Under review as a conference paper at ICLR 2019

AUGMENT YOUR BATCH: BETTER TRAINING WITH
LARGER BATCHES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, there is regained interest in large batch training of neural networks, both
in theory and practice. New insights and methods allowed certain models to be
trained using large batches with no adverse impact on performance. Most works
focused on accelerating wall clock training time by modifying the learning rate
schedule, without introducing accuracy degradation.

We propose to use large batch training to boost accuracy and accelerate conver-
gence by combining it with data augmentation. Our method, “batch augmenta-
tion”, suggests using multiple instances of each sample at the same large batch.
We show empirically that this simple yet effective method improves convergence
and final generalization accuracy. We further suggest possible reasons for its suc-
cess.

1 INTRODUCTION

1.1 LARGE BATCH TRAINING OF NEURAL NETWORKS

Neural network training is known to be highly compute intensive, often requiring large amounts
of resources, preferably utilizing as much parallelism as possible. Training is usually done using
stochastic-gradient-descent (SGD) or one of its variants, where the gradient for each sample is com-
puted separately and accumulated for each weight update. Using this property, the most straightfor-
ward way to scale training is by parallel computation of gradients over many samples, also known
as “’data parallelism” (Krizhevsky, [2014).

While data parallelism by batch computation is common, very large batches (> 1000) were avoided
by practitioners, as they were claimed to cause an inherent generalization issue, later described as
a tendency to reach “’sharp minima” (Keskar et al.l[2017). This so-called “generalization gap” was
lately challenged by |Hoffer et al.[(2017) which identified it to be mostly caused by the reduction in
optimization updates in large batch training rather than some inherent property.

Recent approaches by Hoffer et al.|(2017),|Goyal et al.|(2017), You et al.|(2017) and others showed
that equally good and even better generalization could be reached in some cases using large batches,
by adapting the optimization regime used. These methods often use higher learning rates than pre-
viously used, to account for the lower gradient variance in large batch updates. Hoffer et al.|(2017)
argued that the quality of the optimized model stems from the number of SGD iterations, rather
than the number of cycles through the training data (epochs). Naturally, using large batches reduces
the number of iterations in each epoch, and so additional epochs may be needed to reach the same
quality of a model trained with a smaller batch.

Ott et al. (2018)) demonstrated that large batch training could be beneficial even when batch size does
not fit into the device and its update is performed by multiple accumulations. Using this method,
they report added stability due to reduced gradient noise, as well as lower communication overhead.

In contrast, [Masters & Luschi| (2018) suggested that small batch updates may still provide benefits
over large batch ones, showing better results over several tasks, with higher robustness to hyper-
parameter selection such as the learning rate used.

With more available computation power, larger batch sizes can allow shorter training time. So far,
this motivation is what primarily made large batch training appealing. Here, instead, we propose a

Under review as a conference paper at ICLR 2019

novel way of utilizing large batch such that the use of large batch improves generalization perfor-
mance of the final model.

As modern hardware scales up by increasing the computational resources rather than the bandwidth
available, small batch updates are causing a noticeable under-utilization of these devices. Because
of that, for a given hardware specification it is possible to train with larger batch sizes without a
significant time penalty (You et al.,[2017; Grave et al., 2016)).

With this notion, we show that it is possible to improve model accuracy by utilizing available re-
sources to the maximum using larger batch sizes.

1.2 ROLE AND SIGNIFICANCE OF DATA AUGMENTATIONS

A common practice in training modern neural network is to use data augmentations — multiple
instances of input samples, each with a different transformation applied to it. For example, on image
classification tasks, for any input image, a random crop of varying size and scale is applied to it,
together with potentially rotation, mirroring and even color jittering (Krizhevsky et al.||2012)). Data
augmentations were repeatedly found to provide efficient and useful regularization, often accounting
for significant portion of the final generalization performance (Zagoruykol [2016}; DeVries & Taylor,
2017).

Several works even tried to learn how to generate good data augmentations. For example, Bayesian
approaches based on the training set distribution (Tran et al.,2017), generative approaches based on
generative adversarial networks (Antoniou et al.||2017} |Sixt et al., [2018)) and search methods aimed
to find the best data augmentation policy (Cubuk et al.,[2018). Our approach is orthogonal to those
methods; thus we believe we can expect even better results by combining them.

Other regularization methods, such as Dropout (Srivastava et al., |2014) or ZoneOut (Krueger et al.,
2016), although not explicitly considered as data augmentation techniques, can be considered as
such by viewing them as random transforms over inputs for intermediate layers. These methods
were also shown to benefit models in various tasks.

2 BATCH AUGMENTATION

In this work, we suggest leveraging the merits of data augmentation together with large batch train-
ing, by using multiple instances of a sample in the same batch.

We consider a model with a loss function ¢(w, X,,,y,) where {x,, yn}ﬁ[=1 is a dataset of N data
sample-target pairs. 7'(x) is some data augmentation transform applied to each example — e.g, a
random crop from an image.

The common training procedure for each batch consists of the following update rule (here using
vanilla SGD with a learning-rate 17 and mini-batch size of B, for simplicity):

1
Wit1l = Wi — UE GBXU;(t)) V! (Wu T(Xn)a Yn>

where k (t) is sampled from {1, ..., N/B} and we assume for simplicity that B divides N.

We suggest to introduce M multiple instances of the same input sample by applying the transform
T;, here denoted by subscript ¢ € {1..M} to highlight the fact that they are different from one
another.

We now use the slightly modified learning rule:

M
1
Wt+1 = Wy — T]ﬂ ; EB%(t)) vwg (Wt7 n(xn)? y’n)

effectively using a larger M - B batch at each steps, that is composed of B samples augmented with
M different transforms each.

Under review as a conference paper at ICLR 2019

We note that this updated rule can be computed either by evaluating on the whole M - B batch or by
accumulating M instances of the original gradient computation. Using large batch updates as part
of batch augmentations makes no change to the number of SGD iterations that are performed for
each epoch.

Batch augmentation (BA) can also be used as transforms over inputs of intermediate layers. For
example, we can use the common Dropout regularization method (Srivastava et al.,2014)) to generate
multiple instances of the same sample in a given layer, each with its dropout mask.

Batch augmentation can be easily implemented in any framework with a reference Py-
Torch (Paszke et al.l [2017) implementation to be available soon at https://github.com/
paper—submissions/augment—-batch.

To further highlight the ease of incorporating these ideas, we note that BA can be added to any
training code by merely modifying the input pipeline — augmenting each batch that is fed to the
model.

3 EXPERIMENTS

To evaluate the impact of batch augmentation, we used several common datasets and neural network
based models. For each one of the models, unless explicitly stated, we tested our approach using the
original training regime and data augmentation described by its authors. For simplicity, we did not
change the learning rate used, although this is possibly sub-optimal.

3.1 CIFArR10/100

The Cifar10 dataset introduced by |[Krizhevsky| (2009)) is a popular image classification dataset con-
taining 50, 000 training images, together with a 10, 000 test set. Each image is of size 32 x 32 and
belongs to one of 10 classes of vehicles and animals. The Cifar100 dataset consists of the same
number of training and validation images and the same spatial size, but with an increase to 100 in
the number of possible classes for each image.

For both datasets, we used the common data augmentation technique as described by He et al.
(2016). In this method, the input image is padded with 4 zero-valued pixels at each side, top, and
bottom. A random 32 x 32 part of the padded image is then cropped and with a 0.5 probability
flipped horizontally. This augmentation method has a rather small space of possible transforms
(9-9-2 = 162), and so it is quickly exhausted by even a M = 10s of simultaneous instances.

We therefore speculated that using a more aggressive augmentation technique, with larger option
space, will yield more noticeable difference when batch augmentation is used. We chose to use
the recently introduced ”Cutout” (DeVries & Taylor, 2017)) augmentation method, that was noted
to improve the generalization of models on various datasets considerably. Cutout uses randomly
positzioned zero-valued squares within images, thus increasing the number of possible transforms by
x30%.

We first tested batch augmentation on the task discussed by |[Hoffer et al.|(2017)) — using a ResNet44
(He et al.,2016)) over the Cifar10 dataset (Krizhevskyl [2009) together with cutout augmentation (De-
Vries & Taylor, |2017). We used the original regime by |He et al.[{(2016) with a batch of B = 64. We
then compared the learning curve with training using batch augmentation with M € {2, 4, 8,16, 32}
different transforms for each sample in the batch, effectively creating a batch of 64 - M.

As we can see in figure |1} validation convergence speed has noticeably improved (in terms of
epochs), with a significant reduction in final validation classification error (figure [Ib). This trend
largely continues to improve as M is increased, consistent with our expectation.

We verified these results using a variety of models (table |1)) using various values of M, depending
on our ability to fit the M - B within our compute budget (specifically, GPU memory). Our best
result was achieved using DARTS final Cifar10 model |Liu et al.| (2018). DARTS is a differentiable
architecture search framework which constructs a graph with a SoftMax parameterized edges. The
final model is a subset of the graph whose edges have the highest values.

In all our experiments we have observed significant improvements to the final validation accuracy
as well, as an increase in accuracy per epoch convergence speed. A typical example can be seen in

https://github.com/paper-submissions/augment-batch
https://github.com/paper-submissions/augment-batch

Under review as a conference paper at ICLR 2019

—baseline (M=1)

71 —baseline (M=1)

—M=2 =
40 —M=4 6.51 —\=a -——\A
o M=8 o 61 M8
®30 O e S
g g 5.5] ~M=32
@20 5

5 E§> —
4.5

epoch

(a) Validation error

100

90 92 94 96 98 100
epoch

(b) Final Validation error

Figure 1: Impact of batch augmentation (ResNet44 + cutout, Cifar10). We used the original (red)
training regime with B = 64, and compared to batch augmentation with M € {2,4,8,16,32}
creating an effective batch of 64 - M

figure 2] where using a mere M = 6, BA improved the results of a Wide-ResNet model by more
than 0.5% (a relative 17% decrease in error).

—baseline (M=1) —baseline (M=1)
—M=6 —M=6

w

error %

N

200 990 192 194 196 198 200
epoch

(a) Training (dashed) and validation error (b) Training (dashed) and validation final error

Figure 2: Impact of batch augmentation (Wide-Resnet28-10 + cutout, Cifar10). We used the original
(red) training regime and compared to batch augmentation with M = 6

Moreover, we managed to achieve high validation accuracy much quicker with batch augmentation.
We trained a ResNet44 on Cifarl0 for half of the iterations needed for the baseline using batch
augmentation and larger learning rate. we managed to achieve 93.65% accuracy while our baseline
achieved 93.07% with double the number of iterations. When the baseline is trained with the same
shorten regime there is a significant accuracy degradation. This indicates not only the obvious
accuracy gain but a potentially time performance improvement for a given hardware.

Finally, we compare with regime adaptation (RA) method by [Hoffer et al.| (2017). In this method,
the number of epochs is increased so that the number of iteration is fixed when using a larger batch.
This makes both RA and BA methods comparable with respect to the number of instances seen for
each sample over the course of training. Using the same settings (ResNet44, Cifarl0), we find an
accuracy gain of 0.6% over the 93.07% result reported by [Hoffer et al| (2017). Figures[5]and[f]in
Appendix depict these results.

3.2 IMAGENET

As a larger scale evaluation, we used the ImageNet dataset (Deng et al.| [2009), holding more than
1.2 million images depicting 1000 different categories.

For ResNet50 (He et al., |2016), we used the data augmentation method advocated by [Szegedy et al.
(2015)) that employed various sized patches of the image with size distributed evenly between 8%
and 100% and aspect ratio constrained to the interval [3/4,4/3]. The images were also flipped
horizontally with p = 0.5, and no additional color jitter was performed. For the MobileNet model
(Howard et al.l 2017)), we used a less aggressive augmentation method, as described in the original
paper. For Alexnet model (Krizhevsky et al.l2012), we used the original augmentation regime.

Under review as a conference paper at ICLR 2019

For all ImageNet models, we followed the training regime by |Goyal et al.|(2017) in which an initial
learning rate of 0.1 is decreased by a factor of 10 in epochs 30, 60, 80 for a total of 90 epochs. Weight
decay factor of 10~ is applied to every parameter in the network except for those of batch-norm
layers.

To fit within our time and compute budget constraints, we used a mild M = 4 batch augmenta-
tion factor for ResNet and MobileNet, and M = 8 for AlexNet. Due to memory constraints, the
ResNet50 model was trained using multiple feed-forwards and gradient accumulations, creating a
”Ghost batch norm” (Hoffer et al.,|2017) effect. We again observe an improvement with all models
in their final validation accuracy (table|I).

The AlexNet model had the most dramatic improvement — yielding more than 4% improvement in
validation accuracy compared to our baseline, and more than 2% than previously best published
results (You et al.l [2017).

We also highlight the fact that models reached a high validation accuracy quicker. For example, the
ResNet50 model reached a 75.7% at epoch 35 — only 0.6% shy of the final accuracy achieved at
epoch 90 with the baseline model (figure [3). Also, the increase in validation error between epochs
30 — 60 suggests that either learning rate or weight-decay values may need to be altered as discussed
by|Zagoruyko|(2016)) who witnessed similar effects. This leads us to believe that with careful hyper-
parameter tuning of the training regime, we can shorten the number of epochs needed to reach the
desired accuracy and even improve it further.

—baseline (M=1) —baseline (M=1)
—M=4 24 —M=4

% 20 40 60 80 %0 82 84 86 88 90
epoch epoch
(a) Training (dashed) and validation error (b) Training (dashed) and validation final error

Figure 3: Impact of batch augmentation (ResNet50, ImageNet). We used the original (red) training
regime and compared to batch augmentation with M = 4

Table 1: Validation accuracy (Topl) results for Cifar, ImageNet models. Bottom: test perplexity
result on Penn-Tree-Bank (PTB) dataset

Network Dataset Baseline BatchAugment
ResNet44 (He et al., 2016) Cifarl0 93.07% 93.65% (M=10)
ResNet44 + cutout Cifar10 93.7% 95.27% (M=40)

VGG + cutout (Simonyan & Zisserman, [2014)) Cifarl0 93.82% 95.32% (M=32)
Wide-ResNet28-10 + cutout (Zagoruyko} 2016) Cifarl0 96.6% 97.15% (M=6)

DARTS (Liu et al., 2018) Cifarl0 97.11% 97.64% (M=10)
ResNet44 + cutout Cifar100 7297% 74.13% (M=40)
VGG + cutout Cifar100 73.03% 75.5% (M=32)
Wide-ResNet28-10 + cutout Cifar100 79.85% 80.13% (M=10)
DenseNet100-12 (Huang et al.) Cifar100 77.73% 78.8% (M=4)
AlexNet (Krizhevsky et al., [2012) ImageNet 58.25% 62.31% (M=8)
MobileNet (Howard et al.,|[2017) ImageNet 70.6% 71.4% (M=4)
ResNet50 (He et al., [2016) ImageNet 76.3% 76.8% (M=4)
Word-level LSTM (Merity et al.,[2017) PTB 58.8 ppl 58.6 ppl (M=10)

Under review as a conference paper at ICLR 2019

3.3 DROPOUT AS INTERMEDIATE AUGMENTATION

We also wished to test the ability of batch augmentation to improve results in tasks where no ex-
plicate augmentations are performed on input data. An example for this kind of tasks is language
modeling, where the input is fed in a deterministic fashion and noise is introduced in intermediate
layers in the form of Dropout (Srivastava et al., 2014), DropConnect (Wan et al., 2013), or other
forms of regularization (Krueger et al.| 20165 Merity et al., 2017).

We used the implementation by Merity et al.| (2017) and the proposed setting of LSTM word-level
language model over the Penn-Tree-Bank (PTB) dataset. We used a 3-layered LSTM of width 1150
and embedding size of 400, together with Dropout regularization on both input (p = 0.4) and hidden
state (p = 0.25), with no finetuning.

We used M = 10, increasing the effective batch-size from 20 to 200. The use of multiple instances
of the same samples within the batch caused each instance to be computed with a different random
dropout mask.

We again observed an improvement, yet more modest compared to the previous experiments, reach-
ing a 0.2 improvement compared to baseline in final test perplexity (see table|[I).

4 UNDERSTANDING BATCH AUGMENTATION

4.1 THE PERILS OF LARGE BATCH TRAINING

To understand why Batch Augmentation (BA) works, we first aim to better understand why it is
harder to train with a large batch: it was previously observed that with large batch there is a need
to adjust the learning rate (Hoffer et al., 2017} |Goyal et al., 2017)), and also that the generalization
performance may be degraded when very large batch sizes are used (Goyal et al.,|2017). Then, in the
next section, we suggest why, with BA, such issues are alleviated. Thus, with BA we can observe
more data augmentations during training (which is beneficial for generalization), without suffering
much from the typical issues related to large batch training.

We examine the optimization of loss functions of the form

1 N
n=1

where {x,,, yn}f:[:l is a dataset of IV data sample-target pairs and / is the loss function, of eq. EI
using SGD with mini-batch of size B

1
Wip1 = Wg — WE Z Vwl (Wi, Xn,¥n) (2)
neB(k(t))

where we assume for simplicity that the indices are sampled with replacement, and that B divides
N. Therefore, k (t) is sampled uniformly from {1, ..., N/B}. When our model is sufficiently rich
and over-parameterized (e.g., deep networks), we typically converge to a minimum w* which is
global minimum on all datapoints, i.e., Vn : Vyf (W*,X,,y,) = 0. We linearize the dynamics of
eq. P|near w* to obtain

1
Wit1 = Wi — UE Z H,w;, 3)
neB(k(t))
where we assumed (without loss of generality) that w* = 0, and denoted H,, £ V20 (W, X, Yn)-

Since we are at a global minimum, H,, are all symmetric PSDs (there are no descent directions).
We prove (in the appendix) the following theorem:

Theorem 1. Let)
(H), = 1B] > H,
neB(k)
be the averaged Hessian over the mini-batch and

Amax = T(H), 4
ken[ll\?;(B]erzrl\l\E}ﬁizlv (H)pv @)

Under review as a conference paper at ICLR 2019

be the maximum over the maximal eigenvalues of { (H),, fj:/]13.
The iterates of SGD (eq. |3) will converge if
2
)\max < —. (5)
n

Also, this bound is tight in the sense that it is also a necessary condition for certain datasets.

According to Theorem (I} for a given minimum w*, the maximum eigenvalue over all the mini-
batches (i.e., Amax) dictates what is the maximal learning rate for which SGD converges to that
minimum. At high learning rates, this encourages SGD to converge towards “flat” minima, where
the max eigenvalue of the full Hessian matrix is small, as observed earlier (Keskar et al.|[2017), and
explained for full batch gradient descent (Nar & Sastry, [2018).

More importantly, eq. [5] also encourages SGD with high learning rate to converge to minima with
low variability of (H), — since high variability of (H), will typically result in large Apyax. By
increasing the mini-batch size, we typically decrease the variability of (H) «» and therefore Apax,
since we replace max operations with averaging. Thus, if we increase the mini-batch size, certain
minima with high variability in H,, will become more stable, and therefore SGD may converge to
them, instead of the original minima with low variability. Since we converge to different minima,
these may have worse generalization performance then the original minima.

This issue can be partially mitigated by increasing the learning rate (as suggested by |[Hoffer et al.
(2017);|Goyal et al.|(2017)) since by sufficiently fine tuning of the learning rate we might make these
new minima unstable again, while keeping the original minima stable. However, merely changing
the learning rate may not be sufficient for very large batch sizes, when some minima with high vari-
ability and low variability will eventually have similar A5, so SGD will not be able to discriminate
between these minima.

4.2 VARIANCE REDUCTION IN BATCH AUGMENTATION

Using larger mini-batches, both in standard practice, and in batch augmentation, results in a smaller
variance of the mini-batch averaged version of the gradients and Hessians ((H),). Therefore, in
both cases Aax decreases, in a way that may result in the large-batch issues described above — the
need to tune the learning rate, and the degraded performance with very large batch sizes.

However, standard mini-batch SGD averages the gradient over different samples, while Batch aug-
mentation additionally averages the gradient over several transformed instances of the same samples.
These instances, as they describe the same samples (typically with only small changes), may produce
correlated gradients within the batch. As such, the variance reduction achieved by batch augmen-
tation with a factor of M is expected to be significantly lower than the (1/ v/M) reduction that an
uncorrelated sum of M samples would have. This implies that the A\p,,,x (eq. [5)) would change much
less in batch augmentation then in standard large batch training. Thus, batch augmentation enables
the model to see more augmentations while changing Ap,.x much less. Therefore, we are expected
to observe less of the issues of standard large batch training.

Nevertheless, batch augmentation still leads to significant variance reduction. In order to empirically
evaluate this effect, we measured the L? of the gradients of the weights throughout the training for
the setting described in[3.1] As could be expected, the variance reduction is reflected in the norm
values as can be seen in figure[d] As the effective learning step is affected by this variance reduction,
we can adapt the learning rate to partially account for this change, as described in the previous
section. The correlated nature of the batch suggests that the needed learning rate correction for
batch augmentation should be small.

5 CONCLUSIONS

In this work, we have introduced "Batch augmentation”, a simple and effective method to improve
generalization performance of deep networks by training with large batches composed of multiple
transforms of each sample. We have demonstrated significant improvements on various datasets and
models, with both faster convergence per epoch, as well as better final validation accuracy.

Under review as a conference paper at ICLR 2019

1.14
11
%(19’
g(lS’
1 — baseline (M=1)
307 _Majze\ﬂe
—M=4
061 i
0.5] —wm=t6
—M=32
0.4 : . : ; |
0 20 40 60 80 100

epoch

Figure 4: Comparison of gradient L? norm (ResNet44 + cutout, Cifarl0, B = 64) between the
baseline (M = 1) and batch augmentation with M € {2,4, 8,16, 32}

We suggest a theoretical analysis to explain the advantage of BA over traditional large batch meth-
ods. We also show that batch augmentation causes a decrease in gradient variance throughout the
training, which is then reflected in the gradients’ L? norm used in each optimization step. This may
be used in the future to search and adapt more suitable training hyper-parameters, that will possibly
allow faster convergence and even better performance.

Recent hardware development allowed the community to use larger batches without increasing the
wall clock time either by using data parallelism or by leveraging more advanced hardware. However,
several papers claimed that working with large batch results with accuracy degradation (Masters &
Luschi} |2018). Here we argue that by using multiple instances of the same sample we can leverage
the larger batch capability to increase accuracy. These findings give another reason to prefer training
settings utilizing significantly larger batches than those advocated in the past.

As hardware continues to improve, we are bound to witness more cases similar to the one depicted in
table 2] (taken from[You et al[(2017)). In this example, we can see that training AlexNet on current
hardware takes approximately the same time when using a batch-size of 512 or 4096. Our work
suggests a novel approach to address this growing issue: simply increase number of augmentation
(in this case, to M = 8) and achieve better accuracy at the same training time (table E])

Table 2: The speed and time for AlexNet-BN. Table from You et al.| (2017)

| Batch Size | Stable Accuracy | 4-GPU speed 4-GPU time |

512 0.602 6627 img/sec 5h 22m 30s
4096 0.604 6585 img/sec 5h 24m 44s

REFERENCES

Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Under review as a conference paper at ICLR 2019

Edouard Grave, Armand Joulin, Moustapha Cissé, David Grangier, and Hervé Jégou. Efficient
softmax approximation for GPUs. 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770-778, 2016.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. In NIPS, pp. 1731-1741, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
ICLR, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

David Krueger, Tegan Maharaj, Janos Kramar, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary
Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Chris Pal. Zoneout: Regularizing rnns
by randomly preserving hidden activations. arXiv preprint arXiv:1606.01305, 2016.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612, 2018.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing Istm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Kamil Nar and S Shankar Sastry. Step size matters in deep learning. 2018.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation.
arXiv preprint arXiv:1806.00187, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Leon Sixt, Benjamin Wild, and Tim Landgraf. Rendergan: Generating realistic labeled data. Fron-
tiers in Robotics and Al, 5:66, 2018.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9, 2015.

Under review as a conference paper at ICLR 2019

Toan Tran, Trung Pham, Gustavo Carneiro, Lyle Palmer, and Ian Reid. A bayesian data augmenta-
tion approach for learning deep models. In Advances in Neural Information Processing Systems,
pp- 2797-2806, 2017.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural
networks using dropconnect. ICML’13, pp. II-1058-111-1066. JMLR.org, 2013. URL http:
//dl.acm.org/citation.cfm?id=3042817.3043055.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 2017.

Komodakis Zagoruyko. Wide residual networks. In BMVC, 2016.

10

http://dl.acm.org/citation.cfm?id=3042817.3043055
http://dl.acm.org/citation.cfm?id=3042817.3043055

Under review as a conference paper at ICLR 2019

Appendix

A PROOF OF THEOREM 1]

By examining the first moment dynamics of this equation

Ewt+1 = (I —n <H>)]EWt 5 (6)
where

it is easy to see that a necessary and sufficient condition for convergence of eq. [6]
< 2
)\max < = 9 (7)
n

where Ay is the maximal eigenvalue of (H). This is the standard convergence condition for full
batch SGD, i.e., gradient descent.

First, to see eq. [5]is a necessary condition for certain datasets, suppose we have H,, = 0 in all
samples, except, in a single mini-batch k, for which we have

-
Amax = max v (H), v,
Vv:|v]=1

In this case, the weights are updated only when we are at mini-batch k. Therefore, ignoring all the
mini-batches, the dynamics are equivalent to full batch gradient descent with the dataset restricted
to mini-batch k. Therefore, Apax = Amax, and we only have first order dynamics (with no noise).

Thus, the necessary and sufficient condition for stability is eq. Iw1th Amax = Amax, Which is eq.

Next, to show eq. E] is also a sufficient condition (for all data sets) we examine the second moment
dynamics. First we observe that

T
W:+1Wt+1 = W;r (I -1 <H>k(t)) (I - <H>/<~‘(t)> Wi

=w, (I — 20 (H)) + 07 (H)y) <H>k(t)) w

Denoting
L1 N/B
< 2>:m’;<)i (H)
Thus, we obtain
Ellwi1]* = E [w/y (T— 20 (H) +n* (H?)) wy] . ®)

Since H,, are all PSDs it is easy to see that if z is a zero eigenvector of (H) or <H2> then it must be
a zero vector eigenvector of other matrix, and also of all H,,, Vn. We denote the null space

VRS {V e Rd| vl =1, (H)z = O}

and its complement V. From eq. |8 a necessary and sufficient condition for convergence of this
equation is

maéch (I-2nH)+7*(H*))v<1.)
ve

To complete the proof we will show that eq. [5|also implies eq. [0} for any B.
First we notice that Eq. E] implies that Vv € V :

N/B

N
vT Z Z H,v< %Z AmaxV ' HpV = AmaxV | H)v. (10

k 0 neB(k)

Under review as a conference paper at ICLR 2019

Also, since Amax > Amax, We have
v (H)?v < Apaxv | (H) V. (11)
We combine the above results to prove the Lemma, and Vv € v
v [(I-2nH))+7* (H?*)]v
=1-2pv' (H)v+n*v' (H*)v

¢))
<1—2npv (H)v + 17" Amaxv ' (H) v

=1—7(2 - nAmax) v (Hyv,

where in (1) we used egs. and Given the condition in eq. |5|this is smaller then 1, so eq. |§|
holds, so this proves the Theorem.

As a side note, we can bound the convergence rate using the last equation. To see this, we denote
Py as the projection to V), and

Amin 2 min v (H)v
vYvey

as the smallest non-zero eigenvalue of (H). iterating the recursion we obtain that the convergence

rate is linear) ,)
E [[Pywe]|” < (1 = 1(2 = nAmax) Amin)" E[[Ppwoll” . (12)

However, note this bound is not necessarily tight.

A.1 COMPARISON WITH LONGER TRAINING

5043
4 ~ Baseline (B=64, M=1, Epochs=100) 8 ~ Baseline (B=64, M=1, Epochs=100)
40 —BA (B=64, M=10, Epochs=100) 7.8 —BA (B=64, M=10, Epochs=100)
~RA (B=640, M=1, Epochs=1000) 7.6 ~RA (B=640, M=1, Epochs=1000)

error %

7.4
72 WW
7

6.8
6.6 \/\m

o] \
0 10000 20000 30000 40000 50000 60000 70000 70000 71000 72000 73000 74000 75000 76000 77000 7800
steps steps
(a) Training (dashed) and validation error (b) Training (dashed) and validation final error

Figure 5: A comparison between (1) baseline B=64 training (2) our batch augmentation (BA)
method with M=10 (3) regime adaptation (RA) with B=640 and 10x more epochs

gradient norm

15 " Baseline (B=64, M=1, Epochs=100)

: " BA (B=64, M=10, Epochs=100)
§ ““RA (B=640, M=1, Epochs=1000)
S 1 . "
<
ko]
o
Cos

0 et

0 20000 40000 60000 80000

steps
Figure 6: A comparison of gradient norm between (1) baseline B=64 training (2) our batch augmen-

tation (BA) method with M=10 (3) regime adaptation (RA) with B=640 and 10x more epochs. As
expected, BA exhibits a gradient norm smaller than Baseline, but larger than large-batch training.

12

	Introduction
	Large batch training of neural networks
	Role and significance of data augmentations

	Batch augmentation
	Experiments
	Cifar10/100
	ImageNet
	Dropout as intermediate augmentation

	Understanding Batch Augmentation
	The perils of large batch training
	Variance reduction in Batch Augmentation

	Conclusions
	Proof of Theorem 1
	Comparison with longer training

