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Abstract

Probabilistic Models are a natural framework for describing the stochastic relation-1

ships between variables in a system to perform inference tasks, such as estimating2

the probability of a specific set of conditions or events. In application it is often3

appropriate to perform sensitivity analysis on a model, for example, to assess the4

stability of analytical results with respect to the governing parameters. However,5

typical programming language are cumbersome for encoding and reasoning with6

complex models and current approaches to sensitivity analysis on probabilistic7

models are not scalable, as they require repeated computation or estimation of the8

derivatives of complex functions. To overcome these limitations, and to enable effi-9

cient sensitivity analysis with respect to arbitrary model queries, e.g., P (X|Y = y),10

we propose to use Automatic Differentiation to extend the Probabilistic Program-11

ming Language Figaro.12

1 Introduction13

In reasoning about an uncertain system, Probabilistic Models (PMs) can help understand how the14

system will behave even though aspects of it are stochastic or unknown. For example, a Bayesian15

network is a directed acyclic graph, which encodes local probability relationships, through the graph’s16

structure [4]. Variable’s relationships are defined through their probability density functions (pdfs),17

and the parameters that define them. Once the pdfs are in place, it is natural to ask questions on the18

model such as: the probability of a specific set of conditions of the system, the most probable state of19

variables, generating the likelihood of events, or asking these queries with evidence asserted. For20

instance, an analyst could wish to perform a query on the system such as: what is the probability X is21

true given we observe y (this can be written as P (X|Y = y))? For a concrete case which will serve22

as a running example for this paper, consider the system graphically shown in Fig 1(a). It has random23

variables representation the occurrence of an earthquake and a burglary. These variables influence24

whether a burglar alarm sounds, which in turn influences whether a neighbor calls. In this example25

all the variables are Boolean. A query on this model could be: what is the probability that the alarm26

is tripped, given a call was received? Solving these inference tasks can be done by exact methods27

such as variable elimination, or approximate methods such as belief propagation, Monte Carlo, Gibbs28

Sampling, etc.). We envision supporting a wide range of diverse and complex PM so we encode29

our models via a probabilistic programming language. Probabilistic programing uses concepts from30

programming languages to compactly encode complex PM [2]. Specifically, we use an open source31

probabilistic programming language, Figaro [6].32

In computing inference queries, there is no information embedded in the answer that provides33

insight as to how stable the solution is. E.g., if a parameter that defines the network is changed34

slightly, will the answer to the query change substantially? Questions of this type can be classified as35
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sensitivity analysis, which can be roughly described as the study of how the variation in the output of36

a mathematical model or system can be affected by variation in its inputs [8]. Suppose it is known to37

the analyst that there is significant uncertainty associated with a parameter x for this a probabilisitic38

model; it reasonable to ask: how far off must the true value of x be from our estimated value, to39

change the query output by 5%? Referencing the running example, the probabilities that describe the40

relationship between variables are encoded via a conditional probability table. These probabilities41

parametrize the model, giving numerical values which are used in performing queries on the it. For42

example, suppose the parameter of interest is the probability that alarm is true, given earthquake43

is true, and burglary is false: x = P (alarm = true|earthquake = true, burglary = false).44

Traditional analysis of changes in the output of a model with respect to a specific parameter is45

possible [5], but manually repeating this analysis for all parameters is slow and laborious. More46

recent efforts explore means to compute node-to-node derivatives [1], but do not scale to more general47

inference tasks.48

At the core of sensitivity analysis is the question of how much a function is changing with respect to49

changes to its input, captured by the mathematical notion of a gradient. Once gradients are obtained,50

they can be used to search for optimal parameter values which answer the sensitivity queries posited51

by the user. In our example the inference queries act as the function and the input are the parameters52

that define the PM. Computing these queries is often computationally expensive, and can be subject53

to variation due to approximations made to render calculations computationally feasible, even for54

parameters with constant value. A variety of methods exist to compute gradients, and we consider55

dual number enabled Automatic Differentiation (AD) [7] for its ability to compute exact derivatives56

in a computationally efficient manner [3]. There are several different mechanisms for AD, which57

compute gradients distinctly (e.g., forward accumulation, reverse mode), and we adopted a pure dual58

number approach for our prototypes. The semi-ring they form is analogous to the semi-ring used in59

the Variable Elimination solver used Figaro, allowing for a more straightforward implementation.60

2 Approach61

2.1 Sensitivity Query Example Problem62

The motivation for developing a tool for performing sensitivity analysis, was answering questions63

such as: what is the minimum amount we can change parameter x by, such that the output of a query64

changes by ε. This can be expressed in the minimization problem65

argmin
δ

δ

subject to |f(x0 + δ)− f(x0)| > ε.
(1)

where f(x) is the query, and x is the parameter of interest. We now extend our example with a66

sensitive analysis query and pose it as the minimization problem in Eq. 1. Let the query of interest67

be the probability of the alarm being triggered given the neighbor is calling, and the parameter of68

interest be the prior on an earthquake occurring: x = P (earthquake = true), f(x) = P (alarm =69

true|call = true). Note that for this analysis we consider all other parameters constant, so that f is70

only a function of x. In order to solve the minimization problem, we will a Newton’s line search to71

update x:72

xi+1 = xi − η
f(xi)

f ′(xi)
(2)

where η is the learning rate for the search. The challenge now becomes computing the derivative73

f ′(x) at each step. Symbolic methods are appealing in that they are exact, but they suffer from74

expression bulge as models get complex. This quickly leads to intractable calculations as models75

become complex. Numerical derivatives are unappealing because computing the query f(x) may be76

expensive. Worse, approximations and sampling methods entail that the results of successive queries77

of f(x) may vary on the same scale as the true derivative, which creates "noisy" gradient estimates,78
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e.g., when evaluating f(x + δ) − f(x). Therefore, we use dual numbers to perform automatic79

differentiation to yield an exact derivative without computing the query value multiple times. 180

2.2 Extending Figaro’s Variable Elimination Algorithm with AD81

Dual numbers form a semiring, extending real numbers by adjoining a new element d with the82

property d2 = 0 (e.g., a dual number may be written as a+ bd, where a, b ∈ R). Dual numbers have83

the interesting property that when a dual number is passed into a function, the output contains the84

gradient value in its dual component: I.e.,85

f(a+ bd) = c+ ed =⇒ f ′(a) = e (3)

This result depends on the property d2 = 0 and the arithmetic associated with the dual number86

semiring. To perform inference on this PM we use Figaro’s Variable Elimination (VE) algorithm,87

but instead of standard arithmetic we compute over a dual number semiring. With the parameter of88

interest expressed as a dual number, the coefficient of the dual number in the output is the derivative89

of the query with respect to the parameter of interest.90

To see this, consider our example (the query is the probability of the probability of the alarm being91

triggered given the neighbor is calling, and the parameter of interest is the prior on an earthquake92

occurring). Using the chain rule, we can write out the analytic expression the probability:93

P (A+|C+) =
1

Z

∑
E,B

P (E)P (B)P (A|B,C)P (C|A) (4)

where Z denotes P (C+), X+ denotes X is true, and X− denotes X is false. We can then now plug94

in a dual number x+ d for the parameter of interest.95

P (A+|C+) =
1

Z

∑
E,B

(x+ d)EP (B)P (A|B,C)P (C|A) (5)

where (x + d)E takes on the value of P (E = true) or P (E = false) depending on which value96

of E is being used in the summation. After the summation is performed we group terms by real97

components and dual components to get:98

P (N+) = α+ βd (6)

Where α is the numerical answer to the inference query, and β with derivative of the query with99

respect to the parameter of interest.100

We implemented this in Figaro by extending the initial factors produced by the VE algorithm with101

dual numbers (i.e., the factors produced from VE are similar to the individual terms produced in102

Eq. 4). These factors will have numerical values associated with them; for the factors relevant to103

the parameter of interest we give the dual coefficients a value of 1, and all others 0. Once the terms104

are assigned the correct dual numbers the VE algorithm runs as usual, but with arithmetic defined105

by the dual number semiring. The output contains a dual number (such as in Eq 6), which will106

contain both the query output in the natural number component and the gradient information in the107

dual component. We refer to this algorithm as Variable Elimination with Automatic Differentiation108

(VEAD).109

2.3 Results110

For the example in 2.1 we used the gradients obtained by the VEAD algorithm to execute a Newton’s111

line search as in Eq. 2. The results are depicted in Fig. 1(b), where one can see the parameter value112

1The computational cost is roughly a small constant factor more than the cost of computing the query
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(a) (b)

Figure 1: a) An example four node Bayesian model describing a scenario where a burglary or an
earthquake influences whether an alarm goes off, which influences whether a neighbor calls. Each
circle is a Boolean random variable characterized by conditional probability tables. b) An iterative
search over the parameter space leads to the optimum value, solving the sensitivity query.

quickly converging to optimum value which caused the query to change by a target 5%. The method113

was also tested with a variety of PMs of varying complexity and results were verified by manually114

and numerically checking the gradients.115

3 Conclusion and Future Work116

We explored the usage of Automatic Differentiation to extend the probabilistic programming language117

Figaro, with a tool for efficiently calculating gradients of probabilistic inference queries. These118

gradients can be used to perform sensitivity analysis on these queries in order for an analyst to answer119

such questions as: how far off must the true value of a parameter of the system be from our estimated120

value, to change the query output by 5%? We have shown questions such as this can be answered121

with our framework utilizing a newtons line search to solve a for the optimum parameter value.122

There are ample directions for future work. First, to validate the efficiency of our method, we would123

like to conduct a series of "wall clock tests" versus purely numerical means (even though these124

numerical derivatives may suffer from numerical instabilities, which the dual number approach for125

calculating does not). Secondly, we would like to explore augmenting powerful, approximate solvers126

such as Markov Chain Monte Carlo, Gibbs Sampling, or Importance Sampling, with the ability to127

ingest dual numbers in order to automatically compute gradients when computing queries, in the128

same we extended Variable Elimination to produce gradients.129
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