function such
that h(xi) = L(vi → vi+1) for all i ≤ t, which must exist by definition of realization tree. Since any node vj in the
path v1 → · · · → vt with two children implies xj−1 does not certify xj under h, we have that there are at least M + 1
positions j (with j ≤ t) such that xj−1 does not certify xj under h. By Lemma 4 and selection of M , this happens
with probability ≤ δ. This completes the proof.

C Proof of Theorem 6

The proof will incorporate the SOA argument as in Ben-David et al. (2009) and the result from Theorem 5. For
notational convenience, we denote d = SL(s) + 1. For any I ⊂ [T ] with |I| ≤ d, we will construct a set GI . Let Φ
be the SOA predictor (similar to Ben-David et al. (2009, Algorithm 1)) that predicts the label for which the remaining
consistent subclass has maximum Star-Littlestone dimension at star scale s, if both subclasses have SL dimension 0 we
predict the label for which the remaining consistent subclass has maximum Star number (and break ties arbitrarily).
We now construct functions in GI as follows. The predictions of functions in GI are partitioned into 2 phases (start
with phase 1). At phase 1, all the functions in GI use the same prediction rule as in Lemma 2, that is, if we are at time
step t ∈ I , we predict using 1 − Φ, else we use Φ to predict, where Φ is the SOA prediction rule described above. We
enter phase 2 if the remaining consistent class has Star number upper bounded by s; we then construct the prediction
functions in GI as in Theorem 5 with Star(H) = s, confidence δ/T d+1 and |GI | ≤ e5s log T +log(T d+1/δ). The covering
class G is defined to be:

G =
⋃

I⊂[T ], |I|≤d

GI .

By Theorem 5 with Star(H) = s and δ = δ/T d+1 and computing the number of Is, we have

|G| ≤ T d+1e5s log T +log(T d+1/δ) ≤ eO(max{d,s} log T +log(1/δ)).
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We now show that G is indeed a stochastic sequential covering of H with confidence δ. Let HI be the (random)
subclass of functions in H that are consistent with Φ with error pattern I before entering phase 2 7 (it is possible that
h remains on phase 1 until time T ). Note that all functions in HI agree on samples at phase 1. Note also that, with
probability 1 we have H =

⋃
I⊂[T ],|I|≤d HI . To see this, we note that if h disagreed with the SOA then the remaining

consistent class has SL(s) decreased by at least 1 (similar to the argument as in Ben-David et al. (2009, Lemma 10)) or
has Star number ≤ s if the current consistent class has SL(s) = 0. This implies that any h ∈ H can be disagreed with
SOA at most d times before entering phase 2, which must be in some HI with |I| ≤ d. Now, for any I with |I| ≤ d
we need to show that:

Pr[GI covers HI ] ≥ 1 − δ

T d+1 .

Note that the main difficulty here is that HI is a random subset. We show that conditioning on any realization of HI ,
the above inequality holds (the inequality will then hold by law of total probability). This follows from Theorem 5 by
noticing that the samples in phase 2 are still i.i.d. and independent of samples in phase 1, and GI trivially covers HI

in phase 1 by definition of GI and HI . The theorem will now follow by a union bound on all the Is.

D Example to Corollary 6

We give an example here that demonstrates that there exists H such that r̃T (H, P) ≤ (1−e−1)r∗
T (H) under Log-loss,

where P is the class of all i.i.d. distributions over the domain. Let H the class of all the functions map [T ] → {0, 1}.
Clearly, we have, by computing Shtarkov sum (Wu et al., 2022b), that:

r∗
T (H) = T.

We now provide a specific strategy that achieves smaller r̃T . The strategy goes as follows, if we haven’t seen the
sample xt then predict 1

2 , else we predict yi+1/T
1+2/T where yi ∈ {0, 1} is the true label observed for previous appearance

of xt (if there are multiple appearance choose arbitrary one). We now observe that the true labels must be consistent
with some function in the class. Otherwise the regret will be negative infinite since the functions in H are {0, 1}-
valued. We now observe that for any distribution over [T ] the expected number of distinct elements with T i.i.d.
samples is upper bounded by

(1 − e−1)T.

Clearly, this is the bound achieved by uniform distribution over [T ]. To see that this hold for arbitrary distribution as
well, we observe the expected number of distinct elements equals:

T∑
t=1

1 − (1 − pt)T ,

where pt is the probability mass of the distribution on sample t. We now observe that (1 − x)T is convex for all T and
x ∈ [0, 1], therefore by Jensen’s inequality we have

T∑
t=1

(1 − pi)T ≥ T (1 − 1/T )T ∼ Te−1.

Since the regret is upper bounded by the expected number of distinct elements, we have

r̃T (H, P) ≤ (1 − e−1)T + O(1).

E Stochastic sequential cover for finite Pseudo-dimensional classes

Let H ⊂ [0, 1]X be a real valued function class of Pseudo-dimensional P(H). We show in this Appendix that there
exists a stochastic sequential covering set G of H w.r.t. i.i.d. processes at scale α and confidence δ such that

log |G| ≤ O(P(H) log2(T/α) + log(T/α) log(1/δ)).
7Here, phase 1 and 2 corresponds to that the functions in H consistent with h on current sample has Star number > s and ≤ s, respectively.
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The proof follows a similar path as in the proof of Theorem 4 but replacing the one-inclusion graph algorithm with the
multi-class one-inclusion graph algorithm as in Rubinstein et al. (2006). To do so, we denote by J ⊂ [0, 1] a uniform
discretization of [0, 1] with step size 2α, and N := |J | ≤ 1

2α . Let H′ = {h′(x) = arg mina∈J{|h(x) − a|} : h ∈ H}
be the discretized class of H. Clearly, P(H′) ≤ P(H). Let Φ : (X × J)∗ × X → J be the multi-class one-inclusion
graph algorithm for H′ as in Rubinstein et al. (2006). We have by Rubinstein et al. (2006, Theorem 5.2)

sup
xt∈X t

sup
h∈H′

Eσ

[
1{Φ(xσ(t), h({xσ(t−1)})) ̸= h(xσ(t))}

]
≤ P(H)

t
,

where σ is uniform random permutation over [t]. Invoking Lemma 1 for all h ∈ H′ and xT ∈ X T

PrσT

[
T∑

t=1
1{Φ(xσT (t), h({xσT (t−1)})) ̸= h(xσT (t))} ≥ 4P(H) log T + log(1/δ)

]
≤ δ.

By generalized Sauer’s lemma (Haussler & Long, 1995, Corollary 3), for any xT the number of functions of H′

restricted on xT is upper bounded by (TN)P(H). Taking δ := δ/(TN)P(H) and applying union bound, we have

PrσT

[
sup

h∈H′

T∑
t=1

1{Φ(xσT (t), h({xσT (t−1)})) ̸= h(xσT (t))} ≥ 5P(H) log(TN) + log(1/δ)
]

≤ δ.

By symmetries of i.i.d. process, for any distribution µ over X we find

PrxT ∼µ

[
sup

h∈H′

T∑
t=1

1{Φ(xt, h({xt−1})) ̸= h(xt)} ≥ 5P(H) log(TN) + log(1/δ)
]

≤ δ.

We now use a similar argument as in Lemma 2 to construct the sequential covering set. Let err = 5P(H) log(TN) +
log(1/δ), I ⊂ [T ] with |I| ≤ err and K = {kt}t∈I ∈ J |I|. For any such I, K, we construct a sequential function
gI,K such that for any t ∈ I and xt we set gI,K(xt) = kt and set gI,K(xt) = Φ(xt, {gI,K(xt−1)}) for t ̸∈ I . It is easy
to verify that the class G consisting of all such gI,K is stochastic sequential cover of H′ at scale 0 and confidence δ,
and

log |G| =
err∑
i=1

(
T

i

)
N i ≤ (TN)err+1 ≤ O(P(H) log2(TN) + log(TN) log(1/δ)).

By the construction of J , G is a stochastic sequential covering set of H w.r.t. i.i.d. processes at scale α and confidence
δ. The claimed bound now follows by noticing that N ≤ 1

2α .

F An Ω(log T ) lower bound of realizable cumulative error
We now show that there exist classes H of finite VC-dimension such that for any prediction rule, the expected cumu-
lative error with i.i.d. sampling in the realizable case is lower bounded by Ω(VC(H) log T ). This result was shown
in Haussler et al. (1994, Section 3) and also in Antos & Lugosi (1998), however, we provide an alternative (simpler)
proof here for completeness.

Let H = {ha(x) = 1{x ≥ a} : x, a ∈ [0, 1]} be the class of all linear threshold functions [0, 1] → {0, 1}. We show
that H is the desired class. To do so, we define ν to be the uniform distribution over [0, 1]. Let A, X1, · · · , XT be
i.i.d. samples from ν 8. We show that for any prediction rule Φ we have

E

[
T∑

t=1
1{Φ(Xt

1, hA(Xt−1
1 )) ̸= hA(Xt)}

]
≥ Ω(log T ).

W.l.o.g., we can assume that A, X1, · · · , XT are distinct. By symmetries of i.i.d., we may assume that A, X1, · · · , XT

is a uniform random permutation for some fixed set {A, X1, · · · , XT }. We consider the following process: at the

8We only prove the case when VC(H) = 1, the extension to general VC-dimension d is straightforward by considering a product class
H = {ha(x, b) = 1{x ≥ ab} : a ∈ [0, 1]d, (x, b) ∈ [0, 1] × [d]} and defining the distribution to first sample from [d] uniformly and then sample
from ν. This admits a lower bound Ω(d log(T/d)) since w.h.p. each b ∈ [d] appears Θ(T/d) times.
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beginning Nature randomly permutes {A, X1, · · · , XT } and maintains a set S initially to be equal to {X1, · · · , XT }.
At each time step t, Nature reveals the relative position of Xt in S. After the predictor has made the prediction, Nature
discards elements in S on the opposite side of Xt relative to A (i.e., if A > Xt we discard elements ≤ Xt in S, else
we discard elements ≥ Xt) and reveals them to the predictor. Clearly, a lower bound for the game described above
implies a lower bound for the original game, since the predictor gains more information at each time step. Denote f(t)
to be the expected number of errors the predictor will make if |S| = t. We have the following recursion:

f(T ) ≥ 2
T

T/2∑
t=1

t · f(t)
T

+ (T − t) · f(T − t)
T

+ t

T
≥ 2

T

T −1∑
t=1

t · f(t)
T

+ t

T
.

The reasoning goes as follows: conditioned on the event that X1 is at position t, we have probability t/T that A is less
than X1 and probability (T − t)/T that A is larger than X1. The best strategy for the predictor is to predict A > X1
if t ≤ T/2 and predict A < X1 otherwise. This contributes an expected error at first step to be t

T . The recursive
formula now follows by the observation that conditioning on the position of X1 and relative position of A to X1, the
remaining set S ∪ {A} is still a uniform random permutation. We now claim that (the constant 0.01 is not optimized):

f(t) ≥ 0.01 · log t.

The base case for t = 1 can be verified easily. We now prove by induction. We observe that∫
x · log(x) = 1

2x2 · log(x) − x2

4 .

Therefore, using Euler–Maclaurin formula we have:

T 2 · f(T ) ≥ 2
T −1∑
t=1

0.01 · t log(t) + t ≥ 0.01 · T 2 log T − 0.02 · T log T − 0.01 · T 2/4 + T 2/2 ≥ 0.01 · T 2 log T.

The result follows.
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