
Workshop track - ICLR 2017

ON IMPROVING THE NUMERICAL STABILITY OF
WINOGRAD CONVOLUTIONS

Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg & Julien Demouth
NVIDIA
{kvincent,kstephano,mfrumkin,bginsburg,jdemouth}@nvidia.com

ABSTRACT

Deep convolutional neural networks rely on heavily optimized convolution algo-
rithms. Winograd convolutions provide an efficient approach to performing such
convolutions. Using larger Winograd convolution tiles, the convolution will be-
come more efficient but less numerically accurate. Here we provide some ap-
proaches to mitigating this numerical inaccuracy. We will exemplify these ap-
proaches by working on a tile much larger than any previously documented:
F (9 × 9, 5 × 5). Using these approaches, we will show that such a tile can be
used to train modern networks and provide performance benefits.

1 INTRODUCTION

Deep convolutional neural networks have become a foundation for modern computer vision. These
are heavily compute intensive operations which consume days to weeks to train on GPUs. The
majority of this time is spent in convolution layers which puts this layer at the top of our focus.

The most efficient implementation of the convolutional layer is based on Winograd Lavin & Gray
(2015). Winograd convolutions work on tiles designed for a specific output size and filter size.
While larger output & filter size tiles provide better complexity reduction, they also provide higher
numerical instability. Following Lavin & Gray (2015), we will refer to tile sizes by F (m×m,n×n)
where m is the number of outputs and n is the number of weights. The input size of a tile is computed
as m+ n− 1×m+ n− 1.

There has been little investigation on moving beyond F (4 × 4, 3 × 3) tiles; the assumption being
they are too inaccurate. To demonstrate very large tiles can perform accurate computations, we will
exemplify a tile with both a larger output & filter size: F (9× 9, 5× 5).

We investigated the source of numerical instability for Winograd convolutions. We propose two
approaches to mitigate this instability; we will demonstrate these approaches with F (9×9, 5×5) as
our example. We will show improvements to numerical stability and empirically prove that modern
networks can train successfully while using the F (9 × 9, 5 × 5) tile; Alexnet Krizhevsky et al.
(2012) and Inception v3 Szegedy et al. (2015) as our examples. We will also show performance
improvements, comparing to cuDNN v6, for the 5× 5 convolution layers in these networks.

2 GENERATION OF WINOGRAD TRANSFORM MATRICES USING
VANDERMONDE

A convolution correlates K filters with C channels of size R × S against a minibatch of N images
with C channels of size H ×W . We will name image elements as xn,c,h,w and filter elements as
wk,c,r,s.

A single output yn,k,p,q can be computed via the following:

yn,k,p,q =

C∑
c=1

R∑
r=1

S∑
s=1

xn,c,p+r,q+swk,c,r,s (1)

1

Workshop track - ICLR 2017

From Lavin & Gray (2015), the outputs of convolution can be computed efficiently via the following:

x ∗ w = Y T (XTxX
⊙

WwWT)Y (2)

For a tile of size F (m × m,n × n), the following is one method for computing these efficient
transform matrices (YT , XT & W).

Y T = (V(m+n−1)×m)TSY (3)

XT = SX(V(m+n−1)×(m+n−1))
−T (4)

W = SW (V(m+n−1)×n) (5)

Where Va×b is a trimmed Vandermonde matrix for Homogenous Coordinate polynomials. This can
be expressed directly with the following:


f0

0g0
b−1 f0

1g0
b−2 · · · f0

b−1g0
0

f1
0g1

b−1 f1
1g1

b−2 · · · f1
b−1g1

0

...
...

fa−1
0ga−1

b−1 fa−1
1ga−1

b−2 · · · fa−1
b−1ga−1

0

 (6)

Where (fi, gi) are given unique homogenous coordinates (we will call polynomial points). Note that
the chosen (fi, gi) must be the same provided for all matrices (Y T , XT and W).

SY , SX and SW are given diagonal square matrices where SY SXSW = I . When referring to these
matrices, we will only list the diagonal values as a vector; these values follow the diagonal square
matrix from left-right.

The transforms provided by Lavin & Gray (2015) can be generated using this generation method
with the following polynomial points and scalings.

F (2× 2, 3× 3) & F (3× 3, 2× 2)
Polynomial Points [(0, 1), (1, 1), (-1, 1), (1, 0)]
SY [1, 1, 1, -1]
SX [1, 2, 2, -1]
SW [1, 1

2 , 1
2 , 1]

F (4× 4, 3× 3)
Polynomial Points [(0, 1), (1, 1), (-1, 1), (2, 1), (-2, 1), (1, 0)]
SY [1, 1, 1, 1, 1, 1]
SX [4, -6, -6, 24, 24, 1]
SW [14 , - 16 , - 16 , 1

24 , 1
24 , 1]

Note that Fourier Transform is a special case of the Vandermonde matrix. This special case requires
a complex-space Vandermonde matrix with polynomial points being roots of unity. As Winograd
convolutions are conventionally in real-space, we will ignore complex-space Vandermonde matrices
for further discussions.

3 APPROACHES TO MITIGATE INSTABILITY OF VANDERMONDE MATRICES

Vandermonde matrices tend to be numerically unstable for large sizes Pan (2015). This is a direct
consequence of the exponential growth of polynomial points in Vandermonde matrices. Well chosen
polynomial points can mitigate this instability as some values exhibit minimal exponential growth.
There are several approaches to finding these minimal polynomial points but we have found the best
success from a basic approach of minimizing the numerator & denominator. For example, we have
found values such as (2, 1) & (12 , 1) tend to cause less error than values such as (3, 1) & (13 , 1).

Our special use case of Vandermonde matrices also provides another approach to mitigate instability.
We can choose scaling matrices SY , SX , SW such that we can mitigate the exponential growth.

2

Workshop track - ICLR 2017

Using both of the above approaches, we have been able to successfully train Alexnet and Inception
v3 using F (9× 9, 5× 5) tiles for all 5× 5 convolutions and F (4× 4, 3× 3) for all 3× 3 tiles; using
direct convolution for all other layers.

For our F (9 × 9, 5 × 5) convolutions, we choose the following polynomial points: [(0, 1), (1, 1),
(-1, 1), (12 , 1), (− 1

2 , 1), (13 , 1), (− 1
3 , 1), (32 , 1), (− 3

2 , 1), (-3, 1), (2, 1), (-2, 1), (1, 0)]. See Appendix
A for the resulting output transform matrix for such polynomial points.

Observing the output transform matrix, we hand-pick the following scalings for SY : [-1.333333,
0.05, 0.1, -0.7314286, -1.024, 1.314635, 1.643293, -0.005277263, -0.01583179, -1.587302e-05,
0.0003265306, 0.001632653, 1]. See Appendix B for the result of applying such scalings.

For the F (9 × 9, 5 × 5) tile, the Y T matrix exhibits exponential growth up to power 9 − 1 = 8
where as W matrix exhibits exponential growth up to 5 − 1 = 4. Because W has significantly less
exponential growth, we ignore scalings for W by setting SW to the Identity matrix.

Once SY and SW are known, there is only one such matrix SX that will meet the requirement of
SY SXSY = I . As such, SX must be [-0.75, 20, 10, -1.367188, -0.9765625, 0.7606677, 0.6085342,
-189.4922, -63.16406, -63000, 3062.5, 612.5, 1].

These scalings reduce the matrix condition number for SY , SX , SW from [36279, 113237696,
64] to [125, 2094, 64]. Running numerical experiments on the 5 × 5 convolutions in Alexnet &
Inception, the error has been reduced by 137x and 43x respectively; see following Section 4 for
more info. Using these scalings, we have been able to successfully train Alexnet and Inception v3
using F (9× 9, 5× 5) tiles for all 5× 5 convolutions and F (4× 4, 3× 3) for all 3× 3 convolutions;
using direct convolution for all other layers.

4 EXPERIMENTAL RESULTS

We use a simple non-fused approach to implement F (9 × 9, 5 × 5) where all transform matrices
are computed in separate CUDA kernels and cuBLAS SGEMM is called to compute the point-wise
elements of all N , C and K. All Winograd tiles are computed at the same time which means all
tiles must be resident in GPU memory.

For performance experiments, we use an NVIDIA GTX Titan X (Pascal) and cuDNN v6. We provide
the speedup from the best cuDNN v6 algorithm compared with F (9 × 9, 5 × 5) compute time for
forward convolution (conv), data gradient (dgrad) and weight gradient (wgrad) computation. Note
that the F (9 × 9, 5 × 5) algorithm is present in cuDNN v6, we compare this algorithm with with
best of all other algorithms. We use a batch size of 32.

Layer H/W Pad C K conv dgrad wgrad
Alexnet 5× 5 layer 27 2 48 128 1.05x 1.23x 1.90x

Inception 5× 5 layer 35 2 48 64 1.42x 1.44x 1.37x

For numerical experiments, reference is computed in fp64 with data & weights from the uniform
distribution [-1, 1]. The error shown is the maximum relative error of all computed elements for
a forward convolution; all using fp32 compute and storage. Direct being a direct convolution ap-
proach. Non-Scaled being F (9×9, 5×5) without any scalings discussed in Section 3. Scaled being
the previous but with the scalings. We use a batch size of 32.

Layer H/W Pad C K Direct Non-Scaled Scaled
Alexnet 5× 5 layer 27 2 48 128 2.81E-06 7.53E-02 5.49E-04

Inception 5× 5 layer 35 2 48 64 2.84E-06 2.16E-02 4.98E-04

5 FUTURE WORK

Our results with F (9×9, 5×5) strongly suggest that F (9×9, 3×3) tiles will be accurate enough for
convolutional neural networks. This large tile could provide speedups to 3 × 3 convolutions which
are much more prevalent than 5× 5.

Our results also indicate that approaches to mitigate instability can have profound impacts on the
accuracy of Winograd convolutions. Further exploration could lead to further stability and even
larger tiles.

3

Workshop track - ICLR 2017

REFERENCES

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks, 2012.

Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks, 2015.

Victor Y. Pan. How bad are vandermonde matrices?, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision, 2015.

APPENDIX A NON-SCALED V13×9

V13×9 matrix (output transform) for polynomial points: [(0, 1), (1, 1), (-1, 1), (12 , 1), (− 1
2 , 1), (13 , 1),

(− 1
3 , 1), (32 , 1), (− 3

2 , 1), (-3, 1), (2, 1), (-2, 1), (1, 0)].
1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 1
1 0.5 0.25 0.125 0.0625 0.031 0.01562 0.0078 0.0039
1 -0.5 0.25 -0.125 0.0625 -0.031 0.01562 -0.0078 0.0039
1 0.3333 0.1111 0.037 0.01235 0.0041 0.00137 0.0004 0.00015
1 -0.3333 0.1111 -0.037 0.01235 -0.0041 0.00137 -0.0004 0.00015
1 1.5 2.25 3.375 5.062 7.594 11.39 17.09 25.63
1 -1.5 2.25 -3.375 5.062 -7.594 11.39 -17.09 25.63
1 -3 9 -27 81 -243 729 -2187 6561
1 2 4 8 16 32 64 128 256
1 -2 4 -8 16 -32 64 -128 256
0 0 0 0 0 0 0 0 1

APPENDIX B SCALED V13×9

V13×9 matrix (output transform) for polynomial points: [(0, 1), (1, 1), (-1, 1), (12 , 1), (− 1
2 , 1), (13 ,

1), (− 1
3 , 1), (32 , 1), (− 3

2 , 1), (-3, 1), (2, 1), (-2, 1), (1, 0)]. Each row is scaled by the following fac-
tors: [-1.333333, 0.05, 0.1, -0.7314286, -1.024, 1.314635, 1.643293, -0.005277263, -0.01583179,
-1.587302e-05, 0.0003265306, 0.001632653, 1].

-1.3 0 0 0 0 0 0 0 0
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.1 -0.1 0.1 -0.1 0.1 -0.1 0.1 -0.1 0.1

-0.73 -0.37 -0.18 -0.091 -0.046 -0.023 -0.011 -0.0057 -0.0029
-1 0.51 -0.26 0.13 -0.064 0.032 -0.016 0.008 -0.004
1.3 0.44 0.15 0.049 0.016 0.0054 0.0018 0.0006 0.0002
1.6 -0.55 0.18 -0.061 0.02 -0.0068 0.0023 -0.0007 0.00025

-0.0053 -0.0079 -0.012 -0.018 -0.027 -0.04 -0.06 -0.09 -0.14
-0.016 0.024 -0.036 0.053 -0.08 0.12 -0.18 0.27 -0.41

-1.6e-05 4.8e-05 -0.0001 0.00043 -0.0013 0.0039 -0.012 0.035 -0.1
0.00033 0.00065 0.0013 0.0026 0.0052 0.01 0.021 0.042 0.084
0.0016 -0.0033 0.0065 -0.013 0.026 -0.052 0.1 -0.21 0.42

0 0 0 0 0 0 0 0 1

4

	Introduction
	Generation of Winograd transform matrices using Vandermonde
	Approaches to mitigate instability of Vandermonde matrices
	Experimental Results
	Future Work
	Appendix Example vandermonde matrix without scaling
	Appendix Example vandermonde matrix with scaling

