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ABSTRACT

Protein structure prediction relies critically on Multiple Sequence Alignments
(MSAs) that capture co-evolutionary information from homologous proteins.
However, orphan proteins lacking sufficient homologs present a fundamental chal-
lenge, as sparse or absent MSAs severely limit folding accuracy. Current MSA
generation methods operate through discrete token-based autoregressive genera-
tion, failing to capture the continuous nature of evolutionary relationships and
global co-evolutionary constraints inherent in natural protein families. We intro-
duce CoLD (Co-evolutionary Latent Diffusion), which reformulates MSA gen-
eration as conditional diffusion in the continuous embedding space of pretrained
protein language models. By modeling evolution as smooth manifold trajectories
and co-evolution through joint probability distributions over entire alignment em-
beddings, CoLD enables controllable homolog generation with biologically inter-
pretable evolutionary distance control. Our two-stage training paradigm first es-
tablishes reliable embedding-to-sequence mappings, then optimizes diffusion with
progressive biological constraints including profile consistency, sequence diver-
sity, and amino acid distribution alignment. Extensive evaluation on CASP14/15
benchmarks and challenging zero-shot scenarios demonstrates that CoLD sub-
stantially outperforms existing methods, achieving above 11 point improvements
in confidence metrics for orphan proteins while maintaining superior conservation
pattern preservation (up to 0.994 correlation). These results validate the effective-
ness of continuous diffusion modeling for capturing evolutionary relationships in
protein sequence generation.

1 INTRODUCTION

Protein evolution unfolds through millions of years of natural selection, generating families of ho-
mologous sequences that preserve essential structural and functional elements while accumulating
variation at non-critical positions. Multiple Sequence Alignments (MSAs) capture this evolution-
ary history by organizing these related sequences to reveal conserved domains, functional motifs,
and co-evolutionary relationships that collectively encode the constraints governing protein fold-
ing and stability (Jumper et al.,|2021). This evolutionary information has proven indispensable for
modern structure prediction, with breakthrough methods like AlphaFold2 (Jumper et al.l 2021)) and
RoseTTAFold (Baek et al.| [2021) fundamentally dependent on extracting co-evolutionary signals
from deep MSAs (Watson et al., 2023} |Rao et al., 2021). However, when evolutionary data be-
comes sparse, prediction accuracy deteriorates dramatically. Orphan proteins, which lack detectable
homologs and represent approximately 20% of metagenomic sequences (Chowdhury et al.| [2022),
experience substantial accuracy degradation compared to proteins with abundant evolutionary infor-
mation (Yang & Zhang| 2023)), highlighting the critical bottleneck imposed by MSA availability.

Traditional MSA construction relies on homology search algorithms such as HHblits (Remmert
et al., 2012) and JackHMMER (Johnson et al., [2010), which are fundamentally constrained by
database coverage and fail completely for orphan proteins. Recent advances in artificial intelligence
have motivated a new generation of MSA generation methods (Zhang et al.} 20235 Chen et al.,2024;
Cao et al.| 2025} [Nijkamp et al., 2023)) that synthesize virtual homologs to augment sparse align-
ments, demonstrating substantial improvements in downstream structure prediction tasks. However,
these approaches predominantly employ autoregressive generation strategies and operate through se-
quential token prediction, resulting in error accumulation during long sequence generation (Bengio
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et al., 2015) and fundamental difficulty in zero-shot scenarios where no existing MSA is available
for conditioning. This gap between current methods and biological reality calls for fundamentally
different approaches to modeling evolutionary sequence relationships.
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The co-evolutionary signal emerges from
statistical dependencies that span entire
alignments, creating complex correlation
patterns that define permissible evolu-
tionary trajectories within protein fami-
lies (Yang et al., 2024)). Existing genera-
tive approaches that model sequences in-
dependently fundamentally fail to capture these global correlations, limiting their ability to generate
biologically coherent MSAs that preserve the intricate co-evolutionary relationships essential for
accurate structure prediction. The biological intuition motivates to model both the evolutionary
process and co-evolutionary relationships through diffusion-based paradigms

Figure 1: Evolutionary Modeling Through Diffusion.
(a) Protein evolution generates diverse homologs along
continuous trajectories from ancestral sequences. (b)
CoLD models this through controllable diffusion in em-
bedding space, with variable starting timesteps g, con-
trolling evolutionary divergence.

We introduce CoLLD (Co-evolutionary Latent Diffusion), which models MSA generation as condi-
tional diffusion in the continuous latent space of pretrained protein language models. CoLD captures
evolutionary processes through iterative denoising that simulates gradual sequence divergence from
ancestral states, while modeling co-evolutionary relationships by jointly generating entire MSA em-
beddings that preserve global statistical dependencies. Our framework incorporates ESM-guided at-
tention mechanisms to capture residue conservation patterns and enables controllable generation of
MSAs with varying evolutionary distances through noise scheduling at different diffusion timesteps.

Our main contributions are the following:

* Evolutionary process simulation: We pioneer diffusion-based modeling of protein evolution in
continuous latent space, enabling smooth simulation of homologous sequence generation through
progressive denoising that mirrors natural evolutionary processes.

* Co-evolutionary joint distribution modeling: CoLD models entire MSA embeddings jointly
rather than generating sequences independently, capturing global co-evolutionary constraints
through parallel diffusion that preserves alignment-level statistical structure.

» Zero-shot capability with biological controls: Our two-stage training paradigm with ESM-
guided attention and controllable noise scheduling enables high-quality MSA generation from
single queries while maintaining evolutionary coherence across generated ensembles.
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2 RELATED WORK

Multiple Sequence Alignment Generation. The computational generation of MSAs has evolved
from database-dependent retrieval methods to sophisticated Al-driven approaches that synthesize
virtual homologous sequences. Early methods like HHblits (Remmert et al., |2012) and JackHM-
MER (Johnson et al., 2010) perform exhaustive database searches but are inherently limited by
sequence coverage and computational scalability. Contemporary generative approaches can be cat-
egorized into three paradigms: sequence inpainting methods such as MSA-Generator (Zhang et al.}
2023)) and EvoGen (Zhang et al., [2022) complete partial alignments using encoder-decoder archi-
tectures with axial attention; prompt-based conditional generation including MSAGPT (Chen et al.,
2024) with 2D evolutionary positional encoding and EvoDiff-MSA (Alamdari et al., [2023)) utilizing
discrete diffusion on MSA prompts; and evolution space methods like PLAME (Cao et al.| [2025)
leveraging pretrained protein language model embeddings for direct generation. While demon-
strating improvements, these methods predominantly employ autoregressive generation (Shin et al.,
2021; Hawkins-Hooker et al., 2021} Repecka et al., [2021)) or variational approaches (Riesselman
et al., 2018} |Sevgen et al.| [2023} |Li et al., |2023) operating on discrete sequences, failing to model
the joint co-evolutionary distribution essential for zero-shot generation from single query sequences.

Diffusion Models for Biological Sequence Generation. Diffusion models have achieved remark-
able success in protein structure generation, with RFdiffusion (Watson et al.,[2023)) pioneering back-
bone generation through fine-tuning RoseTTAFold on denoising tasks, alongside FoldingDiff (Wu
et al.| 2024)) using angular representations, ProteinSGM (Lee & Kim, [2023)) with score-based mod-
eling, and FrameDiff (Yim et al.,[2023) operating in SE(3) manifolds (Trippe et al.,[2022;|Bose et al.,
2024]). For sequence generation, EvoDiff (Alamdari et al., [2023)) introduced discrete diffusion with
order-agnostic autoregressive and D3PM corruption schemes trained on evolutionary-scale data,
while recent advances include structure-sequence co-design (Lisanza et al., 2024} (Campbell et al.,
2024])), multimodal diffusion approaches (Wang et al., 2025; [Su et al., |2024), and taxonomic condi-
tioning (Zhang et al} [2024). However, existing methods operate either in discrete sequence space
or focus exclusively on structure generation, leaving unexplored the potential of continuous latent
space diffusion for MSA-level generation that can capture smooth evolutionary relationships and
global co-evolutionary dependencies simultaneously.

3 METHODOLOGY

3.1 PRELIMINARY

We formalize MSA generation as learning the conditional distribution P(M|q) where M =
{s1,82,...,50} represents a multiple sequence alignment and g € A" denotes the query sequence
over amino acid alphabet .A.

Evolutionary Manifold Structure. Let ¢ : A” — RZ*? be a pretrained protein encoder that maps
sequences to continuous embeddings. We postulate that protein evolution occurs within a smooth
manifold Z C RE*? where the geometric structure encodes evolutionary relationships. Formally,
for any protein family, there exists a connected submanifold M, C Z such that homologous
sequences satisfy ¢(s;) € M.y, with geodesic distances reflecting evolutionary divergence.

The manifold exhibits two key properties: (1) Local smoothness: ||p(s) — ¢(s')||2 X devo(s, 8)
where d.,, denotes evolutionary distance, and (2) Conservation structure: functionally critical re-
gions have lower local variance o%(¢(s). ;) o conservation score at position j.

Joint Distribution Decomposition. We decompose MSA generation into two coupled processes:
M
P(Mlo) = [ P@iota) ] P20 dz. 1)
i=1

where Z = [Zy;. . .; Zys) € RM*EXd represents the MSA embedding tensor and Z; = ¢(s;).

The critical insight is modeling P(Z|¢$(q)) as a joint distribution over the entire MSA tensor rather
than factorizing over individual sequences. This preserves co-evolutionary constraints through sta-
tistical dependencies: for co-evolving positions (j, k), the conditional independence structure satis-

fies:
Z:,:,j 7'}i Z:,:,k‘|¢(Q)' (2)
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Figure 2: CoLD Architecture Overview. The framework employs ESM-2 encoder for continuous se-
quence representation, followed by diffusion-based MSA generation in embedding space. Control-
lable evolutionary divergence is achieved through variable starting timesteps ¢, with ESM-guided
attention mechanisms preserving conservation patterns during denoising. The MSA Transformer
processes joint embeddings through axial attention, capturing both intra-sequence dependencies and
cross-sequence co-evolutionary relationships.

Generation Paradigms. The manifold structure enables continuous generation paradigms that re-
spect evolutionary geometry. We parameterize P(Z|¢(q)) through a learned generative process
Go : REXD x N(0, 1) — RM>L>d that maps query embeddings and random noise to MSA embed-
dings:

Z ~ Gy(¢(q),€), €~ N(0,IM*Ex1), (3)

The decoder P(s;|Z;) provides the mapping from continuous embeddings back to discrete se-
quences, completing the generation pipeline. This formulation naturally handles zero-shot scenarios
where the query embedding ¢(q) provides sufficient conditioning through its manifold position.

This formulation naturally handles zero-shot scenarios where the query embedding ¢(q) provides
sufficient conditioning through its manifold position. The theoretical optimality of this approach is

established in

3.2 CoLD ARCHITECTURE

Figure 2| presents the overall framework of our approach. CoLD employs ESM-2 (Lin et al 2023)
as the protein encoder ¢ to leverage evolutionary-scale pretraining for capturing sequence relation-
ships in continuous space. This choice aligns with our evolutionary manifold hypothesis, as ESM-
2’s learned representations naturally encode physicochemical and evolutionary constraints through
attention patterns trained on protein family data.

MSA Representation and Encoding. We represent the target MSA as a 3D tensor Z € RM>Lxd

where each slice Z; . . = ¢(s;) corresponds to the embedding of sequence s;. The query sequence
is encoded as z, = ¢(q) € RE*4, serving as the primary conditioning signal. During generation,
we initialize random noise Z7 ~ N(0,IM*Lxd) and iteratively denoise to recover biologically
coherent MSA embeddings.

MSA Transformer Backbone. The denoising network €y(Z;,z,, ¢, M) employs axial atten-
tion (Rao et al) [2021) to capture both intra-sequence dependencies and cross-sequence co-
evolutionary patterns. For the MSA tensor Z; € RMXLxd row attention operates on Z; ;.. to
model positional relationships within sequences, while column attention on Z; . ; . captures correla-
tions across sequences at position j:

Attnrow(zt 0,9, Z ajkzt ik, Attncol Zt Z BikZdy gy €]
k=1

We incorporate ESM-guided conservation attention by computing self-attention weights on the
query embedding and using these to bias column attention toward conserved positions. The archi-
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tecture includes adaptive layer normalization conditioned on timestep ¢ and target depth M through
learned scale and shift parameters.

Amino Acid Decoder. The decoder D, : RE*4 — RIL*IAl maps continuous embeddings to
amino acid probability distributions.It consists of a multi-layer perceptron with GELU activation
followed by softmax normalization, trained separately to establish reliable embedding-to-sequence
mappings before joint diffusion training. The decoder enables controllable gap insertion through
learned threshold mechanisms that determine when to predict gap tokens versus amino acids based
on embedding magnitudes.

3.3 DIFFUSION PROCESS

We model MSA generation through conditional diffusion in the continuous embedding space, where
the forward process simulates evolutionary divergence and the reverse process reconstructs coherent
alignments from noise.

Forward Process. The forward diffusion process adds Gaussian noise to clean MSA embeddings
Z according to a predefined variance schedule. At timestep ¢, the noisy MSA tensor follows:

Q(Z¢|Zo) = N (Zys;/arZo, (1 — o)), )

where a; = Hizl as with ap = 1 — 5, and B; following a cosine schedule. This schedule is
biologically motivated: early timesteps preserve fine-grained evolutionary relationships while later
timesteps approach pure noise, mirroring the natural process where recent evolutionary events are
more detectable than ancient divergences.

Reverse Process. The reverse process generates MSA embeddings by iteratively denoising from
random noise, conditioned on the query embedding z,:

Po(Ze-1|Zt,2q) = N (Ze-1; po(Ze, 24, ), 071). (6)

Following standard diffusion parameterization, we predict the noise €g(Z;, z4, t) and compute the

denoised prediction:
B
Zi,2,,t) = — | 2Lt — —
to(Zy q ) \/OTt( t m

Controllable Generation. We enable controllable MSA generation by varying the starting timestep
tsart < T during inference. The key insight is that homologous sequences naturally cluster in the
embedding manifold, making noise-corrupted query embeddings valid initialization points for MSA
generation. We initialize the noisy MSA tensor as:

Zi, ~ q(Zy,,

where Z3""” = repeat(z,, M } € RMxLxd represents the query embedding replicated across M
sequences. This initialization everages the biological principle that homologous sequences share

common ancestry, with the noise level ¢y, controlling evolutionary divergence time.

1
€9(Zy, 24, t)) . 7

Zy"™), ®)

The generation process then applies the reverse diffusion from g, to 0:
ZO = R@(Ztm,m Zq; tstart — 0)7 (9)

‘where higher . values induce greater sequence diversity while lower values preserve closer sim-
ilarity to the query, providing inferpretable control over the generated MSA’s evolutionary span

(Theorem A.4).

3.4 TRAINING STRATEGY

CoLD employs a two-stage training paradigm designed to decouple sequence validity from evolu-
tionary modeling, followed by progressive constraint integration that mirrors biological hierarchy.

Decoder Pretraining. We first establish reliable continuous-to-discrete mappings by pretraining
the decoder D, on natural protein sequences. This stage optimizes Lgec = —Es~p log P(s|d(s))
where D represents the training distribution. Separating this objective prevents decoder instability
from interfering with diffusion dynamics.

Progressive Diffusion Training. Diffusion training employs a composite loss function with time-
dependent weighting to gradually introduce biological constraints:

L= ﬁdiff + /\proﬁle(t)fcpmﬁle + /\div (t)ﬁdiv + )\kl (t)ﬁkl (10)
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The core diffusion loss follows standard formulation: Lgir = Ey ¢ |l€ — €9(Z¢, zg, )%

The profile consistency loss ensures the generated MSA’s consensus matches the query structure:
Lorofile = ||mean(Zg) — z4|?, which enforces that the MSA centroid aligns with the conditioning
query embedding.The KL divergence loss aligns predicted amino acid distributions with evolution-
ary constraints: Liq = KL(Dy(Zo)||Prarget), Where Pyee; represents target amino acid frequencies
derived from natural MSAs.The diversity regularization encourages sequence variation while pre-
venting mode collapse: Lav = — >, [1Zo,; — Zo.j||?, promoting embedding diversity across
generated sequences.

The progressive weighting schedule A(t) starts with pure diffusion training, then gradually intro-
duces profile and KL constraints, and finally adds diversity regularization. This curriculum prevents
conflicts between objectives and ensures stable convergence while maintaining both evolutionary
plausibility and sequence diversity, with theoretical justification provided in

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Training Data. We construct a comprehensive training dataset from PDB and UniClust30 datasets
through systematic preprocessing. The PDB dataset contains 233,922 samples from 77,974 unique
proteins with natural MSAs from three complementary databases: BFD/UniClust, MGnify, and
UniRef90. The UniClust30 dataset provides 163,248 evolutionarily diverse sequences clustered at
thirty percent identity. Our preprocessing enforces sequence length constraints up to one thousand
residues and MSA depth requirements ranging from four to 128 homologs per family, yielding a
final training set of 397,170 high-quality samples.

Evaluation Datasets. We assess CoLD performance across distinct evaluation scenarios. CASP14
contains 61 solved protein structures while CASP15 provides 64 additional targets, together com-
prising 125 gold-standard test cases from recent critical assessment competitions. Zero-shot dataset
comprises 30 proteins of varying lengths absent from training data to evaluate true zero-shot gener-
ation capabilities.

Baselines. We compare against methods across two paradigms. Single-sequence methods: ESM-
Fold (Lin et al [2023)) employs protein language model embeddings for direct structure prediction;
AlphaFold2 (Jumper et al.| [2021)) operates without MSA information. MSA-based methods: Al-
phaFold2 with natural MSAs (Jumper et al., 2021), EvoDiff (Alamdari et al., 2023) using discrete
diffusion, EvoGen (Zhang et al.l [2022) with meta-generative frameworks, MSA-Generator (Zhang
et al.,2023) utilizing sequence-to-sequence pretraining, MSAGPT (Chen et al., | 2024)) incorporating
neural prompting, and PLAME (Cao et al.|[2025) leveraging protein language model embeddings.

Evaluation Metrics. We employ four structural quality metrics: pLDDT measures per-residue
confidence, LDDT evaluates local structural preservation, TM-score assesses global fold similarity,
and GDT-TS quantifies overall structural accuracy across distance thresholds. All generated MSAs
undergo AlphaFold?2 structure prediction for fair comparison.

4.2 MAIN RESULTS

We evaluate CoLLD against state-of-the-art baselines across three benchmarks to assess MSA genera-
tion quality through downstream structure prediction performance. Table[I] presents comprehensive
results across all structural quality metrics.

The evaluation reveals distinct performance patterns across different scenarios. Zero-shot generation
presents the most challenging setting, where CoLD achieves 62.03 pLDDT compared to 50.70 for
PLAME, representing an 11.33 point improvement. This substantial gap indicates that continuous
manifold modeling provides significant advantages when no evolutionary templates are available.
On CASP benchmarks, performance improvements remain consistent but more modest, with 4-6
point gains across metrics, reflecting the inherent difficulty of these curated challenging targets.

The results demonstrate a clear methodological hierarchy. Single-sequence approaches achieve
baseline performance around 40-45 pLDDT, while MSA-based methods substantially improve to
50-70 pLDDT range. Within MSA generation approaches, methods operating in continuous em-
bedding space consistently outperform discrete sequence generation, which themselves exceed tra-
ditional database search augmentation. This progression supports the premise that protein evolu-
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Table 1: Main Results on Structure Prediction Benchmarks. We report performance across CASP14,
CASP15, and Zero Shot datasets using AlphaFold2 for structure prediction. Best results are bolded,
second-best are underlined.

CASP14 CASP15 Zero Shot Dataset

Model
pLDDT LDDT TM GDT-TS|pLDDT LDDT TM GDT-TS|pLDDT LDDT TM GDT-TS

Single Sequence Based

ESMFold | 42.03 40.67 0.35 29.70 | 44.65 42.13 0.36 30.28 | 41.06 39.12 0.34 29.31
AF2 4271 3931 031 2825 | 4290 39.70 0.32 28.44 | 40.19 38.92 0.31 28.54

MSA Based

AF2 MSA| 52.61 5038 042 4290 | 41.25 51.64 0.43 4038 | 40.19 3892 031 28.54
EvoDiff | 49.12 4533 040 33.88 | 48.63 39.80 0.37 34.56 | 40.09 39.80 0.32 29.70
EvoGen | 53.48 50.09 045 4222 | 54.16 50.57 047 43.78 | 42.51 40.86 0.35 32.13
MSAGen | 61.54 5329 044 41.84 | 61.35 5193 045 4193 | 43.39 35.14 033 31.26
MSAGPT | 65.42 5436 0.51 4494 | 6435 56.10 0.58 46.40 | 4591 42.51 034 33.78
PLAME | 64.14 59.40 0.57 5193 | 65.26 60.28 0.56 52.51 | 50.70 47.66 0.37 35.04
CoLD | 68.43 63.48 0.60 56.98 | 69.79 62.32 0.61 57.46 | 62.03 5591 0.51 45.82

Table 2: Ablation study demonstrating individual component contributions. Performance degrada-
tion with each removed component validates the necessity of CoLD’s integrated design.

Method CASP14 CASP15
pLDDT LDDT TM GDT-TS |pLDDT LDDT TM GDT-TS

CoLD (Full) 68.43 63.48 0.60 56.98 69.79 6232 0.61 57.46
w/o ESM Guidance 65.72 61.15 0.55 52.34 70.12 5894 0.57 53.81
w/o Profile Loss 64.38 6421 0.53 50.76 66.45 59.73 0.56 52.18
w/o Diversity Loss 6791 63.82 0.58 54.29 69.83 6047 0.59 55.63
w/o KL Loss 66.24  60.19 0.57 5543 68.17 61.58 0.58 54.92
w/o Progressive Training | 62.85 56.74 0.51 48.67 6429 5536 052 49.75

tionary relationships are more effectively captured through learned continuous representations than
discrete token manipulation.

4.3 ABLATION STUDY

We conduct systematic ablation experiments to validate each component’s contribution in CoLD’s
architecture. Table [2] reveals nuanced interactions between architectural components, with some
ablations occasionally outperforming the full model on specific metrics.

Progressive training proves most critical overall, with its removal causing consistent degradation
across both datasets. Interestingly, removing diversity loss yields competitive performance and even
achieves second-best results on several metrics, suggesting potential hyperparameter optimization
opportunities in the full model. The w/o ESM Guidance variant achieves the highest pPLDDT on
CASP15, indicating that conservation guidance may occasionally over-constrain generation for cer-
tain protein families. Profile loss removal shows mixed effects, achieving best LDDT performance
on CASP14 while degrading other metrics, highlighting the complex trade-offs between different
structural quality measures. These results demonstrate that CoLD’s components interact in sophisti-
cated ways, with optimal configurations potentially varying across different evaluation contexts and
protein characteristics.

4.4 EVOLUTIONARY DISTANCE CONTROL

We investigate the relationship between diffusion timesteps and evolutionary distance by systemati-
cally varying the starting ratio during generation. Table [3] presents structural quality metrics across
different timestep ratios, while Figure 4] demonstrates the visual progression of MSA characteristics
under controllable evolutionary divergence.
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Figure 4: Controllable Evolutionary Divergence in MSA Generation. CoLD enables precise
control over evolutionary distance through variable starting timestep ratios (rr = tur /7). From left
to right (r=0.1 to r=1.0), generated MSAs exhibit increasing sequence diversity while preserving
conservation patterns. Upper panels show statistical profiles (entropy, conservation, gap rate) and
lower panels display sequence alignments. This controllability is unique to CoLD’s continuous
manifold approach and enables biologically interpretable MSA generation.

Figure [ reveals three distinct evolutionary regimes across the controllable generation spectrum.
At low ratios (r=0.1-0.3), generated MSAs exhibit minimal diversity with near-uniform conserva-
tion patterns, effectively producing close homologs with subtle variations that preserve structural
integrity. The intermediate regime (r=0.4-0.7) demonstrates balanced evolutionary sampling where
entropy increases selectively at variable positions while maintaining conservation at functionally
critical sites—this regime corresponds to the optimal TM-Score performance observed in Table [3]
At high ratios (r=0.8-1.0), the method generates distantly related sequences with maximum diver-
sity, producing MSAs that capture broad evolutionary space but sacrifice local structural constraints
for global sequence coverage.

Sequence similarity analysis confirms that timestep ratios directly control evolutionary divergence,
with similarity decreasing monotonically from 94.13% at 100% ratio to 6.80% at 10% ratio. How-
ever, structural metrics exhibit divergent optimization patterns: pLDDT peaks at maximum diver-
gence (100% ratio) while TM-Score optimizes at intermediate levels (40% ratio). This divergence
reflects distinct information requirements where confidence metrics benefit from diverse evolution-
ary sampling while structural accuracy requires balanced homolog representation.

The conservation profile analysis in Figure [4] reveals that CoLD maintains position-specific con-
servation patterns across all generation ratios, unlike sequence-independent methods that treat all
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Figure 5: Conservation analysis demonstrates accurate preservation of evolutionary constraints.
Generated MSAs achieve Pearson correlations of 0.949-0.994 with natural conservation patterns
across proteins of varying structural complexity.

positions uniformly. Notably, functionally important regions (evident as conservation peaks) remain
preserved even at high diversity ratios, indicating that the continuous manifold embedding captures
and maintains structural constraints inherent in the query protein’s evolutionary neighborhood. This
biological fidelity, combined with controllable diversity, enables adaptive MSA generation strategies
tailored to specific downstream applications.

4.5 CONSERVATION PATTERN ANALYSIS

We evaluate conservation preservation by comparing information content profiles between gen-
erated and natural MSAs across representative protein targets. Conservation is quantified using
I = log(20) — H, where H = — " f,log f, represents Shannon entropy over amino acid fre-
quencies at each position.

Figure [5] demonstrates strong conservation pattern preservation across diverse protein families. The
heatmap visualization in Figure [5a| reveals spatial conservation consistency, with functionally crit-
ical regions maintaining similar information content distributions between natural and generated
alignments. This global correspondence indicates successful preservation of large-scale evolution-
ary constraints that govern protein family structure.

Position-wise analysis in Figure [5b|provides quantitative validation with generated MSAs achieving
Pearson correlations of 0.949-0.994 across targets of varying lengths and complexities. The profiles
demonstrate accurate reproduction of both conserved structural elements and variable regions, cap-
turing the detailed conservation landscapes that characterize authentic evolutionary relationships.
Notably, correlation strength remains consistently high regardless of protein length, from compact
47-residue domains to extended 374-residue structures.

This conservation preservation stems from joint MSA embedding modeling, which maintains statis-
tical dependencies between positions encoding co-evolutionary relationships. Unlike independent
sequence generation, our approach captures correlation structures underlying functional constraints
by processing entire alignment representations simultaneously in continuous space, enabling the
preservation of evolutionary information essential for biological authenticity and structure predic-
tion accuracy.

5 CONCLUSION

We present CoLLD, a diffusion-based approach that models MSA generation in continuous protein
embedding manifolds rather than discrete sequence space. This paradigm shift addresses fundamen-
tal limitations of autoregressive methods by capturing co-evolutionary relationships through joint
distribution modeling and enabling zero-shot generation from single queries. Experimental results
demonstrate substantial improvements over existing approaches, particularly in data-scarce scenar-
ios where evolutionary information is limited. The controllable generation mechanism provides
principled evolutionary distance manipulation, while conservation analysis validates biological au-
thenticity. These contributions establish continuous manifold diffusion as an effective framework
for MSA generation, advancing computational approaches to protein structure prediction and evo-
lutionary analysis.
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ETHICS STATEMENT

This work introduces COLD, a computational method that generates multiple sequence alignments
(MSAs) to support protein structure prediction. Our study uses only publicly available protein se-
quence resources and does not involve human subjects, personal data, or clinical interventions. No
wet-lab experiments were conducted, and we neither infer nor evaluate pathogenicity or toxicity.
While improvements in protein modeling can have dual-use implications, our contribution is lim-
ited to MSA generation for scientific understanding of evolutionary constraints and for improving
structure prediction on proteins with scarce homologs. We adhere to the licenses and terms of use
of the underlying databases and cite all sources. To promote responsible research, we document
our methods transparently, refrain from releasing any functionality intended for sequence design or
activity optimization, and will distribute code and pretrained weights for non-commercial research
under a terms-of-use agreement upon acceptance.

REPRODUCIBILITY STATEMENT

We aim to make COLD fully reproducible. The appendix lists all hyperparameters, model configu-
rations, optimizer settings, learning-rate schedules, and loss weights used in every experiment. We
provide exact data preprocessing scripts to reconstruct the training corpus from public snapshots of
PDB-derived MSAs and UniClust30, including sequence length filters and MSA-depth ranges. Eval-
uation follows standard CASP14/15 targets and metrics, with AlphaFold2 inference settings (model
variant, recycles, ranking metric) specified for comparability. We fix and report random seeds, log
software versions (Python/PyTorch/CUDA), and note representative hardware (GPUs and memory)
used. To facilitate replication, we will release: (i) complete source code with experiment configs,
(i) training and evaluation scripts, (iii) checkpoints and data manifests (with checksums), and (iv)
instructions to reproduce all tables and figures from raw logs. Where nondeterminism may arise
(e.g., CUDA kernels), we include deterministic flags and document any residual variance across
runs.
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A THEORETICAL ANALYSIS

A.1 CO-EVOLUTIONARY STRUCTURE PRESERVATION

Proposition A.1

Diffusion processes preserve co-evolutionary correlations in embedding space.

Let C;; = MI(Z.; ., Z. ;.) denote mutual information between positions 7, j in MSA embedding
tensor Z € RM*Lxd The forward diffusion process:

4(Z4|Zo) = N (Zy; Vo Zo, (1 — au)I), (11)

preserves co-evolutionary structure when noise addition respects correlation patterns encoded in the
embedding space.

Analysis: The correlation coefficient between positions after ¢ diffusion steps becomes:
pe(i,7) = Vapo(i, j) + V1 — aueiy, (12)

where €;; represents noise correlation. Since ESM embeddings encode co-evolutionary relationships
through attention mechanisms, the correlation structure po (4, j) reflects biological dependencies that
are preserved during the diffusion process.

A.2 MANIFOLD CONVERGENCE PROPERTIES

Analysis A.2

The reverse diffusion process converges to the evolutionary manifold.

Consider the protein embedding manifold M.,, C RE*¢

concentrate. The reverse diffusion follows:
Po(Ze—1|Z¢, 7q) = N (po(Zs, 24, 1), 07 1), (13)

where p19 approximates the score function Vz, log p(Z|z,).

where evolutionarily related sequences

Convergence Argument: By construction of ESM pretraining on evolutionary data, the conditional
distribution p(Z|z,) naturally concentrates on M.,,. The reverse SDE converges to this manifold
as the learned score function guides samples toward regions of high evolutionary probability. Query
conditioning z, ensures generated sequences remain within the appropriate protein family subman-
ifold.

A.3 INFORMATION-THEORETIC OPTIMALITY

Joint MSA modeling maximizes evolutionary information retention.

Define total correlation TC(M) = >, H(Z;) — H(Z) measuring statistical dependencies across
MSA sequences. Joint modeling achieves:

P(Z|z,)
I1; P(Zi|zq)
while independent sequence generation gives 1'Clngependent = 0 by definition.

T Cioint = /P(Z|zq)log dZ, (14)

Information Retention: By the data processing inequality and properties of mutual information:

DKL(Pnatural(z|zq)||Pjoint(Z‘Zq)) < DKL(Pnatural(Z|Zq)||Pindependem(z|zq))- (15)

Joint modeling thus achieves lower approximation error to the natural MSA distribution and pre-
serves more co-evolutionary information essential for structure prediction.
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A.4 EVOLUTIONARY DISTANCE CONTROL

Proposition A.4

Starting timestep ty.,s provides monotonic control over evolutionary distance.

For generation initialized at timestep ¢4y, the expected evolutionary distance satisfies:

-5
E|devo(generated, query)] = f (_at“‘"> , (16)

Estart

where f is monotonically increasing and d.,, measures sequence-level evolutionary divergence.

Controllability Analysis: The initialization Z;,, ~ N (repeat(zq, M), %I) determines the

Xtgrart

noise level around the query embedding. Since embedding distance in the learned ESM space cor-
relates with evolutionary distance, and &; decreases monotonically with ¢, higher ¢, values yield
proportionally larger evolutionary distances. This provides interpretable biological control over the
generation process.

B IMPLEMENTATION DETAILS

B.1 TRAINING INFRASTRUCTURE AND CONFIGURATION

We implement CoLD using PyTorch with distributed data parallel (DDP) training across 4 NVIDIA
A100 GPUs. The training process spans approximately 500,000 optimization steps over 72 hours,
employing mixed-precision training with automatic gradient scaling for computational efficiency.
Our implementation utilizes gradient accumulation with a step size of 32 to simulate larger effective
batch sizes while maintaining memory constraints.

B.2 MODEL ARCHITECTURE SPECIFICATIONS

Table [] presents comprehensive hyperparameter configurations for our CoLD framework. The
architecture employs ESM-2 (t12_.35M_URS50D) as the frozen protein encoder, providing 480-
dimensional embeddings that capture evolutionary relationships learned from 65M protein se-
quences. The diffusion backbone consists of 4 transformer blocks with 512 hidden dimensions
and 8 attention heads, processing MSA tensors up to 16 x 1000 x 480 dimensions corresponding to
maximum depth, sequence length, and embedding dimensionality.

B.3 TRAINING PROTOCOL AND PROGRESSIVE OPTIMIZATION

Our two-stage training paradigm begins with decoder pretraining for 2 epochs using cross-entropy
loss to establish reliable embedding-to-sequence mappings. The decoder architecture employs a 2-
layer MLP with GELU activation, mapping 480-dimensional ESM embeddings to 21-dimensional
amino acid distributions including gap tokens.

Diffusion training follows a progressive loss scheduling strategy implemented through training step
ratios. Early training (steps 0-50%) employs pure diffusion loss Ly to establish basic denoising
capabilities. Middle training (50%-80%) introduces profile consistency loss with linearly increasing
weight, ensuring generated MSA centroids align with query embeddings. Late training (80%-100%)
incorporates full composite loss including diversity regularization and KL divergence alignment
with natural amino acid distributions.

B.4 DATA PROCESSING AND AUGMENTATION

We construct training datasets from PDB (233,922 samples) and UniClust30 (163,248 samples),
applying systematic preprocessing including sequence length filtering (no more than 1000 residues)
and MSA depth requirements (4-128 homologs). Encoded homologs undergo token mapping from
33-dimensional ESM vocabulary to our 21-dimensional amino acid space, with special handling for
gap token insertion based on learned probability thresholds.

14
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Table 4: Implementation Details and Hyperparameters

Model Architecture Training Configuration
ESM Encoder ESM2-t12-35M Batch Size 1 (per GPU)
ESM Embedding Dim 480 Grad Accumulation 32 steps
Hidden Dimension 512 Effective Batch Size 128
Transformer Layers 4 Mixed Precision FP16
Attention Heads 8 Max Grad Norm 1.0
Max Sequence Length 1000 Weight Decay 0.01
Max MSA Depth 16 Pin Memory True
Vocab Size 21 Num Workers 4

Diffusion Parameters Loss Weights
Timesteps T' 1000 Profile Weight \,, 0.002
Beta Schedule Cosine Diversity Weight A4 0.005
Beta Start 1x1074 KL Weight Ay, 5x107°
Beta End 0.02 Gap Threshold 0.08
Optimization Computational Resources

Decoder LR 3x 1074 GPUs 4 x A100
Diffusion LR 1x1074 Total Steps 500k
LR Schedule Cosine Annealing | Training Time 72 hours
Optimizer AdamW Memory per GPU 78GB

Dynamic MSA depth sampling during training randomly selects target depths from [4, 8, 16] to
promote generalization across varying alignment sizes. Amino acid distributions are normalized
using softmax after concatenating rare amino acid probabilities into gap categories, ensuring valid
probability distributions for KL divergence computation.

B.5 COMPUTATIONAL OPTIMIZATION AND MEMORY MANAGEMENT

Memory efficiency is achieved through several optimizations: (1) embedding caching with LRU
policy limiting cache size to 1000 entries, (2) gradient checkpointing for transformer blocks, (3) pe-
riodic GPU memory clearing every 50 inference steps during generation, and (4) distributed training
with synchronized batch normalization across GPUs.

The cosine noise scheduler employs s = 0.008 offset parameter for improved training stability,
while adaptive layer normalization conditions on both timestep and MSA depth embeddings through
sinusoidal encoding. Generation employs DDIM sampling with 77 = 0.0 for deterministic inference,
enabling controllable evolutionary distance through starting timestep manipulation.

C STRUCTURAL PREDICTION CASE STUDIES

We present representative structure prediction results demonstrating the downstream impact of
CoLD-generated MSAs across diverse protein targets. Each case compares AlphaFold2 predictions
using MMseqs2-sampled alignments as baseline against CoLD-generated MSAs, both providing 16
homologous sequences for structure prediction.

The structural comparisons across Figures [6]{T] reveal three distinct performance patterns across
protein families. T1082 demonstrates CoLD’s most significant advantage, with substantial improve-
ments in both fold accuracy (TM-score: 0.815 vs 0.548) and confidence (pLDDT: 66.9 vs 45.0),
exemplifying scenarios where continuous manifold sampling captures evolutionary relationships
missed by discrete sequence retrieval. T1056 shows improved confidence (pLDDT: 43.4 vs 31.7)
with comparable structural accuracy, indicating enhanced prediction reliability in challenging low-
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Figure 6: T1056 baseline using MMseqs2 MSA: pLDDT=31.7, TM-score=0.352
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Figure 7: T1056 using CoLD-generated MSA: pLDDT=43.4, TM-score=0.364
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Figure 8: T1082 baseline using MMseqs2 MSA: pLDDT=45.0, TM-score=0.548
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Figure 9: T1082 using CoLD-generated MSA: pLDDT=66.9, TM-score=0.815
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Figure 10: T1030 baseline using MMseqs2 MSA: pLDDT=78.7, TM-score=0.743
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Figure 11: T1030 using CoLD-generated MSA: pLDDT=85.0, TM-score=0.646

homology cases. Conversely, T1030 exhibits a trade-off where CoLD achieves higher confidence
(pLDDT: 85.0 vs 78.7) but slightly lower structural accuracy (TM-score: 0.646 vs 0.743), suggesting
target-specific optimization requirements.

The confidence mapping reveals CoLD’s tendency to produce more uniform confidence distribu-
tions, avoiding extreme low-confidence regions commonly observed with sparse sampling. This
validates CoL.D’s practical utility for enhancing structure prediction workflows, particularly for chal-
lenging targets where traditional methods yield insufficient evolutionary information.

D LARGE LANGUAGE MODELS USAGE

Large language models (LLMs) were used only for editorial assistance—e.g., improving grammar,
refining phrasing, and clarifying figure captions. The scientific ideas, methodology, model design,
data processing, experiments, analyses, and interpretations are entirely the authors’ original work.
LLMs were not used to generate, modify, or select biological sequences, nor to produce quantita-
tive results or mathematical formulations. All technical content, algorithms, proofs, and empirical
findings were developed and validated by the authors.
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