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ABSTRACT

We present a new unsupervised method for learning general-purpose sentence em-
beddings. Unlike existing methods which rely on local contexts, such as words
inside the sentence or immediately neighboring sentences, our method selects, for
each target sentence, influential sentences in the entire document based on a doc-
ument structure. We identify a dependency structure of sentences using metadata
or text styles. Furthermore, we propose a novel out-of-vocabulary word handling
technique to model many domain-specific terms, which were mostly discarded by
existing sentence embedding methods. We validate our model on several tasks
showing 30% precision improvement in coreference resolution in a technical do-
main, and 7.5% accuracy increase in paraphrase detection compared to baselines.

1 INTRODUCTION

Distributed representations are ever more leveraged to understand text (Mikolov et al., 2013a;b; Levy
& Goldberg, 2014; Pennington et al., 2014). Recently, Kiros et al. (2015) proposed a neural network
model, SKIP-THOUGHT, that embeds a sentence without supervision by training the network to
predict the next sentence for a given sentence. However, unlike human reading with broader context
and structure in mind, the existing approaches focus on a small continuous context of neighboring
sentences. These approaches work well on less structured text like movie transcripts, but do not
work well on structured documents like encylopedic articles and technical reports.

To better support semantic understanding of such technical documents, we propose a new unsuper-
vised sentence embedding framework to learn general-purpose sentence representations by leverag-
ing long-distance dependencies between sentences in a document. We observe that understanding
a sentence often requires understanding of not only the immediate context but more comprehensive
context, including the document title, previous paragraphs or even related articles as shown in Fig-
ure 1. For instance, all the sentences in the document can be related to the title of the document
(1(a)). The first sentence of each item in a list structure can be influenced by the sentence introduc-
ing the list (1(b)). Moreover, html documents can contain hyperlinks to provide more information
about a certain term (1(c)). With the contexts obtained from document structure, we can connect
ransomware with payment (1(a)) and the four hashes with Locky (1(b)).

Locky ransomware on aggressive hunt for victims
Millions	of	spam	emails	spread	new	ransomware	variant	on	the	
day	it	first	appeared.
A	new	variant	of	ransomware	 known	as	Locky (detected	by	
Symantec	as	Trojan.Cryptolocker.AF)	has	been	spreading	quickly	
since	it	first	appeared	on	Tuesday	(February	16).	The	attackers	
behind	Locky have	pushed	the	malware	aggressively,	using	
massive	spam	campaigns	and	compromised	websites.	……
Ransomware is	computer	malware	that	installs	covertly	on	a	victim's	
computer,	executes	a	cryptovirology	attack	that	adversely	affects	it,	and	
demands	a	ransom	payment	to	decrypt	it	or	not	publish	it.
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(a) Document Title and Footnote

Look	Into	Locky Ransomware	
Locky is	a	new	ransomware	that	has	been	released	(most	
probably)	by	the	Dridex gang.	Not	surprisingly,	it	is	well	
prepared,	which	means	that	the	threat	actor	behind	it	has	
invested	sufficient	resources	for	it,	including	its	mature	
infrastructure.	Let’s	take	a	look.
Analyzed	samples
• 7a23368ee84781d7584e058a9922f324
o payload:	74dde1905eff75cf3328832988a785de <-

main	focus	of	this	analysis
• d9df60c24ceca5c4d623ff48ccd4e9b9
• e7aad826559c8448cd8ba9f53f401182

(b) Sections and List

Similarities	to	Dridex?

These	spam	campaigns	have	many	
similarities	to	campaigns	used	to	
spread	the	Dridex	financial	Trojan.	
The	sheer	size	of	the	campaigns,	
their	disguise	as	financial	
documents	such	as	invoices,	and	the	
use	of	malicious	macros	in	attached	
Word	documents	are	all	hallmarks	
of	the	Dridex group.	

Dridex:	Financial	Trojan	
aggressively	spread	in	
millions	of	spam	emails	
each	day

Built	to	harvest	the	banking	
credentials	of	victims,	the	
virulent	Dridex is	now	one	
of	the	most	dangerous	
pieces	of	financial	malware	
in	circulation.

(c) Document Hyperlink

Figure 1: Examples of long distance dependencies between sentences

Our approach leveraging such structural elements has several advantages. First, it can learn from
technical documents containing several subtopics that may cause sudden context changes. Some sen-
tences have dependences to distant ones if a different perspective of the topic is introduced. Using
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Table 1: Categorization of sentence embedding methods. * denotes unsupervised methods.
Continuity

Continuous Discontinuous

Range Intra-sentence Kusner et al. (2015); Kalchbrenner
et al. (2014); Kim (2014); Wieting &
Gimpel (2017); Conneau et al. (2017);
Palangi et al. (2016); Le & Mikolov
(2014)*

Socher et al. (2011); Ma
et al. (2015); Tai et al.
(2015)

Inter-sentence Kiros et al. (2015)* Our work*

only small neighboring context results in insufficient input to the neural network. Using long dis-
tance dependencies, we can provide a broader context. Second, we can consider out-of-vocabulary
(OOV) words using their information extracted from the structural context. The vocabulary in a
neural network is always limited due to costly training time and memory use. An existing method
discarding low frequency words results in losing important keywords in the technical domain.

We validate our model on several NLP tasks using a Wikipedia corpus. When trained with the
Wikipedia corpus, our model produces much lower loss than SKIP-THOUGHT in the target sentence
prediction task, confirming that training with only local context does not work well for such docu-
ments. We also compare the performance of the learned embedding on several NLP tasks including
coreference resolution and paraphrase identification. For coreference resolution, our model shows
roughly 30% improvement in precision over a state-of-the-art deep learning-based approach on cy-
bersecurity domain, and produces 7.5% increase in accuracy compared with SKIP-THOUGHT for
paraphrase identification.

The main contributions of the paper include:
• We propose a general-purpose sentence embedding method which leverages long distance

sentence dependencies extracted from the document structure.
• We developed a rule-baed dependency annotator to automatically determine the document

structure and extract all governing sentences for each sentence.
• We also present a new OOV handling technique based on the document structure.
• We have applied our methods to several NLP applications using cybersecurity datasets. The

experiments show that our model consistently outperform existing methods.

2 RELATED WORK

Distributed representation of sentences, which is often called sentence embedding, has gained much
attention recently, as word-level representations (Mikolov et al., 2013a;b; Levy & Goldberg, 2014;
Pennington et al., 2014) are not sufficient for many sentence-level or document-level tasks, such as
machine translation, sentiment analysis and coreference resolution. Recent approaches using neural
networks consider some form of dependencies to train the network. Dependencies can be continuous
(relating two adjacent words or sentences) or discontinuous (relating two distant words or sentences),
and intra-sentence (dependency of words within a sentence) or inter-sentence (dependency between
sentences). Many sentence embedding approaches leverage these dependencies of words to combine
word embeddings, and can be categorized as shown in 1.

One direct extension of word embedding to sentences is combining words vectors in a continuous
context window. Kusner et al. (2015) use a weighted average of the constituent word vectors. Wi-
eting & Gimpel (2017), Conneau et al. (2017), and Palangi et al. (2016) use supervised approaches
to train a long short-term memory (LSTM) network that merges word vectors. Kalchbrenner et al.
(2014) and Kim (2014) use convolutional neural networks (CNN) over continuous context window
to generate sentence representations. Le & Mikolov (2014) include a paragraph vector in the bag of
word vectors, and apply a word embedding approaches (Mikolov et al., 2013a;b).

Recently, several researchers have proposed dependency-based embedding methods using a depen-
dency parser to consider discontinuous intra-sentence relationships (Socher et al., 2011; Ma et al.,
2015; Tai et al., 2015). Socher et al. (2011) uses recursive neural network to consider discontinuous
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dependencies. Ma et al. (2015) proposes a dependency-based convolutional neural network which
concatenate a word with its ancestors and siblings based on the dependency tree structure. Tai
et al. (2015) proposes tree structured long short-term memory networks. These studies show that
dependency-based (discontinuous) networks outperform their sequential (continuous) counterparts.

Unlike these approaches, considering only intra-sentence dependencies, SKIP-THOUGHT (Kiros
et al., 2015) joins two recurrent neural networks, encoder and decoder. The encoder combines
the words in a sentence into a sentence vector, and the decoder generates the next sentence. Our ap-
proach is similar to SKIP-THOUGHT since both approaches are unsupervised and use inter-sentential
dependencies. However, SKIP-THOUGHT considers only continuous dependency.

Furthermore, we propose a new method to handle OOV words in sentence embedding based on the
position of an OOVword in a sentence and the dependency type of the sentence. To our knowledge,
there has been no sentence embedding work incorporating OOV words in formulating the training
goal. Most existing systems map all OOV words to a generic unknown word token (i.e., < unk >).
Santos & Zadrozny (2014) and Horn (2017) build an embedding of an OOV word on the fly that
can be used as input to our system, but not to set the training goal. Luong et al. (2015) propose a
word position-based approach to address the OOV problem for neural machine translation (NMT)
systems. Their methods allow a neural machine translation (NMT) system to emit, for each unknown
word in the target sentence, the position of the corresponding word in the source sentence. However,
their methods are not applicable to sentence embedding, as they rely on an aligned corpus. Also, our
approach considers not only word positions but also the dependency types to represent OOV words
in a finer-grained OOV level.

3 DOCUMENT STRUCTURED-BASED CONTEXT

Previous methods use intra-sentence dependencies such as dependency tree, or immediately neigh-
boring sentences for sentence embedding. However, we identify more semantically related content
to a target sentence based on the document structure as shown in Figure 1. In this section, we
describe a range of such inter-sentence dependencies that can be utilized for sentence embedding
and the techniques to automatically identify them. We use the following notations to describe the
extraction of document structure-based context for a given sentence. Suppose we have a document
D = {S1, . . . , S|D|}, which is a sequence of sentences. Each sentence Si is a sequence of words:
si,1, . . . , si,|Si|. For each target sentence St ∈ D, there can be a subset G ⊂ D that St depends
on (For simplicity, we use G to denote a St specific set). We call such a sentence in G a governing
sentence of St, and say Gi governs St, or St depends on Gi. Each Gi is associated with St through
one of the dependency types in D described below.

3.1 TITLES

The title of a document, especially a technical document, contains the gist of the document, and all
other sentences support the title in a certain way. For instance, the title of the document can clarify
the meaning of a definite noun in the sentence. Section titles play a similar role, but, mostly to the
sentences within the section. We detect different levels of titles, starting from the document title to
chapter, section and subsection titles. Then, we identify the region in the document which each title
governs and incorporate the title in the embedding of all the sentences in the region. To identify
titles in a document, we use various information from the metadata and the document content.

Document Metadata (DTM ): We extract a document title from the <title> tag in a HTML docu-
ment or from the title field in Word or PDF document metadata. Since the document title influences
all sentences in a document, we consider a title obtained from DTM governs every sentence in D.

Heading Tag (DTHn): The heading tags <h1> to <h6> in HTML documents are often used to
show document or section titles. We consider all the sentences between a heading tag and the next
occurrence of the same level tag are considered under the influence of the title.

Table Of Contents (DTC): Many documents contain a table of contents (TOC) providing the overall
structure of the document. To detect the titles based on the table of contents, we first recognize a
phrase indicating TOC, such as “table of contents”, “contents” or “index”. Then, we parse the
content following the cue phrase and check if it contains a typical TOC pattern such as “Chapter 1
– Introduction” or “Introduction · · · · · · · · · 8”. The range of each section can be easily identified
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from the TOC. If the document is a HTML file, each line in the TOC tends to have a hyperlink to the
corresponding section. For non-HTML documents, we can extract the page number from the TOC
(e.g., page 8) and locate the corresponding content if the document includes the page numbers.

Header and Footer (DTR): Technical documents often contain the document or section titles in
the headers or footers. Thus, if the same text is repeated in the header or in the footer in many pages,
we take the text as a title and consider all the sentences appearing in these pages belong to the title.

Text Styles (DTS): Titles often have a distinctive text style. They tend to have no period at the end
and contain a larger font size, a higher number of italic or bold text, and a higher ratio of capitalized
words compared to non-title sentences. We first build a text style model for sentences appearing
in the document body, capturing the three style attributes. If a sentence ends without a period and
any dimension of its style model has higher value than that of the text style model, we consider the
sentence as a title. Then, we split the document based on the detected titles and treat each slice as a
section.

3.2 LISTS

Authors often employ a list structure to describe several elements of a subject. These list structures
typically state the main concept first, and, then, the supporting points are described in a bulleted,
numbered or in-text list as illustrated in Figure 2. In these lists, an item is conceptually more
related to the introductory sentence than the other items in the list, but the distance can be long
because of other items. Once list items are identified, we consider the sentence appearing prior
to the list items as the introductory sentence and assume that it governs all the items in the list.

The categories of the products State Farm of-
fers are as follows:
•We have property and casualty insurance.
•We offer comprehensive types of life and

health insurances.
•We have bank products.

Figure 2: A sample text with a bulleted list

Formatted List (DLF ): To extract num-
bered or bulleted lists, we use the list tags (e.g.,
<ul>,<ol>,<li>) for HTML documents. For
non-HTML documents, we detect a number se-
quence (i.e., 1, 2, ...) or bullet symbols (e.g., -,
·) repeating in multiple lines.

In-text List (DLT ): We also identify in-text
lists such as “First(ly), . . .. Second(ly), . . ..
Last(ly), . . .” by identifying these cue words.
We consider the sentence appearing prior to the
list items as the introductory sentence and as-
sume that it governs the list items.

3.3 LINKS

Hyperlinks (DH ): Some sentences contain hyperlinks or references to provide additional informa-
tion or clarify the meaning of the sentence. We can enrich the representation of the sentence using
the linked document. In this work, we use the title of the linked document in the embedding of the
sentence. Alternatively, we can use the embedding of the linked document.

Footnotes and In-document Links (DF ): Footnotes also provide additional information for the
target sentence. In an HTML document, such information is usually expressed with in-document
hyperlinks, which ends with “#dest”. In this case, we identify a sentence marked with “#dest” and
add a dependency between the two sentences.

3.4 WINDOW-BASED CONTEXT (DWn):

We also consider the traditional sequential dependency used in previous methods (Kiros et al., 2015;
Gan et al., 2017). Given a document D = {S1, . . . , S|D|}, the target sentence St is considered to be
governed by n sentences prior to (n < 0) or following (n > 0) St. In our implementation, we use
only one left sentence.
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Figure 3: Our model architecture.

4 NEURAL NETWORK MODELS

Similarly to SKIP-THOUGHT (Kiros et al., 2015), we train our model to generate a target sentence
St using a set of governing sentences G. However, SKIP-THOUGHT takes into account only the
window-based context (DWn), while our model considers diverse long distance context. Further-
more, we handle out-of-vocabulary (OOV) words based on their occurrences in the context. Our
model has several encoders (one encoder for each Gi ∈ G), a decoder and an OOV handler as
shown in Figure 3. The input to each cell is a word, represented as a dense vector. In this work, we
use the pre-trained vectors from the CBOW model (Mikolov et al., 2013b), and the word vectors can
be optionally updated during the training step. Unlike existing sentence embedding methods, which
include only a small fraction of words (typically high frequency words) in the vocabulary and map
all other words to one OOV word by averaging all word vectors, we introduce a new OOV handler
in our model. The OOV handler maps all OOV words appearing in governing sentences to variables
and extend the vocabulary with the OOV variables. More details about OOV handler is described in
Section 5.

We now formally describe the model given a target sentence St and a set G of its governing sen-
tences. We first describe the encoders that digest each Gi ∈ G. Given the i-th governing sentence
Gi = (gi,1, . . . , gi,|Gi|) let w(gi,t) be the word representation (pre-trained or randomly initialized)
of word gi,t. Then, the following equations define the encoder for Si.

hi,t = RC(w(gi,t), hi,t−1; θE), hi = hi,|Gi|

λi = σ(Udi + g), h̄0 =
∑
i

{
λi(udep(i)hi + adep(i)) + (1− λi)(Wdep(i)hi + b)

} (1)

where RC is a recurrent neural network cell (e.g., LSTM or GRU) that updates the memory hi,t;
θE is the parameters for the encoder RC; λi is an OOV weight vector that decides how much we
rely on out-of-vocabulary words; di denotes the OOV features for Gi; U and g are linear regression
parameters; σ(·) is the sigmoid function; udep and adep are dependency-specific weight parameters;
W and b are a matrix and a bias for a fully connected layer; and h̄0 is the aggregated information of
G and is passed to the decoder for target sentence generation.

Now, we define the decoder as follows:

ot, h̄t = RC(ot−1, h̄t−1; θD), yt = softmax(V ot + c) (2)

where RC is a recurrent neural network cell that updates the memory h̄t and generates the output
ot; θD is a set of parameters for the decoder RC; softmax(·) is the softmax function; and V ot + c
transforms the output into the vocabulary space. That is, V ot + c generates logits for words in the
vocabulary set and is used to predict the words in the target sentence.

To strike a balance between the model accuracy and the training time, we use K randomly chosen
governing sentences from G for all target sentence. We use the cross entropy between yt and ot as
the optimization function and update θE ,Wdep(i), b, V, c, θD and optionally w(·).
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Algorithm 1: Building OOV map
Function BuildOOVMap (G,V )
Input : A governing sentence set G = {G1, . . . , G|G|} and a vocabulary V0
Output: OOV Map
foreach Gi ∈ G do

OOVWordsi ← {wj ∈ Gi|wj /∈ V, j = 1, . . . , η}
W2Vari ← {wj → Oi(j)|wj ∈ OOVWordsi, j = 1, . . . , |OOVWordsi|}

return
⋃

i W2Vari

5 OUT-OF-VOCABULARY (OOV) MAPPING

Incorporating all the words from a large text collection in deep learning models is infeasible, since
the amounts of memory use and training time will be too costly. Existing sentence embedding tech-
niques reduce the vocabulary size mainly by using only high frequency words and by collapsing all
other words to one unknown word. The unknown word is typically represented by the average vector
of all the word vectors in the vocabulary or as a single dimension in a bag-of-word representation.
However, this frequency-based filtering can lose many important words including domain-specific
words and proper nouns resulting in unsatisfactory results for technical documents.

Specifically, OOV word handling is desired in the following three places: (1) input embeddings to
encode the governing sentences (G); (2) input embeddings to decode the target sentence (St); and
(3) output logits to compute the loss with respect to St. In this work, we apply the most commonly
used approach, i.e., using the average vector of all the words in the vocabulary to represent all OOV
words, to generate the input embeddings of G or St for the encoder and the decoder. To handle the
OOV words in the output logits, we propose a new method using two vocabulary sets. We first select
N most frequent words in the training corpus as an initial vocabulary V0. Note that N (typically,
tens of thousands) is much smaller than the vocabulary size in the training corpus (typically, millions
or billions). The OOV mapper reduces the OOV words into a smaller vocabulary VOOV of OOV
variables that can represent certain OOV words given a context (e.g., an OOV variable may indicate
the actor in the previous sentence).

We note that only the OOV words appearing in governing sentences influence in model training, and
many semantically important words tend to appear in the beginning or at the end of the governing
sentences. Thus, we use OOV variables to represent the first and the last η OOV words in a governing
sentences. Specifically, we denote a j-th OOV word in the i dependency governing sentence by an
OOV variable Oi(j) ∈ VOOV . This idea of encoding OOV words based on their positions in a
sentence is similar to Luong et al. (2015). However, we encode OOV words using the dependency
type of the sentence as well as their position in the sentence.

Our OOV handler performs the following steps. First, we build an OOV map to convert OOV
words to OOV variables and vice versa. Algorithm 1 summarizes the steps to build a map which
converts the first η OOV words into OOV variables. To model the last η OOV words, we reverse the
words in each Gi, and index them as w−1, w−2, . . ., then pass them to BuildOOVMap to construct
Oi(−1), Oi(−2), . . . , Oi(−η).

Note that the mapping between OOV words and OOV variables is many-to-many. For example,
suppose “We discuss Keras first’ is a target sentence St, and, “Slim and Keras are two tools you
must know” is extracted as the document title by the dependency type DTS , “PLA’s weekly review:
Slim and Keras are two tools you must know” is extracted as the document title byDTM for St, and,
words ‘Slim’, ‘Keras’ and ‘PLA’ are OOV words. Then, we map the ‘Slim’ and ‘Keras’ from the
first title to OOV variable OTS(1) and OTS(2) and ‘PLA’, ‘Slim’ and ‘Keras’ from the second title
to OTM (1), OTM (2), and OTM (3) respectively. As a result, ‘Keras’ in St is mapped to OTS(1)
and OTM (3).

Once we have the OOV mapping and the augmented vocabulary, we can formulate an optimization
goal taking into account the OOV words with a vocabulary with a manageable size. The optimization
goal of each RNN cell without OOV words is to predict the next word with one correct answer. In
contrast, our model allows multiple correct answers, since an OOV word can be mapped to multiple
OOV variables. We use the cross entropy with soft labels as the optimization loss function. The
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Table 2: Comparison of our models and SKIP-THOUGHT for
target sentence prediction

Method All Words In-vocabulary
Words

OURS 0.1456 0.1394
OURS−DEP 0.1467 0.1415

SKIP-THOUGHT N/A 0.1907

Table 3: Comparison of para-
phrase detection accuracy

Method Accuracy
OURS 0.72

SKIP-THOUGHT 0.67

weight of each label is determined by the inverse-square law, i.e., the weight is inversely proportional
to the square of the number of words associated with the label. This weighting scheme gives a higher
weight to less ambiguous dependency.

One additional component we add related to OOV words is a weight function for the governing
sentences based on occurrences of proper nouns (λi in Equation 1). Instead of equally weighing
all governing sentences, we can give a higher weight to sentences with proper nouns, which are
more likely to be OOV words. Thus, we introduce a feature vector representing the number of OOV
proper nouns in the i-th governing sentence (di in Equation 1). Currently, the features include #
of OOV words whose initials are uppercased, # of OOV words that are uppercased, and # of OOV
words with any of the letters are uppercased. Together with the linear regression parameters, U and
g, the model learns the weights for different dependency types.

6 EXPERIMENTS

In this section, we empirically evaluate our approach on various NLP tasks and compare the results
with other existing methods. We trained the proposed model (OURS) and the baseline systems on
807,647 randomly selected documents from the 2009 Wikipedia dump, which is the latest Wikipedia
dump in HTML format, after removing the discussion and resource (e.g., images) articles among.
Since our approach leverages HTML tags to identify document structures, our model use the raw
HTML files. For the baseline systems, we provide plain text version of the same articles. All
models were train for 300K steps with 64-sized batches and the Adagrad optimizer (Duchi et al.,
2011). For the evaluation, we use up-to 8 governing sentences as the context for a target sentence.
When a sentence has more than 8 governing sentences, we randomly choose 8 sentences. We set the
maximum number of words in a sentence to be 30 and pad each sentence with special start and end
of sentence symbols. We set η to 4, resulting in |VOOV | = 80.

6.1 TARGET SENTENCE PREDICTION

Unlike most other approaches, our model and SKIP-THOUGHT (Kiros et al., 2015) can learn
application-independent sentence representations without task-specific labels. Both models are
trained to predict a target sentence given context. The prediction is a sequence of vectors repre-
senting probabilities of words in the target sentence. For a quantitative evaluation between the two
models, we compare the prediction losses by using the same loss function, namely cross entropy
loss. We randomly chose 640,000 target sentences for evaluation and computed the average loss
over the 640K sentences.

We compare SKIP-THOUGHT with two versions of our model. OURS denotes our model using the
document structure-based dependencies and the OOV handler. OURS−DEP denotes our model with
the OOV handler but using only local context like SKIP-THOUGHT to show the impact of the OOV
handler. Table 2 shows the comparison of the three models. The values in the table are the average
loss per sentence. We measure the average loss value excluding OOV words for SKIP-THOUGHT, as
it cannot handle OOV words. However, for our models, we measure the loss values with and without
OOV words. As we can see, both OURS−DEP and OURS significantly outperform SKIP-THOUGHT
resulting in 25.8% and 26.9% reduction in the loss values respectively.
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6.2 PARAPHRASE DETECTION

Further, we compare our model with SKIP-THOUGHT on a paraphrase detection task using the Mi-
crosoft Research Paraphrase corpus (Microsoft, 2016). The data consists of 5,801 sentence pairs
extracted from news data and their boolean assessments (if the pair of sentences are paraphrases of
each other or not), which were determined by three assessors using majority voting. The goal is
correctly classifying the boolean assessments and accuracy (# correct pairs / # all pairs) is measured.
We used 4,076 pairs for training and 1,725 pairs for testing. Since the data sets contain sentence
pairs only and no structural context, we evaluate only the effectiveness of the trained encoder. To
compare the qualities of sentence embeddings by the two models, we use the same logistic regres-
sion classifier with features based on embedded sentences as in (Kiros et al., 2015). Given a pair
of sentences S1 and S2, the features are the two embeddings of S1 and S2, their entry-wise abso-
lute difference, and their entry-wise products. Our model shows a 5% points higher accuracy than
SKIP-THOUGHT in paraphrase detection (Table 3), demonstrating the effectiveness of our encoder
trained with the structural dependencies. Note that SKIP-THOUGHT trained on the Wikipedia corpus
performs worse than a model trained on books or movie scripts due to more sophisticated and less
sequential structure in Wikipedia documents.

6.3 COREFERENCE RESOLUTION

Traditionally, the coreference resolution problem is considered as a supervised pairwise classifica-
tion (i.e., mention linking) or clustering problem (coreference cluster identification) relying on an
annotated corpus (Haghighi & Klein, 2010; Durrett et al., 2013; Clark & Manning, 2016a;b; Lee
et al., 2017). While, recently, there have been an impressive improvement in coreference resolution,
existing coreference models are usually trained for general domain entity types (i.e., ‘Person’, ‘Lo-
cation’, ‘Organization’) and leverage metadata that are not available in technical documents (e.g.,
Speaker). D’Souza & Ng (2015) and Choi et al. (2014) have shown that general domain coreference
resolution models do not work well for domain specific entity types.

While our system is not intended to be a coreference resolution tool, the rich sentence embedding
can be used for unsupervised coreference resolution allowing it applicable to any domain. Although
building a dedicated coreference resolution method to a given domain can produce better results,
we claim that our approach can build a good starting set of features without supervision for a new
domain. Specifically, we treat the coreference resolution problem as an inference problem given the
context. To apply our model, we assume that entity mentions are detected in advance (any mention
detection tool can be used), and, for a pronoun or a generic entity reference (e.g., a definite noun
phrase), we select a list of candidate referents that conform to the mention types allowed by the
pronoun or the definite noun. We apply the mention type-based filtering to reduce the search space,
but, a span-based approach as in Lee et al. (2017) can be used as well. Then, we replace the entity
reference with each of the candidate referents and compute the loss of the new sentence. Finally,
we choose the referent with the lowest loss value as the result, if the ratio of its loss to the original
sentence loss value is less than a threshold value θ.

To show the effectiveness of the unsupervised coreference resolution method, we compare our ap-
proach with the Stanford Deep Coreference Resolution tool (Clark & Manning, 2016b) using a set
of cybersecurity-related documents. The evaluation data consists of 563 coreferences extracted from
38 Wikipedia articles about malware programs which were not included in the training document
set. We conducted experiments for several cybersecurity related entity types such as ‘Malware’ and
‘Operating System’ in addition to general entity types including ‘Person’ and ‘Organization’. For
the evaluation, we set θ to 0.99 and 1.00.

Table 4 summarizes the results of the two systems. Our model achieves higher precision and recall
than DEEPCOREF. Since DEEPCOREF was trained for a general domain, its overall performance on
domain specific documents is very low. Figure 4 shows the two systems’ performance on different
entity types. As we can see, OURS works well for domain specific entities such as ‘Malware’ and
‘Vulnerability’, while DEEPCOREF shows higher precision for ‘Person’ and ‘Organization’. The
reason OURS performs worse for ‘Person’ and ‘Organization’ is because the security documents
have only a few mentions about people or organizations, and we did not use carefully crafted features
as in DEEPCOREF.

8



Under review as a conference paper at ICLR 2018

Table 4: Overall performance on coreference
resolution

Method Precision Recall
OURS (θ = 0.99) 0.47 0.12
OURS (θ = 1.00) 0.35 0.17

DEEPCOREF 0.13 0.10
0

0.2

0.4

0.6

Precision Recall Precision Recall Precision Recall Precision Recall

Person Organization Malware Vulnerability

Ours (Ө=0.99) Ours (Ө=1.00) DEEPCOREF

Figure 4: Performance per entity types

6.4 DEPENDENCY IMPORTANCE

Note that udep in Equation 1 denotes the importance level of a dependency dep. In Table 5, we
show the relative importance of the different dependencies compared to the sequential dependency
(DW,−1), which is used in other methods. The values show their relative importance levels when the
importance of DW,−1 is set to 1. As we can see, all levels of document and section titles, except the
fourth level subsection title, play a much more significant role than the sequential dependency. The
reason the title from the metadata, (DTM ), does not have a high weight as the title from the heading
1 tag (DTH1) is that the metadata contains extra text, “- Wikipedia”, in the title for Wikipedia articles
(e.g., “George W. Bush - Wikipedia” instead of “George W. Bush”). Further, hyperlinks (DH ), in-
document links (DF ) and formatted lists (DLF ) are all shown to have a similar influence as the
sequence dependency. The remaining dependencies, DTC , DTR, DTS , and DLT are scarcely found
in the Wikipedia corpus, and thus, did not converge or were not updated.

Table 5: The weights of different dependency types. * indicates non converging dependencies.
dep DTM DTH1 DTH2 DTH3 DTH4 DTH5 DTC

|udep/uDW,−1
| 1.00 2.30 2.30 2.30 0.24 1.40 2.94*

dep DTR DTS DLT DLF DH DF

|udep/uDW,−1
| 1.23* 0.08* 2.67* 1.00 1.00 1.00

7 CONCLUSION

In this paper, we presented a novel sentence embedding technique exploiting diverse types of
structural contexts and domain-specific OOV words. Our method is unsupervised and application-
independent, and it can be applied to various NLP applications. We evaluated the method on several
NLP tasks including coreference resolution, paraphrase detection and sentence prediction. The re-
sults show that our model consistently outperforms the existing approaches confirming that consid-
ering the structural context generates better quality sentence representations.
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