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ABSTRACT

At present, the vast majority of building blocks, techniques, and architectures for
deep learning are based on real-valued operations and representations. However,
recent work on recurrent neural networks and older fundamental theoretical anal-
ysis suggests that complex numbers could have a richer representational capacity
and could also facilitate noise-robust memory retrieval mechanisms. Despite their
attractive properties and potential for opening up entirely new neural architectures,
complex-valued deep neural networks have been marginalized due to the absence
of the building blocks required to design such models. In this work, we provide
the key atomic components for complex-valued deep neural networks and apply
them to convolutional feed-forward networks and convolutional LSTMs. More
precisely, we rely on complex convolutions and present algorithms for complex
batch-normalization, complex weight initialization strategies for complex-valued
neural nets and we use them in experiments with end-to-end training schemes.
We demonstrate that such complex-valued models are competitive with their real-
valued counterparts. We test deep complex models on several computer vision
tasks, on music transcription using the MusicNet dataset and on Speech Spectrum
Prediction using the TIMIT dataset. We achieve state-of-the-art performance on
these audio-related tasks.

1 INTRODUCTION

Recent research advances have made significant progress in addressing the difficulties involved in
learning deep neural network architectures. Key innovations include normalization techniques (Ioffe
and Szegedy, 2015; Salimans and Kingma, 2016) and the emergence of gating-based feed-forward
neural networks like Highway Networks (Srivastava et al., 2015). Residual networks (He et al.,
2015a; 2016) have emerged as one of the most popular and effective strategies for training very deep
convolutional neural networks (CNNs). Both highway networks and residual networks facilitate
the training of deep networks by providing shortcut paths for easy gradient flow to lower network
layers thereby diminishing the effects of vanishing gradients (Hochreiter, 1991). He et al. (2016)
∗Equal first author
†Equal contributions
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show that learning explicit residuals of layers helps in avoiding the vanishing gradient problem
and provides the network with an easier optimization problem. Batch normalization (Ioffe and
Szegedy, 2015) demonstrates that standardizing the activations of intermediate layers in a network
across a minibatch acts as a powerful regularizer as well as providing faster training and better
convergence properties. Further, such techniques that standardize layer outputs become critical in
deep architectures due to the vanishing and exploding gradient problems.

The role of representations based on complex numbers has started to receive increased attention,
due to their potential to enable easier optimization (Nitta, 2002), better generalization character-
istics (Hirose and Yoshida, 2012), faster learning (Arjovsky et al., 2015; Danihelka et al., 2016;
Wisdom et al., 2016) and to allow for noise-robust memory mechanisms (Danihelka et al., 2016).
Wisdom et al. (2016) and Arjovsky et al. (2015) show that using complex numbers in recurrent neu-
ral networks (RNNs) allows the network to have a richer representational capacity. Danihelka et al.
(2016) present an LSTM (Hochreiter and Schmidhuber, 1997) architecture augmented with asso-
ciative memory with complex-valued internal representations. Their work highlights the advantages
of using complex-valued representations with respect to retrieval and insertion into an associative
memory. In residual networks, the output of each block is added to the output history accumu-
lated by summation until that point. An efficient retrieval mechanism could help to extract useful
information and process it within the block.

In order to exploit the advantages offered by complex representations, we present a general formula-
tion for the building components of complex-valued deep neural networks and apply it to the context
of feed-forward convolutional networks and convolutional LSTMs. Our contributions in this paper
are as follows:

1. A formulation of complex batch normalization, which is described in Section 3.5;

2. Complex weight initialization, which is presented in Section 3.6;

3. A comparison of different complex-valued ReLU-based activation functions presented in
Section 4.1;

4. A state of the art result on the MusicNet multi-instrument music transcription dataset,
presented in Section 4.2;

5. A state of the art result in the Speech Spectrum Prediction task on the TIMIT dataset,
presented in Section 4.3.

We perform a sanity check of our deep complex network and demonstrate its effectiveness on stan-
dard image classification benchmarks, specifically, CIFAR-10, CIFAR-100. We also use a reduced-
training set of SVHN that we call SVHN*. For audio-related tasks, we perform a music transcrip-
tion task on the MusicNet dataset and a Speech Spectrum prediction task on TIMIT. The results
obtained for vision classification tasks show that learning complex-valued representations results in
performance that is competitive with the respective real-valued architectures. Our promising results
in music transcription and speech spectrum prediction underscore the potential of deep complex-
valued neural networks applied to acoustic related tasks1 – We continue this paper with discussion
of motivation for using complex operations and related work.

2 MOTIVATION AND RELATED WORK

Using complex parameters has numerous advantages from computational, biological, and signal
processing perspectives. From a computational point of view, Danihelka et al. (2016) has shown that
Holographic Reduced Representations (Plate, 2003), which use complex numbers, are numerically
efficient and stable in the context of information retrieval from an associative memory. Danihelka
et al. (2016) insert key-value pairs in the associative memory by addition into a memory trace.
Although not typically viewed as such, residual networks (He et al., 2015a; 2016) and Highway
Networks (Srivastava et al., 2015) have a similar architecture to associative memories: each ResNet
residual path computes a residual that is then inserted – by summing into the “memory” provided
by the identity connection. Given residual networks’ resounding success on several benchmarks and

1The source code is located at http://github.com/ChihebTrabelsi/deep_complex_
networks
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their functional similarity to associative memories, it seems interesting to marry both together. This
motivates us to incorporate complex weights and activations in residual networks. Together, they
offer a mechanism by which useful information may be retrieved, processed and inserted in each
residual block.

Orthogonal weight matrices provide a novel angle of attack on the well-known vanishing and ex-
ploding gradient problems in RNNs. Unitary RNNs (Arjovsky et al., 2015) are based on unitary
weight matrices, which are a complex generalization of orthogonal weight matrices. Compared to
their orthogonal counterparts, unitary matrices provide a richer representation, for instance being
capable of implementing the discrete Fourier transform, and thus of discovering spectral represen-
tations. Arjovsky et al. (2015) show the potential of this type of recurrent neural networks on toy
tasks. Wisdom et al. (2016) provided a more general framework for learning unitary matrices and
they applied their method on toy tasks and on a real-world speech task.

Using complex weights in neural networks also has biological motivation. Reichert and Serre (2013)
have proposed a biologically plausible deep network that allows one to construct richer and more
versatile representations using complex-valued neuronal units. The complex-valued formulation al-
lows one to express the neuron’s output in terms of its firing rate and the relative timing of its activity.
The amplitude of the complex neuron represents the former and its phase the latter. Input neurons
that have similar phases are called synchronous as they add constructively, whereas asynchronous
neurons add destructively and thus interfere with each other. This is related to the gating mecha-
nism used in both deep feed-forward neural networks (Srivastava et al., 2015; van den Oord et al.,
2016a;b) and recurrent neural networks (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Zilly
et al., 2016) as this mechanism learns to synchronize inputs that the network propagates at a given
feed-forward layer or time step. In the context of deep gating-based networks, synchronization
means the propagation of inputs whose controlling gates simultaneously hold high values. These
controlling gates are usually the activations of a sigmoid function. This ability to take into account
phase information might explain the effectiveness of incorporating complex-valued representations
in the context of recurrent neural networks.

The phase component is not only important from a biological point of view but also from a signal
processing perspective. It has been shown that the phase information in speech signals affects their
intelligibility (Shi et al., 2006). Also Oppenheim and Lim (1981) show that the amount of informa-
tion present in the phase of an image is sufficient to recover the majority of the information encoded
in its magnitude. In fact, phase provides a detailed description of objects as it encodes shapes, edges,
and orientations.

Recently, Rippel et al. (2015) leveraged the Fourier spectral representation for convolutional neu-
ral networks, providing a technique for parameterizing convolution kernel weights in the spectral
domain, and performing pooling on the spectral representation of the signal. However, the authors
avoid performing complex-valued convolutions, instead building from real-valued kernels in the
spatial domain. In order to ensure that a complex parametrization in the spectral domain maps onto
real-valued kernels, the authors impose a conjugate symmetry constraint on the spectral-domain
weights, such that when the inverse Fourier transform is applied to them, it only yields real-valued
kernels.

As pointed out in Reichert and Serre (2013), the use of complex-valued neural networks (Georgiou
and Koutsougeras, 1992; Zemel et al., 1995; Kim and Adalı, 2003; Hirose, 2003; Nitta, 2004) has
been investigated long before the earliest deep learning breakthroughs (Hinton et al., 2006; Bengio
et al., 2007; Poultney et al., 2007). Recently Reichert and Serre (2013); Bruna et al. (2015); Arjovsky
et al. (2015); Danihelka et al. (2016); Wisdom et al. (2016) have tried to bring more attention to the
usefulness of deep complex neural networks by providing theoretical and mathematical motivation
for using complex-valued deep networks. However, to the best of our knowledge, most of the recent
works using complex valued networks have been applied on toy tasks, with the exception of some
attempts. In fact, (Oyallon and Mallat, 2015; Tygert et al., 2015; Worrall et al., 2016) have used
complex representation in vision tasks. Wisdom et al. (2016) have also performed a real-world
speech task consisting of predicting the log magnitude of the future short time Fourier transform
frames. In Natural Language Processing, (Trouillon et al., 2016; Trouillon and Nickel, 2017) have
used complex-valued embeddings. Much remains to be done to develop proper tools and a general
framework for training deep neural networks with complex-valued parameters.
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Given the compelling reasons for using complex-valued representations, the absence of such frame-
works represents a gap in machine learning tooling, which we fill by providing a set of building
blocks for deep complex-valued neural networks that enable them to achieve competitive results
with their real-valued counterparts on real-world tasks.

3 COMPLEX BUILDING BLOCKS

In this section, we present the core of our work, laying down the mathematical framework for im-
plementing complex-valued building blocks of a deep neural network.

3.1 REPRESENTATION OF COMPLEX NUMBERS

We start by outlining the way in which complex numbers are represented in our framework. A
complex number z = a + ib has a real component a and an imaginary component b. We represent
the real part a and the imaginary part b of a complex number as logically distinct real valued entities
and simulate complex arithmetic using real-valued arithmetic internally. Consider a typical real-
valued 2D convolution layer that has N feature maps such that N is divisible by 2; to represent
these as complex numbers, we allocate the first N/2 feature maps to represent the real components
and the remaining N/2 to represent the imaginary ones. Thus, for a four dimensional weight tensor
W that links Nin input feature maps to Nout output feature maps and whose kernel size is m ×m
we would have a weight tensor of size (Nout ×Nin ×m×m) /2 complex weights.

3.2 COMPLEX CONVOLUTION

In order to perform the equivalent of a traditional real-valued 2D convolution in the complex domain,
we convolve a complex filter matrix W = A + iB by a complex vector h = x + iy where A and
B are real matrices and x and y are real vectors since we are simulating complex arithmetic using
real-valued entities. As the convolution operator is distributive, convolving the vector h by the filter
W we obtain:

W ∗ h = (A ∗ x−B ∗ y) + i (B ∗ x + A ∗ y). (1)

As illustrated in Figure 1a, if we use matrix notation to represent real and imaginary parts of the
convolution operation we have: [

<(W ∗ h)
=(W ∗ h)

]
=

[
A −B
B A

]
∗
[
x
y

]
. (2)

3.3 COMPLEX DIFFERENTIABILITY

In order to perform backpropagation in a complex-valued neural network, a sufficient condition is
to have a cost function and activations that are differentiable with respect to the real and imaginary
parts of each complex parameter in the network. See Section 6.3 in the Appendix for the complex
chain rule.

By constraining activation functions to be complex differentiable or holomorphic, we restrict the
use of possible activation functions for a complex valued neural networks (For further details about
holomorphism please refer to Section 6.2 in the appendix). Hirose and Yoshida (2012) shows that it
is unnecessarily restrictive to limit oneself only to holomorphic activation functions; Those functions
that are differentiable with respect to the real part and the imaginary part of each parameter are also
compatible with backpropagation. (Arjovsky et al., 2015; Wisdom et al., 2016; Danihelka et al.,
2016) have used non-holomorphic activation functions and optimized the network using regular,
real-valued backpropagation to compute partial derivatives of the cost with respect to the real and
imaginary parts.

Even though their use greatly restricts the set of potential activations, it is worth mentioning that
holomorphic functions can be leveraged for computational efficiency purposes. As pointed out in
Sarroff et al. (2015), using holomorphic functions allows one to share gradient values (because
the activation satisfies the Cauchy-Riemann equations 11 and 12 in the appendix). So, instead of
computing and backpropagating 4 different gradients, only 2 are required.
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3.4 COMPLEX-VALUED ACTIVATIONS

3.4.1 MODRELU

Numerous activation functions have been proposed in the literature in order to deal with complex-
valued representations. (Arjovsky et al., 2015) have proposed modReLU, which is defined as fol-
lows:

modReLU(z) = ReLU(|z|+ b) eiθz =

{
(|z|+ b) z

|z| if |z|+ b ≥ 0,

0 otherwise,
(3)

where z ∈ C, θz is the phase of z, and b ∈ R is a learnable parameter. As |z| is always positive,
a bias b is introduced in order to create a “dead zone” of radius b around the origin 0 where the
neuron is inactive, and outside of which it is active. The authors have used modReLU in the con-
text of unitary RNNs. Their design of modReLU is motivated by the fact that applying separate
ReLUs on both real and imaginary parts of a neuron performs poorly on toy tasks. The intuition
behind the design of modReLU is to preserve the pre-activated phase θz , as altering it with an ac-
tivation function severely impacts the complex-valued representation. modReLU does not satisfy
the Cauchy-Riemann equations, and thus is not holomorphic. We have tested modReLU in deep
feed-forward complex networks and the results are given in Table 6.4.

3.4.2 CRELU AND zRELU

We call Complex ReLU (or CReLU) the complex activation that applies separate ReLUs on both of
the real and the imaginary part of a neuron, i.e:

CReLU(z) = ReLU(<(z)) + iReLU(=(z)). (4)

CReLU satisfies the Cauchy-Riemann equations when both the real and imaginary parts are at the
same time either strictly positive or strictly negative. This means that CReLU satisfies the Cauchy-
Riemann equations when θz ∈ ]0, π/2[ or θz ∈ ]π, 3π/2[. We have tested CReLU in deep feed-
forward neural networks and the results are given in Table 6.4.

It is also worthwhile to mention the work done by Guberman (2016) where a ReLU-based complex
activation which satisfies the Cauchy-Riemann equations everywhere except for the set of points
{<(z) > 0,=(z) = 0}∪ {<(z) = 0,=(z) > 0} ias used. The activation function has similarities to
CReLU. We call Guberman (2016) activation as zReLU and is defined as follows:

zReLU(z) =

{
z if θz ∈ [0, π/2],

0 otherwise,
(5)

We have tested zReLU in deep feed-forward complex networks and the results are given in Table
6.4.

3.5 COMPLEX BATCH NORMALIZATION

Deep networks generally rely upon Batch Normalization (Ioffe and Szegedy, 2015) to accelerate
learning. In some cases batch normalization is essential to optimize the model. The standard for-
mulation of Batch Normalization applies only to real values. In this section, we propose a batch
normalization formulation that can be applied for complex values.

To standardize an array of complex numbers to the standard normal complex distribution, it is not
sufficient to translate and scale them such that their mean is 0 and their variance 1. This type of
normalization does not ensure equal variance in both the real and imaginary components, and the
resulting distribution is not guaranteed to be circular; It will be elliptical, potentially with high
eccentricity.

We instead choose to treat this problem as one of whitening 2D vectors, which implies scaling the
data by the square root of their variances along each of the two principal components. This can be
done by multiplying the 0-centered data (x− E[x]) by the inverse square root of the 2×2 covariance
matrix V :

x̃ = (V )−
1
2 (x− E[x]) ,
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where the covariance matrix V is

V =

(
Vrr Vri
Vir Vii

)
=

(
Cov(<{x},<{x}) Cov(<{x},={x})
Cov(={x},<{x}) Cov(={x},={x})

)
.

The square root and inverse of 2×2 matrices has an inexpensive, analytical solution, and its existence
is guaranteed by the positive (semi-)definiteness of V . Positive definiteness of V is ensured by the
addition of εI to V (Tikhonov regularization). The mean subtraction and multiplication by the
inverse square root of the variance ensures that x̃ has standard complex distribution with mean
µ = 0, covariance Γ = 1 and pseudo-covariance (also called relation) C = 0. The mean, the
covariance and the pseudo-covariance are given by:

µ = E [x̃]

Γ = E [(x̃− µ) (x̃− µ)∗] = Vrr + Vii + i (Vir − Vri)
C = E [(x̃− µ) (x̃− µ)] = Vrr − Vii + i (Vir + Vri).

(6)

The normalization procedure allows one to decorrelate the imaginary and real parts of a unit. This
has the advantage of avoiding co-adaptation between the two components which reduces the risk of
overfitting (Cogswell et al., 2015; Srivastava et al., 2014).

Analogously to the real-valued batch normalization algorithm, we use two parameters, β and γ. The
shift parameter β is a complex parameter with two learnable components (the real and imaginary
means). The scaling parameter γ is a 2× 2 positive semi-definite matrix with only three degrees of
freedom, and thus only three learnable components. In much the same way that the matrix (V )−

1
2

normalized the variance of the input to 1 along both of its original principal components, so does γ
scale the input along desired new principal components to achieve a desired variance. The scaling
parameter γ is given by:

γ =

(
γrr γri
γri γii

)
.

As the normalized input x̃ has real and imaginary variance 1, we initialize both γrr and γii to 1/
√

2
in order to obtain a modulus of 1 for the variance of the normalized value. γri, <{β} and ={β} are
initialized to 0. The complex batch normalization is defined as:

BN (x̃) = γ x̃+ β. (7)

We use running averages with momentum to maintain an estimate of the complex batch normaliza-
tion statistics during training and testing. The moving averages of Vri and β are initialized to 0. The
moving averages of Vrr and Vii are initialized to 1/

√
2. The momentum for the moving averages is

set to 0.9.

3.6 COMPLEX WEIGHT INITIALIZATION

In a general case, particularly when batch normalization is not performed, proper initialization is
critical in reducing the risks of vanishing or exploding gradients. To do this, we follow the same
steps as in Glorot and Bengio (2010) and He et al. (2015b) to derive the variance of the complex
weight parameters.

A complex weight has a polar form as well as a rectangular form

W = |W |eiθ = <{W}+ i ={W}, (8)

where θ and |W | are respectively the argument (phase) and magnitude of W .

Variance is the difference between the expectation of the squared magnitude and the square of the
expectation:

Var(W ) = E [WW ∗]− (E [W ])2 = E
[
|W |2

]
− (E [W ])2,

which reduces, in the case of W symmetrically distributed around 0, to E
[
|W |2

]
. We do not know

yet the value of Var(W ) = E
[
|W |2

]
. However, we do know a related quantity, Var(|W |), because

the magnitude of complex normal values, |W |, follows the Rayleigh distribution (Chi-distributed
with two degrees of freedom (DOFs)). This quantity is

Var(|W |) = E [|W ||W |∗]− (E [|W |])2 = E
[
|W |2

]
− (E [|W |])2. (9)
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Putting them together:
Var(|W |) = Var(W )− (E [|W |])2, and Var(W ) = Var(|W |) + (E [|W |])2.

We now have a formulation for the variance of W in terms of the variance and expectation of its
magnitude, both properties analytically computable from the Rayleigh distribution’s single parame-
ter, σ, indicating the mode. These are:

E [|W |] = σ

√
π

2
, Var(|W |) =

4− π
2

σ2.

The variance of W can thus be expressed in terms of its generating Rayleigh distribution’s single
parameter, σ, thus:

Var(W ) =
4− π

2
σ2 +

(
σ

√
π

2

)2

= 2σ2. (10)

If we want to respect the Glorot and Bengio (2010) criterion which ensures that the variances of
the input, the output and their gradients are the same, then we would have Var(W ) = 2/(nin +
nout), where nin and nout are the number of input and output units respectively. In such case,
σ = 1/

√
nin + nout. If we want to respect the He et al. (2015b) initialization that presents an

initialization criterion that is specific to ReLUs, then Var(W ) = 2/nin which σ = 1/
√
nin.

The magnitude of the complex parameter W is then initialized using the Rayleigh distribution with
the appropriate mode σ. We can see from equation 10, that the variance of W depends on on
its magnitude and not on its phase. We then initialize the phase using the uniform distribution
between −π and π. By performing the multiplication of the magnitude by the phasor as is detailed
in equation 8, we perform the complete initialization of the complex parameter.

In all the experiments that we report, we use variant of this initialization which leverages the in-
dependence property of unitary matrices. As it is stated in Cogswell et al. (2015), Srivastava et al.
(2014), and Tompson et al. (2015), learning decorrelated features is beneficial for learning as it al-
lows to perform better generalization and faster learning. This motivates us to achieve initialization
by considering a (semi-)unitary matrix which is reshaped to the size of the weight tensor. Once
this is done, the weight tensor is mutiplied by

√
Hevar/Var(W ) or

√
Glorotvar/Var(W ) where

Glorotvar and Hevar are respectively equal to 2/(nin + nout) and 2/nin. In such a way we allow
kernels to be independent from each other as much as possible while respecting the desired criterion.
Note that we perform the analogous initialization for real-valued models by leveraging the indepen-
dence property of orthogonal matrices in order to build kernels that are as much independent from
each other as possible while respecting a given criterion.

3.7 COMPLEX CONVOLUTIONAL RESIDUAL NETWORK

A deep convolutional residual network of the nature presented in He et al. (2015a; 2016) consists
of 3 stages within which feature maps maintain the same shape. At the end of a stage, the feature
maps are downsampled by a factor of 2 and the number of convolution filters are doubled. The sizes
of the convolution kernels are always set to 3 x 3. Within a stage, there are several residual blocks
which comprise 2 convolution layers each. The contents of one such residual block in the real and
complex setting is illustrated in Appendix Figure 1b.

In the complex valued setting, the majority of the architecture remains identical to the one presented
in He et al. (2016) with a few subtle differences. Since all datasets that we work with have real-
valued inputs, we present a way to learn their imaginary components to let the rest of the network
operate in the complex plane. We learn the initial imaginary component of our input by performing
the operations present within a single real-valued residual block

BN → ReLU → Conv → BN → ReLU → Conv

Using this learning block yielded better emprical results than assuming that the input image has a
null imaginary part. The parameters of this real-valued residual block are trained by backpropagating
errors from the task specific loss function. Secondly, we perform a Conv → BN → Activation
operation on the obtained complex input before feeding it to the first residual block. We also perform
the same operation on the real-valued network input instead of Conv → Maxpooling as in He
et al. (2016). Inside, residual blocks, we subtly alter the way in which we perform a projection at
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Table 1: Classification error on CIFAR-10, CIFAR-100 and SVHN∗ using different complex activa-
tions functions (zReLU, modReLU and CReLU). WS, DN and IB stand for the wide and shallow,
deep and narrow and in-between models respectively. The prefixes R & C refer to the real and
complex valued networks respectively. Performance differences between the real network and the
complex network using CReLU are reported between their respective best models. All models are
constructed to have roughly 1.7M parameters except the modReLU models which have roughly
2.5M parameters. modReLU and zReLU were largely outperformed by CReLU in the reported ex-
periments. Due to limited resources, we haven’t performed all possible experiments as the conducted
ones are already conclusive. A "-" is filled in front of an unperformed experiment.

ARCH CIFAR-10 CIFAR-100 SVHN∗

zRELU MODRELU CRELU zRELU MODRELU CRELU zRELU MODRELU CRELU

CWS 11.71 23.42 6.17 - 50.38 26.36 80.41 7.43 3.70
CDN 9.50 22.49 6.73 - 50.64 28.22 80.41 - 3.72
CIB 11.36 23.63 5.59 - 48.10 28.64 4.98 - 3.62

RELU RELU RELU

RWS 5.42 27.22 3.42
RDN 6.29 27.84 3.52
RIB 6.07 27.71 4.30

DIFF -0.17 +0.86 -0.20

Table 2: Classification error on CIFAR-10, CIFAR-100 and SVHN∗ using different normalization
strategies. NCBN, CBN and BN stand for a Naive variant of the complex batch-normalization, com-
plex batch-normalization and regular batch normalization respectively. (R) & (C) refer to the use of
the real- and complex-valued convolution respectively. The complex models use CReLU as activa-
tion. All models are constructed to have roughly 1.7M parameters. 5 out of 6 experiments using the
naive variant of the complex batch normalization failed with the apparition of NaNs during training.
As these experiments are already conclusive and due to limited resources, we haven’t conducted
other experiments for the NCBN model. A "-" is filled in front of an unperformed experiment.

ARCH CIFAR-10 CIFAR-100 SVHN∗

NCBN(C) CBN(R) BN(C) NCBN(C) CBN(R) BN(C) NCBN(C) CBN(R) BN(C)

WS - 5.47 6.32 27.29 26.63 27.89 NAN 3.80 3.52
DN - 5.89 6.71 NAN 27.13 28.83 NAN 3.54 3.58
IB - 5.66 6.83 NAN 26.99 29.89 NAN 3.74 3.56

the end of a stage in our network. We concatenate the output of the last residual block with the
output of a 1x1 convolution applied on it with the same number of filters used throughout the stage
and subsample by a factor of 2. In contrast, He et al. (2016) perform a similar 1x1 convolution with
twice the number of feature filters in the current stage to both downsample the feature maps spatially
and double them in number.

4 EXPERIMENTAL RESULTS

In this section, we present empirical results from using our model to perform image, music classi-
fication and spectrum prediction. First, we present our model’s architecture followed by the results
we obtained on CIFAR-10, CIFAR-100, and SVHN∗ as well as the results on automatic music tran-
scription on the MusicNet benchmark and speech spectrum prediction on TIMIT.

4.1 IMAGE RECOGNITION

We adopt an architecture inspired by He et al. (2016). The latter will also serve as a baseline
to compare against. We train comparable real-valued Neural Networks using the standard ReLU
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activation function. We have tested our complex models with the CReLU, zReLU and modRelu
activation functions. We use a cross entropy loss for both real and complex models. A global
average pooling layer followed by a single fully connected layer with a softmax function is used to
classify the input as belonging to one of 10 classes in the CIFAR-10 and SVHN datasets and 100
classes for CIFAR-100.

We consider architectures that trade-off model depth (number of residual blocks per stage) and width
(number of convolutional filters in each layer) given a fixed parameter budget. Specifically, we build
three different models - wide and shallow (WS), deep and narrow (DN) and in-between (IB). In a
model that has roughly 1.7 million parameters, our WS architecture for a complex network starts
with 12 complex filters (24 real filters) per convolution layer in the initial stage and 16 residual
blocks per stage. The DN architecture starts with 10 complex filters and 23 blocks per stage while
the IB variant starts with 11 complex filters and 19 blocks per stage. The real-valued counterpart
has also 1.7 million parameters. Its WS architecture starts with 18 real filters per convolutional layer
and 14 blocks per stage. The DN architecture starts with 14 real filters and 23 blocks per stage and
the IB architecture starts with 16 real filters and 18 blocks per stage.

All models (real and complex) were trained using the backpropagation algorithm with Stochastic
Gradient Descent with Nesterov momentum (Nesterov, 1983) set at 0.9. We also clip the norm of
our gradients to 1. We tweaked the learning rate schedule used in He et al. (2016) in both the real
and complex residual networks to extract small performance improvements in both. We start our
learning rate at 0.01 for the first 10 epochs to warm up the training and then set it at 0.1 from epoch
10-100 and then anneal the learning rates by a factor of 10 at epochs 120 and 150. We end the
training at epoch 200.

Table 6.4 presents our results on performing image classification on CIFAR-10, CIFAR-100. In addi-
tion, we also consider a truncated version of the Street View House Numbers (SVHN) dataset which
we call SVHN*. For computational reasons, we use the required 73,257 training images of Street
View House Numbers (SVHN). We still test on all 26,032 images. For all the tasks and for both the
real- and complex-valued models, The WS architecture has yielded the best performances. This is in
concordance with Zagoruyko and Komodakis (2016) who observed that wider and shallower resid-
ual networks perform better than their deeper and narrower counterpart. On CIFAR-10 and SVHN∗,
the real-valued representation performs slightly better than its complex counterpart. On CIFAR-
100, the complex representation outperforms the real one. In general, the obtained results for both
representation are quite comparable. To understand the effect of using either real or complex repre-
sentation for a given task, we designed hybrid models that combine both. Table 2 contains the results
for hybrid models. We can observe in the Table 2 that in cases where complex representation outper-
formed the real one (wide and shallow on CIFAR-100), combining a real-valued convolutional filter
with a complex batch normalization improves the accuracy of the real-valued convolutional model.
However, the complex-valued one is still outperforming it. In cases, where real-valued represen-
tation outperformed the complex one (wide and shallow on CIFAR-10 and SVHN∗), replacing a
complex batch normalization by a regular one increased the accuracy of the complex convolutional
model. Despite that replacement, the real-valued model performs better in terms of accuracy for
such tasks. In general, these experiments show that the difference in efficiency between the real and
complex models varies according to the dataset, to the task and to the architecture.

Ablation studies were performed in order to investigate the importance of the 2D whitening opera-
tion that occurs in the complex batch normalization. We replaced the complex batch normalization
layers with a naive variant (NCBN) which, instead of left multiplying the centred unit by the inverse
square root of its covariance matrix, just divides it by its complex variance. Here, this naive variant
of CBN is Mimicking the regular BN by not taking into account correlation between the elements in
the complex unit. The Naive variant of the Complex Batch Normalization performed very poorly;
In 5 out of 6 experiments, training failed with the appearance of NaNs (See Section 6.6 for the ex-
planation). By way of contrast, all 6 complex-valued Batch Normalization experiments converged.
Results are given in Table 2.

Another ablation study was undertaken to compare CReLU, modReLU and zRELU. Again the
differences were stark: All CReLU experiments converged and outperformed both modReLU and
zReLU, both which variously failed to converge or fared substantially worse. We think that modRelu
didn’t perform as well as CReLU due to the fact that consecutive layers in a feed-forward net do not
represent time-sequential patterns, and so, they might need to drop some phase information. Results
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Table 3: MusicNet experiments. FS is the sampling rate. Params is the total number of parameters.
We report the average precision (AP) metric that is the area under the precision-recall curve.

ARCHITECTURE FS PARAMS AP, %

SHALLOW, REAL 11KHZ 66.1
SHALLOW, COMPLEX 11KHZ 66.0
SHALLOW, THICKSTUN ET AL. (2016) 44.1KHZ - 67.8

DEEP, REAL 11KHZ 10.0M 69.6
DEEP, COMPLEX 11KHZ 8.8M 72.9

are reported in Table 6.4. More discussion about phase information encoding is presented in section
6.7.

4.2 AUTOMATIC MUSIC TRANSCRIPTION

In this section we present results for the automatic music transcription (AMT) task. The nature
of an audio signal allows one to exploit complex operations as presented earlier in the paper. The
experiments were performed on the MusicNet dataset (Thickstun et al., 2016). For computational
efficiency we resampled the original input from 44.1kHz to 11kHz using the algorithm described in
Smith (2002). This sampling rate is sufficient to recognize frequencies presented in the dataset while
reducing computational cost dramatically. We modeled each of the 84 notes that are present in the
dataset with independent sigmoids (due to the fact that notes can fire simultaneously). We initialized
the bias of the last layer to the value of -5 to reflect the distribution of silent/non-silent notes. As in
the baseline, we performed experiments on the raw signal and the frequency spectrum. For complex
experiments with the raw signal, we considered its imaginary part equal to zero. When using the
spectrum input we used its complex representation (instead of only the magnitudes, as usual for
AMT) for both real and complex models. For the real model, we considered the real and imaginary
components of the spectrum as separate channels. The model we used for raw signals is a shallow
convolutional network similar to the model used in the baseline, with the size reduced by a factor
of 4 (corresponding to the reduction of the sampling rate). The filter size was 512 samples (about
12ms) with a stride of 16. The model for the spectral input is similar to the VGG model (Simonyan
and Zisserman, 2015). The first layer has filter with size of 7 and is followed by 5 convolutional
layers with filters of size 3. The final convolution block is followed by a fully connected layer with
2048 units. The latter is followed, in its turn, by another fully connected layer with 84 sigmoidal
units. In all of our experiments we use an input window of 4096 samples or its corresponding FFT
(which corresponds to the 16,384 window used in the baseline) and predicted notes in the center of
the window. All networks were optimized with Adam. We start our learning rate at 10−3 for the
first 10 epochs and then anneal it by a factor of 10 at each of the epochs 100, 120 and 150. We end
the training at epoch 200. For the real-valued models, we have used ReLU as activation. CReLU
has been used as activation for the complex-valued models.

The complex network was initialized using the unitary initialization scheme respecting the He cri-
terion as described in Section 3.6. For the real-valued network, we have used the analogue initial-
ization of the weight tensor. It consists of performing an orthogonal initialization with a gain of√

2. The complex batch normalization was applied according to Section 3.5. Following Thickstun
et al. (2016) we used recordings with ids ’2303’, ’2382’, ’1819’ as the test subset and additionally
we created a validation subset using recording ids ’2131’, ’2384’, ’1792’, ’2514’, ’2567’, ’1876’
(randomly chosen from the training set). The validation subset was used for model selection and
early stopping. The remaining 321 files were used for training. The results are summarized on Ta-
ble 3. We achieve a performance comparable to the baseline with the shallow convolutional network.
our VGG-based deep real-valued model reaches 69.6% average precision on the downsampled data.
With significantly fewer parameters than its real counterpart, the VGG-based deep complex model,
achieves 72.9% average precision which is the state of the art to the best of our knowledge. See
Figures 2 and 3 in the Appendix for precision-recall curves and a sample of the output of the model.
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Table 4: Speech Spectrum Prediction on TIMIT test set. CConv-LSTM denotes the Complex Con-
volutional LSTM.

MODEL #PARAMS MSE(VALIDATION) MSE(TEST)

LSTM WISDOM ET AL. (2016) ≈ 135K 16.59 16.98
FULL-CAPACITY URNN WISDOM ET AL. (2016) ≈ 135K 14.56 14.66
CONV-LSTM (OUR BASELINE) ≈ 88K 11.10 12.18
CCONV-LSTM (OURS) ≈ 88K 10.78 11.90

4.3 SPEECH SPECTRUM PREDICTION

We apply both a real Convolutional LSTM Xingjian et al. (2015) and a complex Convolutional
LSTM on speech spectrum prediction task (See section 6.5 in the Appendix for the details of the
real and complex Convolutional LSTMs). In this task, the model predicts the magnitude spectrum.
It implicitly infers the real and imaginary components of the spectrum at time t + 1, given all the
spectrum (imaginary part and real components) up to time t. This is slightly different from (Wisdom
et al., 2016). The real and imaginary components are considered as separate channels in both model.
We evaluate the model with mean-square-error (MSE) on log-magnitude to compare with the others
Wisdom et al. (2016). The experiments are conducted on a downsampled (8kHz) version of the
TIMIT dataset. By following the steps in Wisdom et al. (2016), raw audio waves are transformed
into frequency domain via short-time Fourier transform (STFT) with a Hann analysis window of
256 samples and a window hop of 128 samples (50% overlap). We use a training set with 3690
utterances, a validation set with 400 utterances and a standard test set with 192 utterance.

To match the number of parameters for both model, the Convolutional LSTM has 84 feature maps
while the complex model has 60 complex feature maps (120 feature maps in total). Adam Kingma
and Ba (2014) with a fixed learning rate of 1e-4 is used in both experiments. We initialize the com-
plex model with the unitary initialization scheme and the real model with orthogonal initialization
respecting the Glorot criterion. The result is shown in Table 4 and the learning curve is shown in
Figure 4. Our baseline model has achieved the state of the art and the complex convolutional LSTM
model performs better over the baseline in terms of MSE and convergence.

5 CONCLUSIONS

We have presented key building blocks required to train complex valued neural networks, such as
complex batch normalization and complex weight initialization. We have also explored a wide
variety of complex convolutional network architectures, including some yielding competitive results
for image classification and state of the art results for a music transcription task and speech spectrum
prediction. We hope that our work will stimulate further investigation of complex valued networks
for deep learning models and their application to more challenging tasks such as generative models
for audio and images.
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6 APPENDIX

In practice, the complex convolution operation is implemented as illustrated in Fig.1a where MI , MR refer to
imaginary and real feature maps and KI and KR refer to imaginary and real kernels. MIKI refers to result of
a real-valued convolution between the imaginary kernels KI and the imaginary feature maps MI .

(a) An illustration of the complex convolution operator.
(b) A complex convolutional residual network (left) and
an equivalent real-valued residual network (right).

Figure 1: Complex convolution and residual network implementation details.

6.1 MUSICNET ILLUSTRATIONS

Figure 2: Precision-recall curve

15



Published as a conference paper at ICLR 2018

Figure 3: Predictions (Top) vs. ground truth (Bottom) for a music segment from the test set.

6.2 HOLOMORPHISM AND CAUCHY–RIEMANN EQUATIONS

Holomorphism, also called analyticity, ensures that a complex-valued function is complex differen-
tiable in the neighborhood of every point in its domain. This means that the derivative, f ′(z0) ≡
lim∆z→0[ (f(z0)+∆z)−f(z0)

∆z
] of f , exists at every point z0 in the domain of f where f is a complex-valued

function of a complex variable z = x + i y such that f(z) = u(x, y) + i v(x, y). u and v are real-valued
functions. One possible way of expressing ∆z is to have ∆z = ∆x+ i∆y. ∆z can approach 0 from multiple
directions (along the real axis, imaginary axis or in-between). However, in order to be complex differentiable,
f ′(z0) must be the same complex quantity regardless of direction of approach. When ∆z approaches 0 along
the real axis, f ′(z0) could be written as:

f ′(z0) ≡ lim
∆z→0

[
(f(z0) + ∆z)− f(z0)

∆z

]
= lim

∆x→0
lim

∆y→0

[
∆u(x0, y0) + i∆v(x0, y0)

∆x+ i∆y

]
= lim

∆x→0

[
∆u(x0, y0) + i∆v(x0, y0)

∆x+ i 0

]
.

(11)

When ∆z approaches 0 along the imaginary axis, f ′(z0) could be written as:

= lim
∆y→0

lim
∆x→0

[
∆u(x0, y0) + i∆v(x0, y0)

∆x+ i∆y

]
= lim

∆y→0

[
∆u(x0, y0) + i∆v(x0, y0)

0 + i∆y

] (12)

Satisfying equations 11 and 12 is equivalent of having ∂f
∂z

= ∂u
∂x

+ i ∂v
∂x

= −i ∂u
∂y

+ ∂v
∂y

. So, in order to be
complex differentiable, f should satisfy ∂u

∂x
= ∂v

∂y
and ∂u

∂y
= − ∂v

∂x
. These are called the Cauchy–Riemann

equations and they give a necessary condition for f to be complex differentiable or "holomorphic". Given that
u and v have continuous first partial derivatives, the Cauchy-Riemann equations become a sufficient condition
for f to be holomorphic.
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6.3 THE GENRALIZED COMPLEX CHAIN RULE FOR A REAL-VALUED LOSS FUNCTION

If L is a real-valued loss function and z is a complex variable such that z = x+ i y where x, y ∈ R, then:

∇L(z) =
∂L

∂z
=
∂L

∂x
+ i

∂L

∂y
=

∂L

∂<(z)
+ i

∂L

∂=(z)
= <(∇L(z)) + i= (∇L(z)). (13)

Now if we have another complex variable t = r + i s where z could be expressed in terms of t and r, s ∈ R,
we would then have:

∇L(t) =
∂L

∂t
=
∂L

∂r
+ i

∂L

∂s

=
∂L

∂x

∂x

∂r
+
∂L

∂y

∂y

∂r
+ i

(
∂L

∂x

∂x

∂s
+
∂L

∂y

∂y

∂s

)
=
∂L

∂x

(
∂x

∂r
+ i

∂x

∂s

)
+
∂L

∂y

(
∂y

∂r
+ i

∂y

∂s

)
=

∂L

∂<(z)

(
∂x

∂r
+ i

∂x

∂s

)
+

∂L

∂=(z)

(
∂y

∂r
+ i

∂y

∂s

)
= <(∇L(z))

(
∂x

∂r
+ i

∂x

∂s

)
+ =(∇L(z))

(
∂y

∂r
+ i

∂y

∂s

)
.

(14)

6.4 COMPUTATIONAL COMPLEXITY AND FLOPS

In terms of computational complexity, the convolutional operation and the complex batchnorm are of the same
order as their real counterparts. However, as a complex multiplication is 4 times more expensive than its real
counterpart, all complex convolutions are 4 times more expensive as well.

Additionally, the complex BatchNorm is not implemented in cuDNN and therefore had to be simulated with a
sizeable sequence of elementwise operations. This leads to a ballooning of the number of nodes in the compute
graph and to inefficiencies due to lack of effective operation fusion. A dedicated cuDNN kernel will, however,
reduce the cost to little more than that of the real-valued BatchNorm.

Ignoring elementwise operations, which constitute a negligible fraction of the floating-point operations in the
neural network, we find that for all architectures in and for all of CIFAR10, CIFAR100 or SVHN, the inference
cost in real FLOPS per example is roughly identical. It is∼ 265 MFLOPS for the R-valued variant and∼ 1030
MFLOPS for the C-valued variant of the architecture, approximately quadruple.

6.5 CONVOLUTIONAL LSTM

A Convolutional LSTM is similar to a fully connected LSTM. The only difference is that, instead of using
matrix multiplications to perform computation, we use convolutional operations. The computation in a real-
valued Convolutional LSTM is defined as follows:

it = σ(Wxi ∗ xt + Whi ∗Wt−1 + bi)

f t = σ(Wxf ∗ xt + Whf ∗ ht−1 + bf )

ct = f t ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + bo)

ht = ot ◦ tanh(ct)

(15)

Where σ denotes the sigmoidal activation function, ◦ the elementwise multiplication and ∗ the real-valued
convolution. it, f t, ot represent the vector notation of the input, forget and output gates respectively. ct and
ht represent the vector notation of the cell and hidden states respectively. the gates and states in a ConvLSTM
are tensors whose last two dimensions are spatial dimensions. For each of the gates, Wxgate and Whgate are
respectively the input and hidden kernels.

For the Complex Convolutional LSTM, we just replace the real-valued convolutional operation by its complex
counterpart. We maintain the real-valued elementwise multiplication. The sigmoid and tanh are both performed
separately on the real and the imaginary parts.
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Figure 4: Learning curve for speech spectrum prediction from dev set.

6.6 COMPLEX STANDARDIZATION AND INTERNAL COVARIATE SHIFT

Figure 5: Depiction of Complex Standardization in Deep Complex Networks. At left, Naive Com-
plex Standardization (division by complex standard deviation); At right, Complex Standardization
(left-multiplication by inverse square root of covariance matrix between < and =). The 250 input
complex scalars are at the bottom, with <(v) plotted on x (red axis) and =(v) plotted on y (green
axis). Deeper representations correspond to greater z (blue axis). The gray ellipse encloses the input
scalars within 1 standard deviation of the mean. Red ellipses enclose all scalars within 1 standard
deviation of the mean after “standardization”. Blue ellipses enclose all scalars within 1 standard
deviation of the mean after left-multiplying all the scalars by a random 2 × 2 linear transformation
matrix. With the naive standardization, the distribution becomes progressively more elliptical with
every layer, eventually collapsing to a line. This ill-conditioning manifests itself as NaNs in the
forward pass or backward pass. With the complex standardization, the points’ distribution is always
successfully re-circularized.
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6.7 PHASE INFORMATION ENCODING

(a) CReLU (b) zReLU

(c) modReLU

Figure 6: Phase information encoding for each of the activation functions tested for the Deep Com-
plex Network. The x-axis represents the real part and the y-axis axis represents the imaginary part;
The bottom figure corresponds to the case where b < 0 for modReLU. The radius of the white circle
is equal to |b|. In case where b ≥ 0, the whole complex plane would be preserving both phase
and magnitude information and the whole plane would have been colored with orange. Different
colors represents different encoding of the complex information in the plane. We can see the for
both zReLU and modReLU, the complex representation is discriminated into two regions, i.e, the
one that preserves the whole complex information (colored in orange) and the one that cancels it
(colored in white). However, CReLU discriminates the complex information into 4 regions where in
two of which, phase information is projected and not canceled. This allows CReLU to discriminate
information easier with respect to phase information than the other activation functions. For both
zReLU and modReLU, we can see that phase information may be preserved explicitly through a
number of layers when these activation functions are operating in their linear regime, prior to a layer
further up in a network where the phase of an input lies in a zero region. CReLU has more flexibility
manipulating phase as it can either set it to zero or π/2, or even delete the phase information (when
both real and imaginary parts are canceled) at a given level of depth in the network.

19


	Introduction
	Motivation and Related Work
	Complex Building Blocks
	Representation of Complex Numbers
	Complex Convolution
	Complex Differentiability
	Complex-Valued Activations
	ModReLU
	CReLU and zReLU

	Complex Batch Normalization
	Complex Weight Initialization
	Complex Convolutional Residual Network

	Experimental Results
	Image Recognition
	Automatic Music Transcription
	Speech Spectrum Prediction

	Conclusions
	Appendix
	MusicNet illustrations
	Holomorphism and Cauchy–Riemann Equations
	The Genralized Complex Chain Rule for a Real-Valued Loss Function
	Computational Complexity and FLOPS
	Convolutional LSTM
	Complex Standardization and Internal Covariate Shift
	Phase Information Encoding


