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ABSTRACT

Scheduling surgeries is a challenging task due to the fundamental uncertainty of
the clinical environment, as well as the risks and costs associated with under- and
over-booking. We investigate neural regression algorithms to estimate the param-
eters of surgery case durations, focusing on the issue of heteroscedasticity. We
seek to simultaneously estimate the duration of each surgery, as well as a surgery-
specific notion of our uncertainty about its duration. Estimating this uncertainty
can lead to more nuanced and effective scheduling strategies, as we are able to
schedule surgeries more efficiently while allowing an informed and case-specific
margin of error. Using surgery records from the UC San Diego Health System,
we demonstrate potential improvements on the order of 18% (in terms of min-
utes overbooked) compared to current scheduling techniques, as well as strong
baselines that do not account for heteroscedasticity.

1 INTRODUCTION

Healthcare in the United States is expensive and hospital resources are scarce. Healthcare expendi-
ture now exceeds 17% of US GDP (World Bank, 2014), even as surgery wait times steadily increase
(Bilimoria et al., 2011). One source of inefficiency (among many) is the inability to fully utilize
hospital resources. Since the duration of surgeries cannot be accurately predicted, operating rooms
can become congested (when surgeries run long) or lie vacant (when they run short). Over-booking
can lead to long wait times and higher costs of labor (due to over-time pay), while under-booking
decreases throughput, increasing the marginal cost per surgery.

We seek to address this issue by developing better and more nuanced strategies for surgery case
prediction. Our work focuses on a collection of surgery logs recorded in Electronic Health Records
(EHRs) at the University of California, San Diego Health System. For each patient, we consider
a collection of pre-operative features, including patient attributes (age, weight, height, sex, co-
morbidities, etc.), as well as attributes of the clinical environment, such as the surgeon, surgery
location, and time. For each procedure, we also know how much time was originally scheduled, in
addition to the actual (‘ground-truth’) surgery duration, recorded after each procedure is performed.

Our raw dataset consists of 107,755 surgeries. After discarding surgeons and procedures associated
with fewer than 100 cases, we are left with 86,945 examples, which we split 80%/8%/12% for train-
ing/validation/testing. To handle missing values, we incorporate missing value indicators, following
previous work on clinical datasets (Lipton et al., 2016).

We are particularly interested in developing methods that allow us to better estimate the uncertainty
associated with the duration of each surgery. Traditional regression objectives assume homoscedas-
ticity, i.e., constant levels of target variability for all instances. While mathematically convenient,
this assumption is clearly violated in data such as ours: As a simple example, operations that are
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expected to take one hour might exhibit greater variance than those projected to take ten minutes; or
variability could be higher for complex as opposed to routine operations.

Our approach revisits the idea of heteroscedastic neural network regression. We jointly learn all pa-
rameters of a predictive distribution. In particular, we consider Gaussian and Laplace distributions,
each of which is parameterized by a mean and standard deviation. Our models allow for increased
scheduling efficiency compared to both current practice and neural network baselines that fail to
account for heteroscedasticity. Furthermore, our models produce reliable estimates of the variance,
which can be used to schedule intelligently, especially when over-booking and under-booking confer
disparate costs.

2 METHODS

A typical solution to a regression task might consist of finding maximum likelihood parameters of a
Gaussian predictive distribution:
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Assuming constant σ̂, this yields a familiar least-squares objective. In this work, we seek to relax
this assumption, predicting both ŷ(θ,x) and σ̂(θ,x) simultaneously.

We consider prediction using Multilayer Perceptrons (MLPs), though the idea is easily applied to
networks of arbitrary architecture. To predict the standard deviation σ̂ of the predictive distribution,
our MLP has two outputs: The first output has linear activation and is used as ŷ to calculate the ob-
jective; the second output models σ̂. To enforce positivity of σ̂, this output undergoes the activation
function softplus(z) = log(1 + exp(z)).

We extend the same idea to Laplace distributions, which turn out to better describe the target vari-
ability for surgery duration, and are also maximum likelihood estimators when optimizing the Mean
Absolute Error (MAE). Mean Absolute Error corresponds to the average number of minutes over or
underbooked, and is typically the quantity of interest for this type of scheduling task. The Laplace
distribution is parameterized by b =

√
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3 EXPERIMENTS

For all experiments, we use MLPs with ReLU activations. For evaluation, we report the root mean
squared error (RMSE), mean absolute error (MAE), and negative log-likelihood (NLL). For ho-
moscedastic models, we choose a constant σ that minimizes NLL on the validation set. For het-
eroscedastic models, we evaluate NLL using the predicted deviations σi. We run all experiments
using MLPs with 2 hidden layers and a number of hidden units chosen by gridsearch on validation
data. All models use dropout regularization and weight decay.

Results are shown in Table 1. Plots in Figure 1 demonstrate that the predicted deviation reliably es-
timates the observed error and QQ plots (Figure 2) demonstrate that the Laplace distribution appears
to fit our targets better than a Gaussian predictive distribution.

4 RELATED WORK Models RMSE MAE NLL

Current Method 49.80 28.87 0.5985
Procedure Means 49.06 27.70 0.5899
Linear Regression 45.23 25.07 0.5084
MLP Gaussian 44.28 24.78 0.4888
MLP Gaussian HS 44.48 23.82 0.0852
MLP Laplace 44.56 23.54 0.4619
MLP Laplace HS 44.83 23.53 −0.1251
MLP Gamma HS 44.45 23.67 −0.1540

Table 1: Performance on test-set data

Previous work in in the medical literature ad-
dresses the prediction of surgery duration (Ei-
jkemans et al., 2010; Kayış et al., 2015; Devi
et al., 2012), accounting for both patient and
surgical team characteristics. To our knowledge
ours is the first paper to address the problem
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(a) Scatter (b) Binning by predicted σ̂ with width 3

Figure 1: Plots of predicted σ̂ against absolute error with Laplace noise model. Averaging over bins
of width 3 (b), shows that σ̂i is a reliable estimator of the observed error.

(a) Gaussian QQ Plot (b) Laplace QQ Plot

Figure 2: QQ plots of observed error for Gaussian and Laplace noise models. The Laplace distribu-
tion better describes observed error, with shorter tails at both ends.

with modern deep learning techniques and to
the first to model its heteroscedasticity. The idea of neural heteroscedastic regression was first pro-
posed by Nix & Weigend (1994), though they do not share hidden layers between the two outputs,
and are only concerned with Gaussian predictive distributions. Williams (1996) use a shared hid-
den layer and consider the case of multivariate Gaussian distributions, for which they predict the
full covariance matrix via its Cholesky factorization. Heteroscedastic regression has a long history
outside of neural networks. Le et al. (2005) address a formulation for Gaussian processes. Most
related is Lakshminarayanan et al. (2016) which also revisits heteroscedastic neural regression, also
using a softplus activation to enforce non-negativity. We show some successful modifications to the
above work, such as the use of the Laplace distribution, but our more significant contribution is the
application of the idea to clinical medical data.

5 DISCUSSION

We demonstrate the efficacy of heteroscedastic neural regression for predicting surgery duration.
Our best models improve upon current practice, reducing MAE by 18.4%. This work could po-
tentially lead to greater throughput and lower costs. We provide further analysis in Appendix A,
demonstrating that each model could be used to trade off between over-reserved and under-reserved
minutes. Here, the uncertainty information from heteroscedastic models aids decision theory. Our
analysis shows that the heteroscedastic Laplace MLP strictly dominates the other models.
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Appendices
A ECONOMIC ANALYSIS

Our aim in predicting the variance of the error is to provide uncertainty information that could be
used to make better scheduling decisions. To compare the various approaches economically, we
consider the simple case where the cost to over-reserve the room by one minute (procedure finishes
early) differs from the cost to under-reserve the room (procedure runs over). We demonstrate how
the two quantities can be traded off in Figure 3.

Figure 3: Trade-offs between over and under-reserving operating rooms

For models that don’t output variance, we consider scheduled durations of the form ŷ + k and ŷ · k
where k is a data-independent constant. In either case, by modulating k, one books more or less
aggressively. The multiplicative approach performed better, likely because long procedures have
higher variance than short ones. For heteroscedastic models, we make the trade-off by modulating
k for ŷ + σ̂ · k. As shown in Figure 3, the heteroscedastic model strictly dominates other methods.
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