Workshop track - ICLR 2017

ONLINE MULTI-TASK LEARNING USING ACTIVE
SAMPLING

Sahil Sharma & Balaraman Ravindran
Department of Computer Science & Engineering
Indian Institute of Technology, Madras

Chennai, 600036, India

{sahil,ravi}@cse.iitm.ac.in

ABSTRACT

One of the long-standing challenges in Artificial Intelligence for goal-directed be-
havior is to build a single agent which can solve multiple tasks. Recent progress
in multi-task learning for goal-directed sequential tasks has been in the form of
distillation based learning wherein a single student network learns from multiple
task-specific expert networks by mimicking the task-specific policies of the ex-
pert networks. While such approaches offer a promising solution to the multi-task
learning problem, they require supervision from large task-specific (expert) net-
works which require extensive training. We propose a simple yet efficient multi-
task learning framework which solves multiple goal-directed tasks in an online or
active learning setup without the need for expert supervision.

1 INTRODUCTION

Models learned by Deep Reinforcement Learning (DRL) algorithms (Mnih et al., 2015; 2016; Schaul
etal., 2015; Lillicrap et al., 2015) tend to be task-specific. The inability of the Al agents to generalize
across tasks gives rise to the field of multi-task learning (MTL) which seeks to find a single agent (in
the case of DRL algorithms, a single deep neural network) which can perform well on all the tasks.
Successful DRL approaches to the goal-directed MTL problem are of the following kind. They seek
to condense the prowess of multiple task-specific teacher networks into a single student network.
The Policy Distillation framework (Rusu et al., 2015) and Actor-Mimic Networks (Parisotto et al.,
2015) fall into this category of approaches. One trains k task-specific teacher networks and then
distills the individual task-specific policies learned by the teacher networks into a single student net-
work which is trained using supervised learning. These approaches require teacher networks which
are task-specific Deep Q-Networks (Mnih et al., 2015). Such a training of all the teacher networks
tends to be extremely resource intensive and often infeasible with growing k. In this work we present
the first successful truly on-line deep reinforcement learning approach towards multi-task learning
on tasks which have very different state spaces. Our approach never stops learning on any of the
tasks and does not require any form of teacher networks’ supervision. Our approach learns from
the raw video stream of pixel-level data and scalar rewards generated by the environments of the
multiple tasks that it is trained to solve. We present empirical evidence that our approach signifi-
cantly outperforms the baselines we have considered. While our approach can be combined with
any DRL algorithm, we show results on one particular instantiation of our approach by combining
it with A3C (Mnih et al., 2016) algorithm and showing results on the Atari 2600 domain. A more
complete version of this manuscript can be found at (Sharma & Ravindran, 2017)

2 MODEL DEFINITION

We first describe a baseline multi-tasking agent (MTA) (called BA3C) and then describe our ap-
proach (Active-sampling A3C - A4C) as a modification of BA3C.

The BA3C MTA is a single A3C network which learns to perform k tasks in an online learning
fashion. At the end of every episode, the BA3C agent decides uniformly at random, the identity
of the task on which it will train next, for 1 episode. The training algorithm for BA3C is given as
Algorithm 1.



Workshop track - ICLR 2017

Algorithm 1 Baseline Multi-Task Learning

1: function BASELINEMULTITASKING( SetOfTasks T ')
2: k<« |T|
t < Total number of training steps for the algorithm
bmta < the naive baseline multi-tasking agent
for iin{1,--- ,k} do
pit %
for train_steps:0 to ¢ do
J < j ~ p;. Identity of next task to train on
score; <— bsmta.train_for_one_episode(T)

R AR Al

Our method is based on the abstract machine learning principle of active learning (Settles, 2010;
Prince, 2004; Zhu, 2005). The core hypothesis which drives active learning in the usual machine
learning contexts (such as classification problems) is that a machine learning algorithm can achieve
better performance with fewer labeled training examples if it is allowed to choose the data from
which it learns (Settles, 2010). We present the first successful online multi-tasking deep reinforce-
ment learning algorithm. This means that our method does not require access to the hidden features
(Rusu et al., 2016) or the action-value predictions (Rusu et al., 2015; Parisotto et al., 2015) of multi-
ple task-specific experts for being able to solve multiple tasks using a single machine learning agent.
Our method is also data-efficient. All of our agents are trained on half the training data that would
be required to train all the task-specific expert networks. The training algorithm for A4C is stated as
Algorithm 2.

Algorithm 2 Active Sampling based Multi-Task Learning
1: function MULTITASKING( SetOfTasks T )

2: k+ |T|

3: b; < Baseline score in task 7;. This could be based on expert human performance or even
published scores from other technical works

4: n <— Number of episodes used for estimating current average performance in any task 7;

5: [ <~ Number of training steps for which uniformly random policy is executed for task

selection. At the end of [ training steps, the agent must have learned on > n episodes
Vtasks T; € T

6: t < Total number of training steps for the algorithm
7: s; < list of the last n scores that the multi-tasking agent scored during training on task 7;.
8: p; < probability of training on an episode of task 7T; next.
9: bsmta <— the biased sampling multi-tasking agent

10: T < Temperature hyper-parameter of the softmax operation

11: for iin {1,--- ,k} do

12: pi 1

13: for train_steps:0 to ¢ do

14: if train_steps > [ then

15: for iin {1, --- ,k} do

16: a; < s;.average()

17: m; < %

18: Di < 7221 lemq

19: J < j ~ p. Identity of next task to train on

20: score; <— bsmta.train_for_one_episode(T7)

21: s;j.enqueue(score; )

22: if 5;.length() > n then

23: sj.dequeue()




Workshop track - ICLR 2017

3 EXPERIMENTAL SETUP AND RESULTS

We tested our approach on 3 different multi-tasking problems. M7} involved solving the set
of games {Space Invaders, Seaquest, Crazy Climber, Demon Attack, Name this game, Star
Gunner}. MT; involved solving the set of games {Asterix, Alien, Assault, Bank Heist, Gopher,
Tutankhamun}. M T3 involved solving the set of games {Breakout, Centripede, Kung Fu, Frostbite,
Q*-Bert, Wizard Of Wor}.

Invader:
1400 Space Invaders

1000
80

00
1500 |-

0
70000 12000

If\ AW
oo g W

.
.

Figure 1: Comparison of performance of A4CSH agent with BA3CSH agent as well as task-specific
A3C agents for 6 tasks (multi tasking instance MT?)

Since the original A3C publication Mnih et al. (2016) contains a different metric (human starts) for
evaluation of performance as compared to raw task scores (which we would like to optimize for),
we took the published baseline A3C scores from Sharma et al. (2017) as baseline scores. All hyper-
parameters throughout this work are tuned on MT}.

In most previous works such as Parisotto et al. (2015), the arithmetic mean of the performance of the
multi-tasking agent on the different tasks is considered as the performance metric based on which
the multi-tasking agent is evaluated. This metric is not robust enough because it becomes impossi-
ble to distinguish a good multi-tasking agent (latter) from a bad one (former) using this metric of
average performance.

To alleviate this problem, we define the following performance metric: qum =

(Zle min (%7 1)) k. We can similarly define geometric-mean and harmonic-mean based met-

rics. The evaluation procedure followed throughout our work is as follows. The multi-tasking net-
work is trained for 300 million steps. Every 3 million steps, it is evaluated on each of the 6 tasks
for 10 episodes. These 100 evaluations are stored in a log file. After the completion of training, the
best model according to each metric is selected separately and offline by directly maximizing for the
metric. The performance is reported in Tables 1. In our MTAs, the behavior policy of the agent has
a constant size equal to 18, the maximum possible number of actions in the Atari 2600 emulator.
We call the A4C version of these agents A4CSH and the BA3C version of these agents BA3CSH.

Table 1: Comparison of performance of A4CSH agents to BA3CSH agents according to metrics
Gam» Ggm and g, on multi-tasking instances M1, MT5 and MT3

Name Agent Qam dgm qhm

MT; | A4CSH 0.799 | 0.782 | 0.678
MT; | BA3CSH | 0.244 | 0.131 | 0.063
MT, | A4CSH 0.601 | 0.580 | 0.515
MT, | BA3CSH | 0.372 | 0.343 | 0.297
MTs; | A4CSH 0.646 | 0.617 | 0.536
MTs | BA3CSH | 0.337 | 0.047 | 0.008

It is clear from table 1 that A4C out-performs BA3C, specially if one would like to optimize for the
performance of the multi-tasking agent on all the tasks (gp,)-



Workshop track - ICLR 2017

REFERENCES

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, February 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Michael Prince. Does active learning work? a review of the research. Journal of engineering
education, 93(3):223-231, 2004.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy distil-
lation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. 4th
International Conference on Learning Representations, 2015.

Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-66):11,
2010.

Sahil Sharma, Aravind S. Lakshminarayanan, and Balaraman Ravindran. Learning to repeat: Fine
grained action repetition for deep reinforcement learning. To appear in 5th International Confer-
ence on Learning Representations, 2017.

Sahil A Sharma and Balaraman Ravindran. Online multi-task learning using active sampling. arXiv
preprint arXiv:1702.06053v2, 2017.

Xiaojin Zhu. Semi-supervised learning literature survey. 2005.



	Introduction
	Model Definition
	Experimental Setup and Results

