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ABSTRACT

We consider the problem of training generative models with a Generative Adversar-
ial Network (GAN). Although GANs can accurately model complex distributions,
they are known to be difficult to train due to instabilities caused by a difficult
minimax optimization problem. In this paper, we view the problem of training
GANs as finding a mixed strategy in a zero-sum game. Building on ideas from
online learning we propose a novel training method named CHEKHOV GAN 1. On
the theory side, we show that our method provably converges to an equilibrium
for semi-shallow GAN architectures, i.e. architectures where the discriminator
is a one-layer network and the generator is arbitrary. On the practical side, we
develop an efficient heuristic guided by our theoretical results, which we apply to
commonly used deep GAN architectures. On several real-world tasks our approach
exhibits improved stability and performance compared to standard GAN training.

1 INTRODUCTION

A recent trend in generative models is to use a deep neural network as a generator. Two notable
approaches are variational auto-encoders (VAE) (Kingma & Welling, 2013; Rezende et al., 2014) as
well as Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). Unlike VAEs, the GAN
approach offers a way to circumvent log-likelihood-based estimation and it also typically produces
visually sharper samples (Goodfellow et al., 2014). The goal of the generator network is to generate
samples that are indistinguishable from real samples, where indistinguishability is measured by an
additional discriminative model. This creates an adversarial game setting where one pits a generator
against a discriminator.

Let us denote the data distribution by pdata(x) and the model distribution by pu(x). A probabilistic
discriminator is denoted by hv : x→ [0; 1] and a generator by Gu : z→ x. The GAN objective is:

min
u

max
v

M(u,v) =
1

2
Ex∼pdata log hv(x) +

1

2
Ez∼pz log(1− hv(Gu(z))) . (1)

Each of the two players (generator/discriminator) tries to optimize their own objective, which is
exactly balanced by the loss of the other player, thus yielding a two-player zero-sum minimax game.
Standard GAN approaches aim at finding a pure Nash Equilibrium by using traditional gradient-based
techniques to minimize each player’s cost in an alternating fashion. However, an update made by one
player can repeatedly undo the progress made by the other one, without ever converging.

In general, alternating gradient descent fails to converge even for very simple games as shown
by Salimans et al. (2016). In the setting of GANs, one of the central open issues is this non-
convergence problem, which in practice leads to oscillations between different kinds of generated
samples (Metz et al., 2016).

While standard GAN methods seek to find pure minimax strategies, we propose to consider mixed
strategies, which allows us to leverage online learning algorithms for mixed strategies in large games.

1We base this name on the Chekhov’s gun (dramatic) principle that states that every element in a story
must be necessary, and irrelevant elements should be removed. Analogously, our CHEKHOV GAN algorithm
introduces a sequence of elements which are eventually composed to yield a generator.
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Figure 1: Three types of GAN architectures. Left: shallow. Middle: semi-shallow. Right: deep.

Building on the approach of Freund & Schapire (1999), we propose a novel training algorithm for
GANs that we call CHEKHOV GAN .

The standard GAN training method is not guaranteed to converge for general GAN architectures.
Nevertheless, it does converge for shallow ones 2, i.e. for GAN architectures which consist of a single
layer network as a discriminator, and a generator with one hidden layer (see Fig. 1(a)). Unfortunately,
shallow GANs are very different from the deep GANs (Fig. 1(c)) which are used in practice, and
ideally one would hope to understand models which are more similar to deep architectures.

In this paper we make a step forward by considering semi-shallow GANs, an intermediate architecture
where the generator is any arbitrary network and the discriminator consists of a single layer (Fig. 1(b)).
Our contributions are:

(1) We show that finding a Mixed Nash Equilibrium (MNE or simply equilibrium) gives rise to
useful generators and discriminators.

(2) We provide an algorithm that provably converges to an equilibrium for semi-shallow architectures.

(3) Guided by our theoretical results we devise a new GAN training algorithm that is applicable to
standard deep GAN architectures.

We first discuss the benefits of pursuing a mixed equilibrium. Based on results from game theory
we show that by reaching an equilibrium we obtain useful (mixed) generator and discriminator. In
the context of GANs, "usefulness" means that the mixed generator provided by the equilibrium
solution will “fool" any adversary at least as good as any single generator (similar results hold for the
discriminator).

On the theory side, we show that GANs with semi-shallow architectures induce semi-concave games,
i.e., games which are concave with respect to the max player, but need not have a special structure
with respect to the min player. Then we show that in such games players may efficiently invoke
regret minimization procedures in order to find an equilibrium; this in turn gives rise to a way of
finding an equilibrium in semi-shallow GANs. To the best of our knowledge, this result is novel in
the context of GANs and might also find uses in other scenarios where such structure may arise. We
would like to emphasize that this is a significant step from a theoretical point of view as the standard
approach to training GANs is only known to be theoretically sound for convex-concave games, which
correspond to shallow-networks (though it is still used heuristically to train deep GAN architectures).

On the practical side, we develop an efficient heuristic guided by our theoretical results, which we
apply to commonly used deep GAN architectures. We provide experimental results demonstrating
that our approach exhibits better empirical stability compared to the vanilla GAN and generates more
diverse samples, while retaining the same level of visual quality.

In Section 2, we briefly review necessary notions from online learning and zero-sum games. We
then present our approach and its theoretical guarantees in Section 3, and our practical algorithm is
presented in Section 4. Lastly, we present empirical results on standard benchmarks in Section 5.

2Note that the standard GAN training procedure, as is, does not converge to a Nash equilibrium for shallow
architectures, see e.g. Salimans et al. (2016). However, averaging the models does yield convergence in this case.
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2 BACKGROUND & RELATED WORK

2.1 GANS

GAN Objectives: The classical way to learn a generative model consists of minimizing a divergence
function between a parametrized model distribution pu(x) and the true data distribution pdata(x).
The original GAN approach by Goodfellow et al. (2014) is for example known to be related to
optimizing the Jensen-Shannon divergence. This was later generalized by Nowozin et al. (2016) who
described a broader family of GAN objectives stemming from f -divergences. A different popular
type of GAN objectives is the family of Integral Probability Metrics (Müller, 1997), such as the
kernel MMD (Gretton et al., 2012; Li et al., 2015) or the Wasserstein metric (Arjovsky & Bottou,
2017). All of these divergence measures yield a minimax objective.

Training methods for GANs: In order to solve the minimax objective in Eq. 1, Goodfellow et al.
(2014) suggested an approach that alternatively minimizes over u and v using mini-batch stochastic
gradient descent. This approach can be shown to converge only when the updates are made in
function space. In practice, this condition is not met - since this procedure works in the parameter
space - and many issues arise during training (Arjovsky & Bottou, 2017; Radford et al., 2015), thus
requiring careful initialization and proper regularization as well as other tricks (Metz et al., 2016;
Pfau & Vinyals, 2016; Radford et al., 2015; Salimans et al., 2016). Even so, several problems are still
commonly observed including a phenomena where the generator oscillates, without ever converging
to a fixed point, or mode collapse when the generator maps many latent codes z to the same point,
thus failing to produce diverse samples.

The closest work related to our approach is that of Arora et al. (2017) who showed the existence
of an approximate mixed equilibrium with certain generalization properties; yet without providing
a constructive way to find such equilibria. Instead, they advocate the use of mixed strategies, and
suggest to do so by using the exponentiated gradient algorithm of Kivinen & Warmuth (1997). The
work of Tolstikhin et al. (2017) also uses a similar mixture approach based on boosting. Other works
have studied the problem of equilibrium and stabilization of GANs, often relying on the use of an
auto-encoder as discriminator (Berthelot et al., 2017) or jointly with the GAN models (Che et al.,
2016). In this work, we focus on providing convergence guarantees to a mixed equilibrium (definition
in Section 3.2) using a technique from online optimization that relies on the players’ past actions.

2.2 ONLINE LEARNING

Online learning is a sequential decision making framework in which a player aims at minimizing
a cumulative loss function revealed to her sequentially. The source of the loss functions may be
arbitrary or even adversarial, and the player seeks to provide worst case guarantees on her performance.
Formally, this framework can be described as a repeated game of T rounds between a player P1 and
an adversary P2. At each round t ∈ [T ]:

1. The player (P1) chooses a point ut ∈ K according to some algorithm A
2. The adversary (P2) chooses a loss function ft ∈ F
3. The player (P1) suffers a loss ft(ut), and the loss function ft(·) is revealed to her.

The adversary is usually limited to choosing losses from a structured class of objectives F , most
commonly linear/convex losses. Also, the decision set K is often assumed to be convex. The
performance of the player’s strategy is measured by the regret, defined as,

RegretAT (f1, . . . , fT ) =

T∑
t=1

ft(ut)− min
u∗∈K

T∑
t=1

ft(u
∗) . (2)

Thus, the regret measures the cumulative loss of the player compared to the loss of the best fixed
decision in hindsight. A player aims at minimizing her regret, and we are interested in no-regret
strategies for which players ensure regret which is sublinear in T for any loss sequence 3.

3A regret which depends linearly on T is ensured by any strategy and is therefore trivial.
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While there are several no-regret strategies, many of them may be seen as instantiations of the
Follow-the-Regularized-Leader (FTRL) algorithm where

ut = arg min
u∈K

t−1∑
τ=1

fτ (u) + η−1t R(u) (FTRL) (3)

FTRL takes the accumulated loss observed up to time t and then chooses the point inK that minimizes
the accumulated loss plus a regularization term η−1t R(u). The regularization term prevents the player
from abruptly changing her decisions between consecutive rounds4. This property is often crucial to
obtaining no-regret guarantees. Note that FTRL is not always guaranteed to yield no-regret, and is
mainly known to provide such guarantees in the setting where losses are linear/convex (Hazan et al.,
2016; Shalev-Shwartz et al., 2012).

2.3 ZERO-SUM GAMES

Consider two players, P1,P2, which may choose pure decisions among the sets K1 and K2, respec-
tively. A zero-sum game is defined by a function M : K1 ×K2 7→ R which sets the utilities of the
players. Concretely, upon choosing a pure strategy (u,v) ∈ K1 ×K2 the utility of P1 is −M(u,v),
while the utility of P2 is M(u,v). The goal of either P1/P2 is to maximize their worst case utilities;
thus,

min
u∈K1

max
v∈K2

M(u,v) (Goal of P1), & max
v∈K2

min
u∈K1

M(u,v) (Goal of P2) (4)

This definition of a game makes sense if there exists a point (u∗,v∗), such that neither P1 nor P2 may
increase their utility by unilateral deviation. Such a point (u∗,v∗) is called a Pure Nash Equilibrium,
which is formally defined as a point which satisfies the following conditions:

M(u∗,v∗) ≤ min
u∈K1

M(u,v∗), & M(u∗,v∗) ≥ max
v∈K2

M(u∗,v) .

While a pure Nash equilibrium does not always exist, the pioneering work of Nash et al. (1950)
established that there always exists a Mixed Nash Equilibrium (MNE or simply equilibrium), i.e.,
there always exist two distributions D1,D2 such that,

E(u,v)∼D1×D2
[M(u,v)] ≤ min

u∈K1

Ev∼D2
[M(u,v)], & E(u,v)∼D1×D2

[M(u,v)] ≥ max
v∈K2

Eu∼D1
[M(u,v)] .

Finding an exact MNE might be computationally hard, and we are usually satisfied with finding an
approximate MNE. This is defined below,

Definition 1. Let ε > 0. Two distributions D1,D2 are called ε-MNE if the following holds,

E(u,v)∼D1×D2
[M(u,v)] ≤ min

u∈K1

Ev∼D2
[M(u,v)] + ε,

E(u,v)∼D1×D2
[M(u,v)] ≥ max

v∈K2

Eu∼D1 [M(u,v)]− ε .

Terminology: In the sequel when we discuss zero-sum games, we shall sometimes use the GAN
terminology, relating the min player P1 as the generator, and the max player P2, as the discriminator.

No-Regret & Zero-sum Games: In zero-sum games, no-regret algorithms may be used to find
an approximate MNE. Unfortunately, computationally tractable no-regret algorithms do not always
exist. An exception is the setting when M is convex-concave. In this case, the players may invoke
the powerful no-regret methods from online convex optimization to (approximately) solve the game.
This seminal idea was introduced in Freund & Schapire (1999), where it was demonstrated how to
invoke no-regret algorithms during T rounds to obtain an approximation guarantee of ε = O(1/

√
T )

in zero-sum matrix games. This was later improved by Daskalakis et al. (2015), and Rakhlin &
Sridharan (2013), demonstrating a guarantee of ε = O(log T/T ). The result that we are about to
present builds on the scheme of Freund & Schapire (1999).

4Tikhonov regularizationR(u) = ‖u‖2 is one of the most popular regularizers.
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3 FINDING EQUILIBRIUM IN GANS

Why Mixed Equilibrium? In this work, our ultimate goal is to efficiently find an approximate
MNE for the game. However, in GANs, we are usually interested in designing good generators,
and one might ask whether finding an equilibrium serves this cause better than solving the minimax
problem, i.e., finding u ∈ argminu∈K1

maxv∈K2
M(u,v). Interestingly, the minimax value of the

equilibrium generator is always smaller than the minimax value of any pure strategy. Actually, the
equilibrium strategy of the generator might be much better. This benefit of finding an equilibrium can
be demonstrated on the following simple zero-sum game. Consider the following paper-rock-scissors
game, i.e. a zero-sum game with the minimax objective

min
i∈{1,2,3}

max
j∈{1,2,3}

M(i, j) ; where M =

[
0 −1 1
1 0 −1
−1 1 0

]
.

Solving for the minimax objective yields a pure strategy with a minimax value of 1; conversely, the
equilibrium strategy of the min player is a uniform distribution over actions; and its minimax value is
0. Thus, finding an equilibrium by allowing mixed strategies implies a smaller minimax value, and as
we show in the Section 3.3 this is true in general. In the context of GANs, this result means that the
mixed generator provided by the equilibrium solution will “fool" any adversary at least as good as
any single generator. Similarly, the mixed discriminator provided by the equilibrium solution will
discern any generator at least as good as any single discriminator.

The rest of this section presents a method that efficiently finds an equilibrium for semi-shallow GANs
(see Fig. 1(b)). Such architectures do not induce a convex-concave game, and therefore the result
of Freund & Schapire (1999) does not directly apply. Nevertheless, we show that semi-shallow GANs
imply a game structure which gives rise to an efficient procedure for finding an equilibrium. In
Sec. 3.1 we show that semi-shallow GANs define games with a property that we denote as semi-
concave. Later, Sec. 3.2 provides an algorithm with provable guarantees for such games. Finally, in
Section 3.3 we show that the minimax objective of the generator’s equilibrium strategy is optimal
with respect to the minimax objective.

3.1 SEMI-SHALLOW GANS

Semi-shallow GANs do not lead to a convex-concave game. Nonetheless, here we show that for an
appropriate choice of the activation function they induce a game that is concave with respect to the
discriminator. Later, in Sec. 3.2, we show that this property allows to efficiently find an equilibrium.

Proposition 1. Consider the GAN objective in Eq. (1) and assume that the discriminator is a single-
layer network with a sigmoid activation function, meaning hv(x) = 1/(1 + exp(−v>x)), where
v ∈ Rn. Then the GAN objective is concave in v.

Note that the above is not restricted to the sigmoid activation function, and it also holds for other
choices of the activation function 5.

3.2 SEMI-CONCAVE ZERO-SUM GAMES

Here we discuss the setting of zero-sum games (see Eq. (4)) which are semi-concave. Formally a
game, M , is semi-concave if for any fixed u0 ∈ K1 the function g(v) := M(u0,v) is concave in
v. Algorithm 1 presents our method for semi-concave games. This algorithm is an instantiation of
the scheme derived by Freund & Schapire (1999), with specific choices of the online algorithms
A1,A2, used by the players. Note that bothA1,A2 are two different instances of the FTRL approach
presented in Eq. (3).

Let us discuss Algorithm 1 and then present its guarantees. First note that each player calcu-
lates a sequence of T points based on an online algorithm A1/A2. Interestingly, the sequence
of (loss/reward) functions given to the online algorithm is based on the game objective M , and

5As an example the proposition holds by choosing hv(x) to be the cumulative gaussian distribution, i.e.
hv(x) = Φ(v>x), where Φ(a) =

∫ a

y=−∞ (2π)−0.5 exp(−y2/2)dy . Note that the logarithm of hv(x) for the
sigmoid and cumulative gaussian activations correspond to the well known logit and probit models, McCullagh
& Nelder (1989).
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Algorithm 1 CHEKHOV GAN
Input: #steps T , Game objective M(·, ·)
for t = 1 . . . T do

Calculate:

(Alg. A1) ut ← argmin
u∈K1

t−1∑
τ=0

fτ (u) & (Alg. A2) vt ← argmax
v∈K2

t−1∑
τ=0

∇gτ (vτ )>v −
√
T

2η0
‖v‖2

Update: ft(·) = M(·,vt) & gt(·) = M(ut, ·)
end for
Output mixed strategies: D1 ∼ Uni{u1, . . . ,uT }, D2 ∼ Uni{v1, . . . ,vT }.

also on the decisions made by the other player. For example, the loss sequence that P1 receives is
{ft(u) := M(u,vt)}t∈[T ]. After T rounds we end up with two mixed strategies D1,D2, each being
a uniform distribution over the respective online decisions {ut}t∈[T ], {vt}t∈[T ]. Note that the first
decision points u1,v1 are set by A1,A2 before encountering any (loss/reward) function, and the
dummy functions f0(u) = 0, g0(v) = 0 are only introduced in order to simplify the exposition. Since
P1’s goal is to minimize, it is natural to think of the ft’s as loss functions, and measure the guarantees
ofA1 according to the regret as defined in Equation (2). Analogously, since P2’s goal is to maximize,
it is natural to think of the gt’s as reward functions, and measure the guarantees of A2 according to
the following appropriate definition of regret, RegretA2

T = maxv∗∈K2

∑T
t=1 gt(v

∗)−
∑T
t=1 gt(vt) .

The following theorem presents our guarantees for semi-concave games:

Theorem 1. Let K2 be a convex set. Also, let M be a semi-concave zero-sum game, and assume M
is L-Lipschitz continuous. Then upon invoking Alg. 1 for T steps it outputs mixed strategies (D1,D2)

that are ε-MNE, where ε = O(1/
√
T ).

The most important point to note is that the accuracy of the approximation ε improves as the number
of iterations T grows. This lets us obtain an arbitrarily good approximation for a large enough T .
As mentioned before, both A1,A2 are two different instances of the FTRL approach presented in
Eq. (3). Concretely, Alg. A1 is in fact follow-the-leader (FTL), i.e., FTRL without regularization.
Alg. A2 also uses the FTRL scheme. Yet, instead of the original reward functions, gt(·), it utilizes
linear approximations g̃t(v) = ∇gt(vt)>v. Also note the use of the (minus) square `2 norm as
regularization6. The η0 parameter depends on the Lipschitz constant of M as well as on the diameter
of K2 defined as, d2 := maxv1,v2∈K2 ‖v1 − v2‖. Concretely, η0 = d2/

√
2L.

Next we provide a short proof sketch for Thm. 1. The full proof appears in Appendix A.

Proof sketch. The proof makes use of a theorem due to Freund & Schapire (1999) which shows that
if both A1 and A2 ensure no-regret then it implies convergence to an approximate MNE. Since the
game is concave with respect to P2, it is well known that the FTRL version A2 appearing in Thm. 1
is a no-regret strategy (see e.g. Hazan et al. (2016)). The challenge is therefore to show thatA1 is also
a no-regret strategy. This is non-trivial, especially for semi-concave games that do not necessarily
have any special structure with respect to the generator 7. However, the loss sequence received by
the generator is not arbitrary, but rather it follows a special sequence based on the choices of the
discriminator, {ft(·) = M(·,vt)}t. In the case of semi-concave games, the sequence of discriminator
decisions, {vt}t has a special property which “stabilizes" the loss sequence {ft}t, which in turn
enables us to establish no-regret for A1.

Remark: Note that Alg. A1 in Thm. 1 assumes the availability of an oracle that can efficiently find a
global minimum for the FTL objective,

∑t−1
τ=0 fτ (u). This involves a minimization over a sum of

generative networks. Therefore, our result may be seen as a reduction from the problem of finding

6Note the use of the minus sign in the regularization since the discriminator’s goal is to maximize, thus the
gt(·), may be thought of as reward functions.

7The result of Hazan & Koren (2016) shows that there does not exist any efficient no-regret algorithm, A1,
in the general case where the loss sequence {ft(·)}t∈[T ] received by A1 is arbitrary.
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an equilibrium to an offline optimization problem. This reduction is not trivial, especially in light
of the negative results of Hazan & Koren (2016), which imply that in the general case finding an
equilibrium is hard, even with such an efficient offline optimization oracle at hand. Thus, our result
enables to take advantage of progress made in supervised deep learning in order to efficiently find an
equilibrium for GANs.

3.3 MINIMAX VALUE OF EQUILIBRIUM STRATEGY

In GANs we are mainly interested in ensuring the performance of the generator (resp. discriminator)
with respect to the minimax (resp. maximin) objective. Let (D1,D2) be the pair of mixed strategies
that Algorithm 1 outputs. Note that the minimax value of D1 might be considerably smaller than the
pure minimax value, as is shown in the example regarding the paper-rock-scissors game (see Sec. 3).
The next lemma shows that the mixed strategy D1 is always (approximately) better with respect to
the pure minimax value (see proof in appendix B.2)

Lemma 1. The mixed strategy D1 that Algorithm 1 outputs is ε-optimal with respect to the minimax
value, i.e.,

max
v∈K2

Eu∼D1 [M(u,v)] ≤ min
u∈K1

max
v∈K2

M(u,v) + ε

where ε here is equal to the one defined in Thm. 2.

Analogous result hold for D2 with respect to the pure maximin objective.

4 PRACTICAL CHEKHOV GAN ALGORITHM FOR DEEP ARCHITECTURES

Algorithm 2 Practical CHEKHOV GAN
Input: #steps T , Game objective M(·, ·), number of past states K, spacing m
Initialize: Set loss/reward f0(·) = 0, g0(·) = 0, initialize queues Q1.insert(f0), Q2.insert(g0)
for t = 1 . . . T do

Update generator and discriminator based on a mini-batch of noise samples and data samples:

ut+1 ← ut − ηt · ∇ut

 1

|Q1|
∑
f∈Q1

f(u) +
C√
t
‖u‖2

 & vt+1 ← vt − ηt · ∇vt

(
1

|Q2|
∑
g∈Q2

g(v)− C√
t
‖v‖2

)

Calculate: ft(·) = M(·,vt) & gt(·) = M(ut, ·)
Update Q1 and Q2 (see main text or Algorithm 3 in the appendix)

end for
Output mixed strategies: D1 ∼ Uni{u1, . . . ,uK ∈ Q1}, D2 ∼ Uni{v1, . . . ,vK ∈ Q2}.

In Section 3 we described a method (Alg. 1) which provably reaches an equilibrium for semi-shallow
GANs. This method considers the whole history of generators and discriminators in making a
decision at each round, which contrasts with the standard GAN training method that only considers
the last generator and discriminator. Another difference is that our method outputs a mixed model
(i.e., generator and discriminator) rather than a single model.

Building on the theoretical approach introduced in Section 3, we now present a practical method
(Alg. 2) which can be efficiently applied to train common deep GAN architectures. Algorithm 2
combines the ideas of (a) considering the history of generators and discriminators at each update,
and (b) outputting a mixed strategy, while only requiring an access to gradient information which
can be efficiently obtained by running back-propagation. Next we discuss Alg. 2 in more details and
highlight the differences compared to the theoretical approach:

(i) We use the FTRL objective (Eq. (3)) for both players. Note that Alg. A1 appearing in Thm 1 uses
FTRL with linear approximations, which is only appropriate for semi-concave games.

(ii) As calculating the global minimizer of the FTRL objective is impractical, we instead update
the weights based on the gradients of the FTRL objective. This can be done by using traditional
optimization techniques such as SGD or Adam. Thus the update at each round depends on the
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gradients of the past generators and discriminators. This differs from the standard GAN training
which only employs the gradient of the last generator and discriminator.

(iii) The full FTRL algorithm requires saving the entire history of past generators/discriminators,
which is computationally intractable. We find it sufficient to maintain a summary of the history using
a small number of representative models. In order to capture a diverse subset of the history, we
keep a queue Q containing K := |Q| states (models). The spacing between consecutive models is
determined by the following heuristic: every m update steps we remove the oldest model in the queue
and add the current one. The number of steps between switches, m, can be set as a constant, but our
experiments revealed it is more effective to keep m small at the beginning and increase its value as
the number of rounds increases. We hypothesize that as the training progresses and the individual
models become more discriminative, we should switch the models at a lower rate, keeping them more
spaced out. The pseudo-code and a detailed description of the algorithm appears in the Appendix.

Intuition. In practice GANs commonly exhibit a non-convergent behavior. As a consequence,
the generator oscillates between generating different modes from the target distribution. This
is hypothesized to be due to the differences of the minimax and maximin solutions of the
game (Goodfellow, 2016). If the order of the min and max operations switch, the minimization with
respect to the generator’s parameters is performed in the inner loop. This causes the generator to
map every latent code to one or very few points for which the discriminator believes are likely. As
simultaneous gradient descent updates do not clearly prioritize any specific ordering of minimax or
maximin, in practice we often obtain results that resemble the latter.
In contrast, CHEKHOV GAN takes advantage of the history of the player’s actions which yields better
gradient information. Intuitively, the generator is updated such that it fools the past discriminators. In
order to do so, the generator has to spread its mass more fairly according to the true data distribution.
The discriminator can no longer simply learn to put low probability on the few modes of generated
samples, which causes oscillations.

The mode collapse problems of GANs is also closely related to the phenomenon of catastrophic
forgetting (Seff et al., 2017). When GANs are trained sequentially on samples coming from different
modes, the discriminator tends to forget the previous modes it has learned about. This leads to having
generated samples that focus only on the last or most prominent modes. By introducing a history of
samples from previous generators, the discriminator is less likely to forget the part of the space that it
has already learned.
Fig. 2 illustrates the mode collapse problem. The data consists of a mixture of 7 Gaussians with
different sampling probabilities whose centers are aligned in a circle. As two modes have higher
probabilities and are seen more frequently, they attract the gradients towards them and cause mode
collapse and forgetting. Chekhov GAN manages to recover the true data distribution in this case as
well, unlike vanilla GANs.

GAN

CHEKHOV
GAN

Figure 2: Mode Collapse on a Gaussian Mixture. We show heat maps of the generator distribution over time, as
well as the target data distribution in the last column. Standard GAN updates (top row) cause mode collapse,
whereas CHEKHOV GAN using K = 10 past steps (bottom row) spreads its mass over all the modes of the
target distribution.
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5 EXPERIMENTAL RESULTS

We now demonstrate that CHEKHOV GAN yields improved stability and sample diversity. To do so,
we use a comparable number of datasets and baselines as standard GAN approaches, e.g. Metz et al.
(2016); Arjovsky & Bottou (2017). We test our method on models where the traditional GAN training
has difficulties converging and engages in a behavior of mode collapse. We also perform experiments
on harder tasks using the DCGAN architecture (Radford et al., 2015) which is commonly used in
the literature. Note that the DCGAN architecture, when trained using standard techniques, still
suffers from instabilities and mode collapse (Nagarajan & Kolter, 2017; Roth et al., 2017). We here
demonstrate that CHEKHOV GAN reduces mode dropping while retaining high visual sample quality.
For all of the experiments, we generate from the newest generator only. Experimental details and
comparisons to additional baselines, as well as a set of recommended hyperparameters are available
in Appendix D and Appendix C, respectively.

5.1 NON-CONVERGENCE AND MODE DROPPING

5.1.1 AUGMENTED MNIST

We first evaluate the ability of our approach to avoid mode collapse on real image data coming from
an augmented version of the MNIST dataset. Similarly to (Metz et al., 2016; Che et al., 2016), we
combine three randomly selected MNIST digits to form 3-channel images, resulting in a dataset with
1000 different classes, one for each of the possible combinations of the ten MNIST digits.

We train a simplified DCGAN architecture (see details in Appendix D) with both GAN and CHEKHOV
GAN with a different number of saved past states. The evaluation of each model is done as follows.
We generate a fixed amount of samples (25,600) from each model and classify them using a pre-
trained MNIST classifier with an accuracy of 99.99%. The models that exhibit less mode collapse
are expected to generate samples from most of the 1000 modes.

We report two different evaluation metrics in Table 1: i) the number of classes for which a model
generated at least one sample, and ii) the reverse KL divergence. The reverse KL divergence between
the model and the target data distribution is computed by considering that the data distribution is a
uniform distribution over all classes.

Models 0 states (GAN) 5 states 10 states
Generated Classes 629 ± 121.08 743 ± 64.31 795 ± 37

Reverse KL 1.96 ± 0.64 1.40 ± 0.21 1.24 ± 0.17

Table 1: Stacked MNIST: Number of generated classes out of 1000 possible combinations, and the reverse KL
divergence score. The results are averaged over 10 runs.

5.2 IMAGE MODELING

We turn to the evaluation of our model for the task of generating rich image data for which the
modes of the data distribution are unknown. In the following, we perform experiments that indirectly
measure mode coverage through metrics based on the sample diversity and quality.

5.2.1 INFERENCE VIA OPTIMIZATION ON CIFAR10

We train a DCGAN architecture on CIFAR10 (Krizhevsky & Hinton, 2009) and evaluate the perfor-
mance of each model using the inference via optimization technique introduced in (Metz et al., 2016)
and explained in Appendix D.3.3.

The average MSE over 10 rounds using different seeds is reported in Table 2. Using CHEKHOV
GAN with as few as 5 past states results in a significant gain which can be further improved by
increasing the number of past states to 10 and 25. In addition, the training procedure becomes more
stable as indicated by the decrease in the standard deviation. The percentage of mini-batches that
achieve the lowest reconstruction loss with the different models is given in Table 2. This can also be
visualized by comparing the closest images xclosest from each model to real target images xtarget as
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shown in Figure 3. The images are randomly selected images from the batch which has the largest
absolute difference in MSE between GAN and CHEKHOV GAN with 25 states. The samples obtained
by the original GAN are often blurry while samples from CHEKHOV GAN are both sharper and
exhibit more variety, suggesting a better coverage of the true data distribution.

Target Past States 0 (GAN) 5 states 10 states 25 states
Train
Set

MSE 61.13 ± 3.99 58.84 ± 3.67 56.99 ± 3.49 48.42 ± 2.99
Best Rank (%) 0 % 0 % 18.66 % 81.33 %

Test
Set

MSE 59.5 ± 3.65 56.66 ± 3.60 53.75 ± 3.47 46.82 ± 2.96
Best Rank (%) 0 % 0 % 17.57 % 82.43 %

Table 2: CIFAR10: MSE between target images from the train and test set and the best rank which consists of
the percentage of minibatches containing target images that can be reconstructed with the lowest loss across
various models. We use 20 different minibatches, each containing 64 target images. Increasing the number of
past states for CHEKHOV GAN allows the model to better match the real images.

Real Image 0 states 10 states 25 states
4.14 2.37 2.19

4.17 2.97 2.58

Real Image 0 states 10 states 25 states
3.06 2.51 2.35

1.12 0.30 0.39

Table 3: CIFAR10: Target images from the test set are shown on the left. The images from each model that
best resemble the target image are shown for different number of past states: 0 (GAN), 10 and 25 (CHEKHOV
GAN ). The reconstruction MSE loss is indicated above each image.

Note that the numbers quoted in our paper can directly be compared to the ones reported in unrolled
GAN (Metz et al., 2016) since we have used the same architecture and choice of hyper-parameters.
We include a comparison in the appendix.

5.2.2 ESTIMATION OF MISSING MODES ON CELEBA

We estimate the number of missing modes on the CelebA dataset (Liu et al., 2015) by using an
auxiliary discriminator as performed in (Che et al., 2016). The experiment consists of two phases. In
the first phase we train GAN and CHEKHOV GAN models and generate a fixed number of images. In
the second phase we independently train a noisy discriminator using the DCGAN architecture where
the training data is the previously generated data from each of the models, respectively. The noisy
discriminator is then used as a mode estimator. The test images from CelebA that are classified as
fake by the mode estimator are considered as images belonging to a missing mode. Table 4 shows the
number of missed modes for the two models. Generated samples from each model are given in the
Appendix.

σ 0 states (GAN) 5 states (CHEKHOV GAN )
0.25 3004 ± 4154 1407 ± 1848
0.5 2568.25 ± 4148 1007 ± 1805

Table 4: CelebA: Number of images from the test set that the auxiliary discriminator classifies as not real.
Gaussian noise with variance σ2 is added to the input of the auxiliary discriminator, with the standard deviation
shown in the first row. The test set consists of 50,000 images.

Interestingly, even with small number of past states (K=5), CHEKHOV GAN manages to stabilize the
training and generate more diverse samples on all the datasets. In terms of computational complexity,
our algorithm scales linearly with K. However, all the elements in the sum are independent and can
be computed efficiently in a parallel manner.
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Model Inception Score Fréchet Inception Distance
GAN 5.89 ± 0.15 42.99 ± 6.85
Chekhov GAN 6.02 ± 0.15 40.97 ± 1.03
Unrolled GAN 5.51 ± 0.13 53.83 ± 6.09
MIX+GAN 6.03 ± 0.16 41.79 ± 5.10
WGAN 4.85 ± 0.12 66.59 ± 1.28
Chekhov WGAN 5.13 ± 0.13 58.82 ± 1.34
MIX+WGAN 4.91 ± 0.12 64.89 ± 4.53
WGAN GP 5.31 ± 0.13 52.52 ± 5.28
Real Data 11.24 ± 0.12 5.19 ± 0.02

Table 5: Inception score (higher is better) and FID (lower is better) on Cifar10: The first section shows GAN
variants and the second shows WGAN variants. The results are averaged over 8 runs.

5.3 INCEPTION SCORE AND FRÉCHET INCEPTION DISTANCE

We compare our algorithm against several state-of-the-art GAN methods using the Inception Score
(Salimans et al., 2016) as metric, as well as its improved version, the Fréchet Inception Distance
(Heusel et al., 2017). All the models used in this experiment rely on the same architectures for both
the generator and the discriminator. We generated 50,000 samples for the calculation of the two
metrics. Table 5 shows the results on Cifar10 when all models are trained in an unsupervised fashion.

We apply our algorithm on top of GAN and WGAN (Arjovsky et al., 2017), as both define a minimax
game. Both Chekhov GAN and Chekhov WGAN are trained using 5 past states. For fair comparison,
MIX+GAN and MIX+WGAN (Arora et al., 2017) use a mixture of 5 generators and discriminators
and the number of unrolling steps for Unrolled GAN (Metz et al., 2016) is set to 5. The number of
parameters for MIX+(GAN/WGAN) is 5 times the number of parameters for all the other baselines.

We find that by applying our algorithm on top of WGAN, we get an improvement of 5.13 vs. 4.85
(inception score) and 58.82 vs. 66.59 (FID). Throughout the training, Chekhov WGAN consistently
outperforms WGAN by achieving higher scores and lower distances, as shown in Figure 3. Across
the WGAN-based variants, Chekhov WGAN consistently outperforms MIX+WGAN as well, while
WGAN GP (Gulrajani et al., 2017) achieves the best scores within the group. However, as shown in
Figure 4, Chekhov WGAN improves upon WGAN and reaches almost the same level of performance
as WGAN GP.

In terms of the GAN-based variants, Chekhov GAN consistently outperforms Unrolled GAN by a
large margin across all epochs. MIX+GAN, GAN and Chekhov GAN achieve comparable scores
in terms of both metrics, but Chekhov GAN does so while reducing the variance significantly (see
Figure 4).

Figure 3: Chekhov GAN consistently outperforms WGAN across both metrics: (left) Inception score, (right)
Fréchet Inception Distance (FID). The shaded area denotes the standard deviation.
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Figure 4: Comparison of FID: (left) WGAN-based variants, (right) GAN-based variants.The shaded area
denotes the standard deviation.

6 CONCLUSION

We have presented a principled approach to training GANs, which is guaranteed to reach convergence
to a mixed equilibrium for semi-shallow architectures. Empirically, our approach presents several
advantages when applied to commonly used GAN architectures, such as improved stability or
reduction in mode dropping. Our results open an avenue for the use of online-learning and game-
theoretic techniques in the context of training GANs. One question that remains open is whether the
theoretical guarantees can be extended to more complex architectures.
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A ANALYSIS

Here we provide the proof of Thm. 1.

Proof. We make a use of a theorem due to Freund & Schapire (1999) which shows that if bothA1,A2

ensure no regret implies approximate MNE. For completeness we provide its proof in Sec. A.2.

Theorem 2. The mixed strategies (D1,D2) that Algorithm 1 outputs are ε-MNE, where

ε :=
(
BA1

T +BA2

T

)
/T .

here BA1

T , BA2

T are bounds on the regret of A1,A2.

According to Thm. 2, it is sufficient to show that both A1, and A2 ensure a regret bound of O(
√
T ).

Guarantees for A2: this FTRL version is well known in online learning, and its regret guarantees
can be found in the literature, (e.g, Theorem 5.1 in Hazan et al. (2016)). The following lemma
provides its guarantees,

Lemma 2. Let d2 be the diameter of K2. Invoking A2 with η0 = d2/
√

2L, ensures the following
regret bound over the sequence of concave functions {gt}t∈[T ],

RegretA2

T (g1, . . . , gT ) ≤ Ld2
√

2T .

Moreover, the following applies for the sequence {vt}t∈[T ] generated by A2,

‖vt+1 − vt‖ ≤ d2/
√

2T .

Note that the proof heavily relies on the concavity of the gt(·)’s, which is due to the concavity of the
game with respect to the discriminator. For completeness we provide a proof of the second part of the
lemma in Sec. B.3.

Guarantees for A1: By Lemma 2, the sequence generated by the discriminator not only ensures
low regret but is also stable in the sense that consecutive decision points are close by. This is the
key property which will enable us to establish a regret bound for algorithm A1. Next we state the
guarantees of A1,

Lemma 3. Let C := maxu∈K1,v∈K2
|M(u,v)|. Consider the loss sequence appearing in Alg 1,

{ft(·) := M(·,vt)}t∈[T ]. Then algorithm A1 ensures the following regret bound over this sequence,

RegretA1

T (f1, . . . , fT ) ≤ 1√
2
Ld2
√
T + 2C .

Combining the regret bounds of Lemmas 2, 3 and Theorem 2 concludes the proof of Thm. 1.

A.1 PROOF OF LEMMA 3

Proof. We use the following regret bound regarding the FTL (follow-the-leader) decision rule, derived
in Kalai & Vempala (2005) (see also Shalev-Shwartz et al. (2012)),

Lemma 4. For any sequence of loss functions {ft}t∈[T ], the regret of FTL is bounded as follows,

RegretFTL
T (f1, . . . , fT ) ≤

T∑
t=1

(
ft(ut)− ft(ut+1)

)
.
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Since A1 is FTL, the above bound applies. Thus, using the above bound together with the stability of
the {vt}t∈[T ] sequence we obtain,

RegretA1

T ≤
T∑
t=1

(
ft(ut)− ft(ut+1)

)
=

T−1∑
t=1

(
ft(ut)− ft(ut+1) + ft+1(ut+1)− ft+1(ut+1)

)
+
(
fT (uT )− fT (uT+1)

)
=

T−1∑
t=1

(
ft+1(ut+1)− ft(ut+1)

)
+

T−1∑
t=1

(
ft(ut)− ft+1(ut+1)

)
+
(
fT (uT )− fT (uT+1)

)
=

T−1∑
t=1

(
M(ut+1,vt+1)−M(ut+1,vt)

)
+
(
f1(u1)− fT (uT+1)

)
≤
T−1∑
t=1

L‖vt+1 − vt‖+
(
f1(u1)− fT (uT+1)

)
≤ LTd2/

√
2T +

(
f1(u1)− fT (uT+1)

)
≤ Ld2

√
T/
√

2 + 2C .

where the fourth line uses ft(·) := M(·,vt), the fifth line uses the Lipschitz continuity of M . And
the sixth line used the stability of the vt’s due to Lemma 2. Finally, we use |ft(u)| = |M(u, vt)| ≤
C.

A.2 PROOF OF THEOREM 2

Proof. Writing explicitly ft(u) := M(u,vt) and gt(v) := M(ut,v), and plugging these into the
regret guarantees of A1,A2, we have,

T∑
t=1

M(ut,vt)− min
u∈K1

T∑
t=1

M(u,vt) ≤ BA1

T , (5)

T∑
t=1

−M(ut,vt)− min
v∈K2

T∑
t=1

−M(ut,v) ≤ BA2

T . (6)

By definition, minu∈K1

∑T
t=1M(u,vt) ≤ Eu∼D1

[
∑T
t=1M(u,vt)]. Using this together with Equa-

tion (5), we get,

T∑
t=1

M(ut,vt)− Eu∼D1
[

T∑
t=1

M(u,vt)] ≤ BA1

T , (7)

Summing Equations (6),(7), and dividing by T , we get,

max
v∈K2

1

T

T∑
t=1

M(ut,v)− Eu∼D1 [
1

T

T∑
t=1

M(u,vt)] ≤
BA1

T

T
+
BA2

T

T
. (8)

Recalling that D1 ∼ Uni{u1, . . . ,ut},D2 ∼ Uni{v1, . . . ,vt}, and denoting ε :=
B
A1
T

T +
B
A2
T

T , we
conclude that,

E(u,v)∼D1×D2
[M(u,v)] ≥ max

v∈K2

Eu∼D1 [M(u,v)]− ε .

We can similarly show that,

E(u,v)∼D1×D2
[M(u,v)] ≤ min

u∈K1

Ev∼D2 [M(u,v)] + ε .

which concludes the proof.
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B REMAINING PROOFS

B.1 PROOF OF PROPOSITION 1

Proof. Look at the first term in the GAN objective, Epdata log hv(x). For a fixed x we have,

log hv(x) = − log
(
1 + exp(−v>x)

)
,

and it can be shown that the above expression is always concave in v 8. Since an expectation over
concave functions is also concave, this implies the concavity of the first term inH.

Similarly, look at the second term in the GAN objective, Ez∈pz log(1 − hv(Gu(z))). For a fixed
Gu(z) we have,

log(1− hv(Gu(z))) = − log
(
1 + exp(+v>Gu(z))

)
and it can be shown that the above expression is always concave in v. Since an expectation over
concave functions is also concave, this implies the concavity of the second term inH.

ThusH is a sum of two concave terms and is therefore concave in v.

B.2 PROOF OF LEMMA 1

Proof. Writing explicitly ft(u) := M(u,vt) and gt(v) := M(ut,v), and plugging these into the
regret guarantees of A1,A2, we have,

T∑
t=1

M(ut,vt)− min
u∈K1

T∑
t=1

M(u,vt) ≤ BA1

T ,

T∑
t=1

−M(ut,vt)− min
v∈K2

T∑
t=1

−M(ut,v) ≤ BA2

T .

Summing the above equations and dividing by T , we get,

max
v∈K2

1

T

T∑
t=1

M(ut,v)− min
u∈K1

1

T

T∑
t=1

M(u,vt) ≤
BA1

T

T
+
BA2

T

T
:= ε . (9)

Next we show that the second term above is always smaller than the minimax value,

min
u∈K1

1

T

T∑
t=1

M(u,vt) ≤ min
u∈K1

1

T

T∑
t=1

max
v∈K2

M(u,v)

= min
u∈K1

max
v∈K2

M(u,v)

Plugging the above into Equation (9), and recalling D1 ∼ Uni{u1, . . . ,ut}, we get,

max
v∈K2

Eu∼D1
M(u,v) ≤ min

u∈K1

max
v∈K2

M(u,v) + ε.

which concludes the proof.

B.3 PROOF OF THE SECOND PART OF LEMMA 2 (STABILITY OF FTRL SEQUENCE IN CONCAVE
CASE)

Proof. Here we establish the stability of the FTRL decision rule, A2, depicted in Theorem 1.

Note that the following applies to this FTRL objective,

t−1∑
τ=0

∇gτ (vτ )>v −
√
T

2η0
‖v‖2 = −

√
T

2η0

∥∥∥∥∥v − η0√
T

t−1∑
τ=0

∇gτ (vτ )

∥∥∥∥∥
2

+ C (10)

8For a ∈ R, the 1-dimensional function Q(a) = − log (1 + exp(−a)) is concave. Note that log hv(x) is a
composition of Q over a linear function in v, and is therefore concave.
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Where C is a constant independent of v.

Let us denote by ΠK2
the projection operator onto K2 ⊂ Rn, meaning,

ΠK2
(v0) = min

v∈K2

‖v0 − v‖, ∀v0 ∈ Rn

By Equation (10) the FTRL rule, A2, can be written as follows,

vt = argmin
v∈K2

∥∥∥∥∥v − η0√
T

t−1∑
τ=0

∇gτ (vτ )

∥∥∥∥∥
2

= ΠK2

(
− η0√

T

t−1∑
τ=0

∇gτ (vτ )

)
.

The projection operator is a contraction (see e.g, Hazan et al. (2016)), using this together with the
above implies,

‖vt+1 − vt‖ ≤

∥∥∥∥∥ΠK2

(
− η0√

T

t∑
τ=0

∇gτ (vτ )

)
−ΠK2

(
− η0√

T

t−1∑
τ=0

∇gτ (vτ )

)∥∥∥∥∥
≤
∥∥∥∥− η0√

T
∇gt(vt)

∥∥∥∥
≤ d2/

√
2T .

where we used ‖∇gt(vt)‖ ≤ L which is due to the Lipschitz continuity of M . We also used
η0 = d2/

√
2L.

C PRACTICAL CHEKHOV GAN ALGORITHM

The pseudo-code of algorithms A1 and A2 is given in Algorithm 3. The algorithm is symmetric for
both players and consists as follows. At every step t if we are currently in the switching mode (i.e. t
mod m == 0) and the queue is full, we remove a model from the end of the queue, which is the
oldest one. Otherwise, we do not remove any model from the queue, but instead just override the
head (first) element with the current update.

Algorithm 3 Update queue for Algorithm A1 and A2

Input: Current step t, m > 0
if (t mod m == 0 and |Q|) == K) then
Q.remove_last()
Q.insert(ft)
m = m+ inc

else
Q.replace_first(ft)

end if

We set the initial spacing, m, to N
K , where N is the number of update steps per epoch, and K is

the number of past states we keep. The number of updates per epoch is just the number of the data
points divided by the size of the minibatches we use. The default value of inc is 10. Depending on
the dataset and number of total update steps, for higher values of K, this is the only parameter that
needs to be tuned. We find that our model is not sensitive to the regularization hyperparameters. For
symmetric architectures of the generator and the discriminator (such as DCGAN), for practitioners,
we recommend using the same regularization for both players. For our experiments we set the default
regularization to 0.1.

D EXPERIMENTS

D.1 TOY DATASET: MIXTURE OF GAUSSIANS

We perform several experiments on a toy dataset where we varied the architecture size and the
sampling probabilities. The toy dataset consists of a mixture of 7 Gaussians with a standard deviation
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Figure 5: Both GAN and CHEKHOV GAN converge to the true data distribution when the dimensionality of the
noise vector is 2

of 0.01 and means equally spaced around a unit circle.

The architecture for the generator consists in two fully connected layers (of size 128) and a linear
projection to the dimensionality of the data (i.e. 2). The activation functions for the fully connected
layers are tanh. The discriminator is symmetric and hence, composed of two fully connected layers
(of size 128) followed by a linear layer of size 1. The activation functions for the fully connected
layers are tanh, whereas the final layer uses sigmoid as an activation function.

Following Metz et al. (2016), we intialize the weights for both networks to be orthogonal with
scaling of 0.8. AdamKingma & Ba (2014) was used as an optimizer for both the discriminator and the
generator, with a learning rate of 1e− 4 and β1 = 0.5. The discriminator and generator respectively
minimize and maximize the objective

Ex∼pdata(x) − log(D(x))− Ez∼N (0,I256) log(1−D(G(z))). (11)

The setup is the same for both models. For CHEKHOV GAN we use K = 5 past states with L2
regularization on the network weights using an initial regularization parameter of 0.01.

Effect of the latent dimension. We find that for the case where z ∼ N (0, I256), GANs with the
traditional updates can fail to cover all modes by either rotating around the modes (as shown in Metz
et al. (2016)) or converge to only a subset of the modes. However, if we sample the latent code
from a lower dimensional space, e.g. z ∼ N(0, I2), such that it matches the data dimensionality,
the generator needs to learn a simpler mapping. We then observe that both GAN and CHEKHOV
GAN are able to recover the true data distribution in this case (see Figure 5). Additionally, tuning
the momentum of the optimiser can also stabilize the training of GANs, resulting in a generator that
learns all the modes from the data distribution.

Experiments with concave discriminator. As out theoretical guarantees hold for a general (i.e.
deep) generator and a concave discriminator, we perform experiments using a concave discriminator
as well. We use the same architecture as described previously. In order to make the discriminator
concave, we keep the parameters of the first two layers of the discriminator fixed and update only the
parameters of the last layer. We generally find this much harder to stabilize due to the great imbalance
between the number of trainable parameters of the discriminator and generator. Increasing the size
of the last layer of the discriminator significantly improves the performance. Figure 6 shows that
CHEKHOV GAN can learn the true data distribution. The final layer is increased by 10 times and the
number of past states, K, is 10.

Mode collapse. We run an additional experiment directly targeted at testing for mode collapse.
We sample points x from the data distribution pdata with different probabilities for each mode. We
perform an experiment with 5 Gaussian mixtures, again of standard deviation 0.01 arranged in a
circle. The probabilities to sample points from each of the modes are [0.35, 0.35, 0.1, 0.1, 0.1]. In
this case two modes have higher probability and could potentially attract the gradients towards them
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Figure 6: CHEKHOV GAN with concave discriminator is able to learn the toy data distribution with K = 10.

and cause mode collapse. In order to make things harder, the size of the hidden layers is 16 instead of
128. CHEKHOV GAN with K = 10 manages to recover the true data distribution in this case as well,
unlike vanilla GANs. Using the history helps CHEKHOV GAN to spread its mass and cover even
the modes with low sampling probability. Unrolled GAN Metz et al. (2016) instead uses the way
the discriminator would react to the current changes when updating the generator. A comparison to
Unrolled GANs and vanilla GANs is given in Figure 7.
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Figure 7: Mode Collapse on a Gaussian Mixture. Comparison between a) vanilla GANs; b) CHEKHOV
GAN with K = 10, increase=1 and regularization of 0.0005; c) Unrolled GAN with 10 unrolling steps and d)
Unrolled GAN with 5 unrolling steps.

Mixed Nash Equilibrium. For all the experiments we generate from the most current generator
only. We empirically find that generating such that we first sample uniformly at random one of the
generators from the past, and then generating from it (which corresponds to the MNE) does not lead
to any significant improvement (Figure 8). We hypothesize that this is due to a single generator being
powerful enough to learn the distribution when playing against the experts from the past.

CURRENT GENERATOR ALL GENERATORS (MNE)

Figure 8: Comparison of CHEKHOV GAN for K = 10 when generating from the most current and all of the
generators at the final step of training.

D.2 AUGMENTED MNIST

We here detail the experiment on the Stacked MNIST dataset. The dataset is created by stacking three
randomly selected MNIST images in the color channels, resulting in a 3-channel image that belongs
to one out of 1000 possible classes. The architectures of the generator and discriminator are given in
Table 6 and Table 7, respectively.
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Table 6: Stacked MNIST: Generator Architecture
Layer Number of outputs

Input z ∼ N(0, I256)
Fully Connected 512 (reshape to [-1, 4, 4, 64] )
Deconvolution 32
Deconvolution 16
Deconvolution 8
Deconvolution 3

Table 7: Stacked MNIST: Discriminator Architecture
Layer Number of outputs

Convolution 4
Convolution 8
Convolution 16

Flatten and Fully Connected 1

We use a simplified version of the DCGAN architecture as suggested by Metz et al. (2016). It contains
"deconvolutional layers" which are implemented as transposed convolutions. All convolutions and
deconvolutions use kernel size of 3× 3 with a stride of 2. The weights are initialized using the Xavier
initialization Glorot & Bengio (2010). The activation units for the discriminator are leaky ReLUs
with a leak of 0.3, whereas the generator uses standard ReLUs. We train all models for 20 epochs
with a batch size of 32, using the RMSProp optimizer with batch normalization. The optimal learning
rate for GAN is 0.001, and for CHEKHOV GAN is 0.01. For all CHEKHOV GAN models we use
regularization of 0.1 for the discriminator and 0.0001 for the generator. The regularization is L2
regularization only on the fully connected layers. For K = 5, the increase parameter inc is set to 50.
For K=10, inc is 120.

D.3 CIFAR10 / CELEBA

We use the full DCGAN architecture Radford et al. (2015) for the experiments on CIFAR10 and
CelebA, detailed in Table 8 and Table 9.

Table 8: CIFAR10/CelebA Generator Architecture
Layer Number of outputs

Input z ∼ N(0, I256)
Fully Connected 32,768 (reshape to [-1, 4, 4, 512] )
Deconvolution 256
Deconvolution 128
Deconvolution 74
Deconvolution 3

Table 9: CIFAR10/CelebA Discriminator Architecture
Layer Number of outputs

Convolution 64
Convolution 128
Convolution 256
Convolution 512

Flatten and Fully Connected 1

As for MNIST, we apply batch normalization. The activation functions for the generator are ReLUs,
whereas the discriminator uses leaky ReLUs with a leak of 0.3. The learning rate for all the models is
0.0002 for both the generator and the discriminator and the updates are performed using the Adam
optimizer. The regularization for CHEKHOV GAN is 0.1 and the increase parameter inc is 10.
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Figure 9: Random batch of generated images from GAN after training for 30 epochs (on the left) and
CHEKHOV GAN (K=25) after training for 30 epochs (on the right)

D.3.1 RESULTS ON CIFAR10

We train for 30 epochs, which we find to be the optimal number of training steps for vanilla GAN in
terms of MSE on images from the validation set. Table 10 includes comparison to other baselines. The
first set of baselines (given with purple color) consist of GAN where the updates in the inner loop (for
the discriminator), the outer loop (for the generator), or both are performed 25 times. The baselines
shown with green color are regularized versions of GANs, where we apply the same regularization as
in our CHEKHOV GAN in order to show that the gain is not due to the regularization only. Figure 9
presents two randomly sampled batches from the generator trained with GAN and CHEKHOV GAN .

Table 10: CIFAR10: MSE for other baselines on target images that come from the training set.
GAN 25 updates indicates that either the generator, the discriminator or both have been updated 25
times at each update step. Regularized GAN is vanilla GAN where the fully connected layers have
regularization of 0.05.

Table 11 gives comparison between CHEKHOV GAN and Unrolled GAN for different numbers of
past states or unrolling steps.

Method 5 states/steps 10 states/steps 25 states/steps
CHEKHOV GAN 58.84 ± 3.67 56.99 ± 3.49 48.42 ± 2.99
Unrolled GAN 61.44 ± 7.06 55.60 ± 5.52 -

Table 11: CIFAR10: Comparison of average MSE on the training set between Unrolled GAN and CHEKHOV
GAN for 5 and 10 unrolling steps and past states, respectively. The numbers for Unrolled GAN are taken from
Metz et al. (2016).
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D.3.2 CELEBA

All models are trained for 10 epochs. Randomly generated batches of images are shown in Figure 10.

Figure 10: Random batch of generated images from GAN (left) and CHEKHOV GAN (K = 5) (right)
after training for 10 epochs.

D.3.3 DETAILS ABOUT INFERENCE VIA OPTIMIZATION ON CIFAR10

This approach consists in finding a noise vector zclosest that when used as input to the generator
would produce an image that is the closest to a target image in terms of mean squared error (MSE):

zclosest = argmin
z

MSE(G(z), xtarget) xclosest = G(zclosest).

We report the MSE in image space between xclosest and xtarget. This measures the ability of the
generator to generate samples that look like real images. A model engaging in mode collapse would
fail to generate (approximate) images from the real data. Conversely, if a model covers the true data
distribution it should be able to generate any specific image from it.

D.4 INCEPTION SCORE AND FID ON CIFAR10

Additional plots that showcase inception scores for Chekhov WGAN and the WGAN-based baselines
(WGAN, WGAN GP, MIX+WGAN) and Chekhov GAN and the GAN-based baselines (GAN,
Unrolled GAN, MIX+GAN) are given in Figure 11.

For Chekhov WGAN we set the regularization to 0.3 and inc = 1, whereas for Chekhov GAN we set
the regularization to 0.005 and inc to 50. All the baselines were run using their recommended set of
hyperparameters.
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Figure 11: Comparison of Inception score: (left) WGAN-based variants, (right) GAN-based variants.The
shaded area denotes the standard deviation.
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