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ABSTRACT

Maximum entropy modeling is a flexible and popular framework for formulat-
ing statistical models given partial knowledge. In this paper, rather than the tra-
ditional method of optimizing over the continuous density directly, we learn a
smooth and invertible transformation that maps a simple distribution to the de-
sired maximum entropy distribution. Doing so is nontrivial in that the objective
being maximized (entropy) is a function of the density itself. By exploiting recent
developments in normalizing flow networks, we cast the maximum entropy prob-
lem into a finite-dimensional constrained optimization, and solve the problem by
combining stochastic optimization with the augmented Lagrangian method. Sim-
ulation results demonstrate the effectiveness of our method, and applications to
finance and computer vision show the flexibility and accuracy of using maximum
entropy flow networks.

1 INTRODUCTION

The maximum entropy (ME) principle (Jaynes, 1957) states that subject to some given prior knowl-
edge, typically some given list of moment constraints, the distribution that makes minimal additional
assumptions – and is therefore appropriate for a range of applications from hypothesis testing to price
forecasting to texture synthesis – is that which has the largest entropy of any distribution obeying
those constraints. First introduced in statistical mechanics by Jaynes (1957), and considered both
celebrated and controversial, ME has been extensively applied in areas including natural language
processing (Berger et al., 1996), ecology (Phillips et al., 2006), finance (Buchen & Kelly, 1996),
computer vision (Zhu et al., 1998), and many more.

Continuous ME modeling problems typically include certain expectation constraints, and are usually
solved by introducing Lagrange multipliers, which under typical assumptions yields an exponential
family distribution (also called Gibbs distribution) with natural parameters such that the expectation
constraints are obeyed. Unfortunately, fitting ME distributions in even modest dimensions poses
significant challenges. First, optimizing the Lagrangian for a Gibbs distribution requires evaluating
the normalizing constant, which is in general computationally very costly and error prone. Secondly,
in all but the rarest cases, there is no way to draw samples independently and identically from this
Gibbs distribution, even if one could derive it. Third, unlike in the discrete case where a number of
recent and exciting works have addressed the problem of estimating entropy from discrete-valued
data (Jiao et al., 2015; Valiant & Valiant, 2013), estimating differential entropy from data samples
remains inefficient and typically biased. These shortcomings are critical and costly, given the com-
mon use of ME distributions for generating reference data samples for a null distribution of a test
statistic. There is thus ample need for a method that can both solve the ME problem and produce a
solution that is easy and fast to sample.

In this paper we develop maximum entropy flow networks (MEFN), a stochastic-optimization-based
framework and algorithm for fitting continuous maximum entropy models. Two key steps are re-
quired. First, conceptually, we replace the idea of maximizing entropy over a density directly with
maximizing, over the parameter space of an indexed function family, the entropy of the density
induced by mapping a simple distribution (a Gaussian) through that optimized function. Modern
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neural networks, particularly in variational inference (Kingma & Welling, 2013; Rezende & Mo-
hamed, 2015), have successfully employed this same idea to generate complex distributions, and
we look to similar technologies. Secondly, unlike most other objectives in this network literature,
the entropy objective itself requires evaluation of the target density directly, which is unavailable
in most traditional architectures. We overcome this potential issue by learning a smooth, invertible
transformation that maps a simple distribution to an (approximate) ME distribution. Recent develop-
ments in normalizing flows (Rezende & Mohamed, 2015; Dinh et al., 2016) allow us to avoid biased
and computationally inefficient estimators of differential entropy (such as the nearest-neighbor class
of estimators like that of Kozachenko-Leonenko; see Berrett et al. (2016)). Our approach avoids
calculation of normalizing constants by learning a map with an easy-to-compute Jacobian, yielding
tractable probability density computation. The resulting transformation also allows us to reliably
generate iid samples from the learned ME distribution. We demonstrate MEFN in detail in ex-
amples where we can access ground truth, and then we demonstrate further the ability of MEFN
networks in equity option prices fitting and texture synthesis.

Primary contributions of this work include: (i) addressing the substantial need for methods to sample
ME distributions; (ii) introducing ME problems, and the value of including entropy in a range of
generative modeling problems, to the deep learning community; (iii) the novel use of constrained
optimization for a deep learning application; and (iv) the application of MEFN to option pricing
and texture synthesis, where in the latter we show significant increase in the diversity of synthesized
textures (over current state of the art) by using MEFN.

2 BACKGROUND

2.1 MAXIMUM ENTROPY MODELING AND GIBBS DISTRIBUTION

We consider a continuous random variable Z ∈ Z ⊆ Rd with density p, where p has differential
entropy H(p) = −

∫
p(z) log p(z)dz and support supp(p). The goal of ME modeling is to find, and

then be able to easily sample from, the maximum entropy distribution given a set of moment and
support constraints, namely the solution to:

p∗ = maximize H(p) (1)
subject to EZ∼p[T (Z)] = 0

supp(p) = Z,

where T (z) = (T1(z), ..., Tm(z)) : Z → Rm is the vector of known (assumed sufficient) statistics,
andZ is the given support of the distribution. Under standard regularity conditions, the optimization
problem can be solved by Lagrange multipliers, yielding an exponential family p∗ of the form:

p∗(z) ∝ eη
>T (z)

1(z ∈ Z) (2)

where η ∈ Rm is the choice of natural parameters of p∗ such that Ep∗ [T (Z)] = 0. Despite this
simple form, these distributions are only in rare cases tractable from the standpoint of calculating
η, calculating the normalizing constant of p∗, and sampling from the resulting distribution. There
is extensive literature on finding η numerically (Darroch & Ratcliff, 1972; Salakhutdinov et al.,
2002; Della Pietra et al., 1997; Dudik et al., 2004; Malouf, 2002; Collins et al., 2002), but doing so
requires computing normalizing constants, which poses a challenge even for problems with modest
dimensions. Also, even if η is correctly found, it is still not trivial to sample from p∗. Problem-
specific sampling methods (such as importance sampling, MCMC, etc.) have to be designed and
used, which is in general challenging (burn-in, mixing time, etc.) and computationally burdensome.

2.2 NORMALIZING FLOWS

Following Rezende & Mohamed (2015), we define a normalizing flow as the transformation of
a probability density through a sequence of invertible mappings. Normalizing flows provide an
elegant way of generating a complicated distribution while maintaining tractable density evaluation.
Starting with a simple distribution Z0 ∈ Rd ∼ p0 (usually taken to be a standard multivariate
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Gaussian), and by applying k invertible and smooth functions fi : Rd → Rd(i = 1, ..., k), the
resulting variable Zk = fk ◦ fk−1 ◦ · · · ◦ f1(Z0) has density:

pk(zk) = p0(f
−1
1 ◦ f−12 ◦ · · · ◦ f−1k (zk))

k∏
i=1

|det(Ji(zi−1))|−1, (3)

where Ji is the Jacobian of fi. If the determinant of Ji can be easily computed, pk can be computed
efficiently.

Rezende & Mohamed (2015) proposed two specific families of transformations for variational in-
ference, namely planar flows and radial flows, respectively:

fi(z) = z + uih(wT
i z + bi) and fi(z) = z + βih(αi, ri)(z− z′i), (4)

where bi ∈ R, ui,wi ∈ Rd and h is an activation function in the planar case, and where βi ∈
R, αi > 0, z′i ∈ Rd , h(α, r) = 1/(α + r) and ri = ||z − z′i|| in the radial. Recently Dinh
et al. (2016) proposed a normalizing flow with convolutional, multiscale structure that is suitable for
image modeling and has shown promise in density estimation for natural images.

3 MAXIMUM ENTROPY FLOW NETWORK (MEFN) ALGORITHM

3.1 FORMULATION

Instead of solving Equation 2, we propose solving Equation 1 directly by optimizing a trans-
formation that maps a random variable Z0, with simple distribution p0, to the ME distribution.
Given a parametric family of normalizing flows F = {fφ, φ ∈ Rq}, we denote pφ(z) =

p0(f−1φ (z))|det(Jφ(z))|−1 as the distribution of the variable fφ(Z0), where Jφ is the Jacobian
of fφ. We then rewrite the ME problem as:

φ∗ = maximize H(pφ) (5)
subject to EZ0∼p0 [T (fφ(Z0))] = 0

supp(pφ) = Z.

When p0 is continuous and F is suitably general, the program in Equation 5 recovers the ME dis-
tribution pφ exactly. With a flexible transformation family, the ME distribution can be well approx-
imated. In experiments we found that taking p0 to be a standard multivariate normal distribution
achieves good empirical performance. Taking p0 to be a bounded distribution (e.g. uniform distri-
bution) is problematic for learning transformations near the boundary, and heavy tailed distributions
(e.g. Cauchy distribution) caused similar trouble due to large numbers of outliers.

3.2 ALGORITHM

We solved Equation 5 using the augmented Lagrangian method. Denote R(φ) = E(T (fφ(Z0))),
the augmented Lagrangian method uses the following objective:

L(φ;λ, c) = −H(pφ) + λ>R(φ) +
c

2
||R(φ)||2 (6)

where λ ∈ Rm is the Lagrange multiplier and c > 0 is the penalty coefficient. We minimize Equa-
tion 6 for a non-decreasing sequence of c and well-chosen λ. As a technical note, the augmented
Lagrangian method is guaranteed to converge under some regularity conditions (Bertsekas, 2014).
As is usual in neural networks, a proof of these conditions is challenging and not yet available,
though intuitive arguments (see Appendix §A) suggest that most of them should hold. Due to the
non rigorous nature of these arguments, we rely on the empirical results of the algorithm to claim
that it is indeed solving the optimization problem.

For a fixed (λ, c) pair, we optimize L with stochastic gradient descent. Owing to our choice of
network and the resulting ability to efficiently calculate the density pφ(z(i)) for any sample point

3



Published as a conference paper at ICLR 2017

Algorithm 1 Training the MEFN
1: initialize φ = φ0, set c0 > 0 and λ0.
2: for Augmented Lagrangian iteration k = 1, ..., kmax do
3: for SGD iteration i = 1, ..., imax do
4: Sample z(1), ..., z(n) ∼ p0, get transformed variables z(i)φ = fφ(z(i)), i = 1, ..., n
5: Update φ by descending its stochastic gradient (using e.g. ADADELTA (Zeiler, 2012)):

∇φL(φ;λk, ck) ≈
1

n

n∑
i=1

∇φ log pφ(z
(i)
φ ) +

1

n

n∑
i=1

∇φT (z
(i)
φ )λk + ck

2

n

n
2∑
i=1

∇φT (z
(i)
φ ) ·

2

n

n∑
i=n

2
+1

T (z
(i)
φ )

6: end for
7: Sample z(1), ..., z(ñ) ∼ p0, get transformed variables z(i)φ = fφ(z(i)), i = 1, ..., ñ

8: Update λk+1 = λk + ck
1
ñ

∑ñ
i=1 T (z

(i)
φ )

9: Update ck+1 ≥ ck (see text for detail)
10: end for

z(i) (which are easy-to-sample iid draws from the multivariate normal p0), we compute the unbiased
estimator of H(pφ) with:

H(pφ) ≈ − 1

n

n∑
i=1

log pφ(fφ(z(i))) (7)

R(φ) can also be estimated without bias by taking a sample average of z(i) draws. The resulting
optimization procedure is detailed in Algorithm 1, of which step 9 requires some detail: denoting
φk as the resulting φ after imax SGD iterations at the augmented Lagrangian iteration k, the usual
update rule for c (Bertsekas, 2014) is:

ck+1 =

{
βck, if ||R(φk+1)|| > γ||R(φk)||
ck, otherwise

(8)

where γ ∈ (0, 1) and β > 1. Monte Carlo estimation of R(φ) sometimes caused c to be updated
too fast, causing numerical issues. Accordingly, we changed the hard update rule for c to a prob-
abilistic update rule: a hypothesis test is carried out with null hypothesis H0 : E[||R(φk+1)||] =
E[γ||R(φk)||] and alternative hypothesis H1 : E[||R(φk+1)||] > E[γ||R(φk)||]. The p-value p is
computed, and ck+1 is updated to βck with probability 1 − p. We used a two-sample t-test to cal-
culate the p-value. What results is a robust and novel algorithm for estimating maximum entropy
distributions, while preserving the critical properties of being both easy to calculate densities of
particular points, and being trivially able to produce truly iid samples.

4 EXPERIMENTS

We first construct an ME problem with a known solution (§4.1), and we analyze the MEFN algorithm
with respect to the ground truth and to an approximate Gibbs solution. These examples test the
validity of our algorithm and illustrate its performance. §B and §4.3 then applies the MEFN to a
financial data application (predicting equity option values) and texture synthesis, respectively, to
illustrate the flexibility and practicality of our algorithm.

For §4.1 and §B, We use 10 layers of planar flow with a final transformation g (specified below) that
transforms samples to the specified support, and use with ADADELTA (Zeiler, 2012). For §4.3 we
use real NVP structure and use ADAM (Kingma & Ba, 2014) with learning rate = 0.001. For all our
experiments, we use imax = 3000, β = 4, γ = 0.25. For §4.1 and §B we use n = 300, ñ = 1000,
kmax = 10; For §4.3 we use n = ñ = 2, kmax = 8.

4.1 A MAXIMUM ENTROPY PROBLEM WITH KNOWN SOLUTION

Following the setup of the typical ME problem, suppose we are given a specified support S = {z =

(z1, . . . , zd−1) : zi ≥ 0 and
∑d−1
k=1 zk ≤ 1} and a set of constraints E[logZk] = κk(k = 1, ..., d),
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where Zd = 1−
∑d−1
k=1 Zk. We then write the maximum entropy program:

p∗ = maximize H(p) (9)
subject to EZ∼p[logZk − κk] = 0 ∀k = 1, ..., d

supp(p) = S.

This is a general ME problem that can be solved via the MEFN. Of course, we have particularly
chosen this example because, though it may not obviously appear so, the solution has a standard and
tractable form, namely the Dirichlet. This choice allows us to consider a complicated optimization
program that happens to have known global optimum, providing a solid test bed for the MEFN (and
for the Gibbs approach against which we will compare). Specifically, given a parameter α ∈ Rd,
the Dirichlet has density:

p(z1, . . . , zd−1) =
1

B(α)

d∏
k=1

zαk−1k 1 ((z1, . . . , zd−1) ∈ S) (10)

where B(α) is the multivariate Beta function, and zd = 1 −
∑d−1
k=1 zk. Note that this Dirichlet

is a distribution on S and not on the (d − 1)-dimensional simplex Sd−1 = {(z1, . . . , zd) : zk ≥
0 and

∑d
k=1 zk = 1} (an often ignored and seemingly unimportant technicality that needs to be

correct here to ensure the proper transformation of measure). Connecting this familiar distribution to
the ME problem above, we simply have to choose α such that κk = ψ(αk)−ψ(α0) for k = 1, ..., d,
where α0 =

∑d
k=1 αk and ψ is the digamma function. We then can pose the above ME problem

to the MEFN and compare performance against ground truth. Before doing so, we must stipulate
the transformation g that maps the Euclidean space of the multivariate normal p0 to the desired
support S. Any sensible choice will work well (another point of flexibility for the MEFN); we use
the standard transformation:

g(z1, ..., zd−1) =

(
ez1∑d−1

k=1 e
zk + 1

, ...,
ezd−1∑d−1

k=1 e
zk + 1

)>
(11)

Note that the MEFN outputs vectors in Rd−1, and not Rd, because the Dirichlet is specified as a
distribution on S (and not on the simplex Sd−1). Accordingly, the Jacobian is a square matrix and
its determinant can be computed efficiently using the matrix determinant lemma. Here, p0 is set to
the (d− 1)-dimensional standard normal.

We proceed as follows: We choose α and compute the constraints κ1, ..., κd. We run MEFN pre-
tending we do not know α or the Dirichlet form. We then take a random sample from the fitted
distribution and a random sample from the Dirichlet with parameter α, and compare the two sam-
ples using the maximum mean discrepancy (MMD) kernel two sample test (Gretton et al., 2012),
which assesses the fit quality. We take the sample size to be 300 for the two sample kernel test.
Figure 1 shows an example of the transformation from normal (left panel) to MEFN (middle panel),
and comparing that to the ground truth Dirichlet (right panel). The MEFN and ground truth Dirichlet
densities shown in purple match closely, and the samples drawn (red) indeed appear to be iid draws
from the same (maximum entropy) distribution in both cases.

Additionally, the middle panel of Figure 1 shows an important cautionary tale that foreshadows our
texture synthesis results (§4.3). One might suppose that satisfying the moment matching constraints
is adequate to produce a distribution which, if not technically the ME distribution, is still inter-
estingly variable. The middle panel shows the failure of this intuition: in dark green, we show a
network trained to simply match the moments specified above, and the resulting distribution quite
poorly expresses the variability available to a distribution with these constraints, leading to samples
that are needlessly similar. Given the substantial interest in using networks to learn implicit genera-
tive models (e.g., Mohamed & Lakshminarayanan (2016)), this concern is particularly relevant and
highlights the importance of considering entropy.

Figure 2 quantitatively analyzes these results. In the left panel, for a specific choice of α = (1, 2, 3),
we show our unbiased entropy estimate of the MEFN distribution pφ as a function of the number
of SGD iterations (red), along with the ground truth maximum entropy H(p∗) (green line). Note
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Initial distribution p0 MEFN result pφ∗ Ground truth p∗p0 True

Figure 1: Example results from the ME problem with known Dirichlet ground truth. Left panel:
The normal density p0 (purple) and iid samples from p0 (red points). Middle panel: The MEFN
transforms p0 to the desired maximum entropy distribution pφ∗ on the simplex (calculated density
pφ∗ in purple). Truly iid samples are easily drawn from pφ∗ (red points) by drawing from p0 and
mapping those points through fφ∗ . Shown in the middle panel are the same points in the top left
panel mapped through fφ∗ . Samples corresponding to training the same network as MEFN to simply
match the specified moments (ignoring entropy) are also shown (dark green points; see text). Right
panel: The ground truth (in this example, known to be Dirichlet) distribution in purple, and iid
samples from it in red.

0 10000 20000 30000
Iterations

1.6

1.4

1.2

1.0

0.8

0.6

En
tro

py

Estimated
True

0.00 0.01 0.02 0.03
MMD 2

u

0

50

100

150

200

250

p
(M

M
D

2 u
)

MEFN, KL=0.0088
Dirichlet, KL=0.10
Null distribution

0.1 0.0 0.1 0.2 0.3 0.4 0.5
MMD 2

u  p-value

0.1

0.0

0.1

0.2

0.3

0.4

0.5

KL

MEFN
Dirichlets

Figure 2: Quantitative analysis of simulation results. See text for description.

that the MEFN stabilizes at the correct value (as a stochastic estimator, variance around that value
is expected). In the middle panel, we show the distribution of MMD values for the kernel two
sample test, as well as the observed statistic for the MEFN (red) and for a randomly chosen Dirichlet
distribution (gray; chosen to be close to the true optimum, making a conservative comparison). The
MMD test does not reject MEFN as being different from the true ME distribution p∗, but it does
reject a Dirichlet whose KL to the true p∗ is small (see legend). In the right panel, for many
different Dirichlets in a small grid around a single true p∗, the kernel two sample test statistic is
computed, the MMD p-value is calculated, as is the KL to the true distribution. We plot a scatter
of these points in grey, and we plot the particular MEFN solution as a red star. We see that for
other Dirichlets with similar KL to the true distribution as the MEFN distribution, the p-values
seem uniform, meaning that the KL to the true is indeed very small. Again this is conservative, as
the grey points have access to the known Dirichlet form, whereas the MEFN considered the entire
space (within its network capacity) of S supported distributions. Given this fact, the performance of
MEFN is impressive.

4.2 RISK-NEUTRAL ASSET PRICING

We illustrate the flexibility and practicality of our algorithm extracting the risk-neutral asset price
probability based on option prices, an active and interesting area for ME models. We find that MEFN
and the classic Gibbs approach yield comparable performances. Owing to space limitations we have
placed these results in Appendix §B.

4.3 MODELING IMAGES OF TEXTURES

Constructing generative models to generate random images with certain texture structure is an im-
portant task in computer vision. A line of texture synthesis research proceeds by first extracting a set
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of features that characterizes the target texture and then generate images that match the features. The
seminal work of Zhu et al. (1998) proposes constructing texture models under the ME framework,
where features (or filters) of the given texture image are adaptively added in the model and a Gibbs
distribution whose expected feature matches the target texture is learnt. One major difficulty with
the method is that both model learning and image generation involve sampling from a complicated
Gibbs distribution. More recent works exploit more complicated features (Portilla & Simoncelli,
2000; Gatys et al., 2015; Ulyanov et al., 2016). Ulyanov et al. (2016) propose the texture net, which
uses a texture loss function by using the Gram matrices of the outputs of some convolutional layers
of a pre-trained deep neural network for object recognition.

While the use of these complicated features does provide high-quality synthetic texture images, that
work focuses exclusively on generating images that match these feature (moments). Importantly,
this network focuses only on generating feature-matching images without using the ME framework
to promote the diversity of the samples. Doing so can be deeply problematic: in Figure 1 (middle
panel), we showed the lack of diversity resulting from only moment matching in that Dirichlet set-
ting, and further we note that the extreme pathology would result in a point mass on the training
image – a global optimum for this objective, but obviously a terrible generative model for synthe-
sizing textures. Ideally, the MEFN will match the moments and promote sample diversity.

We applied MEFN to texture synthesis with an RGB representation of the 224 × 224 pixel images
, z ∈ Z = [0, 1]d, where d = 224 × 224 × 3. We follow Ulyanov et al. (2016) (we adapted
https://github.com/ProofByConstruction/texture-networks) to create a tex-
ture loss measure T (z) : [0, 1]d → R, and aim to sample a diverse set of images with small moment
violation. For the transformation family F we use the real NVP network structure proposed in Dinh
et al. (2016) (we adapted https://github.com/taesung89/real-nvp). We use 3 resid-
ual blocks with 32 feature maps for each coupling layer and downscale 3 times. For fair comparison,
we use the same real NVP structure for both1, implemented in TensorFlow (Abadi et al., 2016).

As is shown in top row of figure 3, both methods generate visually pleasing images capturing the
texture structure well. The bottom row of Figure 3 shows that texture cost (left panel) is similar
for both methods, while MEFN generates figures with much larger entropy than the texture network
formulation (middle panel), which is desirable (as previously discussed). The bottom right panel
of figure 3 compares the marginal distribution of the RGB values sampled from the networks: we
found that MEFN generates a more variable distribution of RGB values than the texture net. Further
results are in Appendix §C.
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Figure 3: Analysis of texture synthesis experiment. See text for description.

1Ulyanov et al. (2016) use a quite different generative network structure, which is not invertible and is
therefore infeasible for entropy evaluation, so we replace their generative network by the real NVP structure.
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We compute in Table 1 the average pairwise Euclidean distance between randomly sampled images
(dL2 = meani 6=j‖zi − zj‖22), and MEFN gives higher dL2 , quantifying diversity across images. We
also consider an ANOVA-style analysis to measure the diversity of the images, where we think of
the RGB values for the same pixel across multiple images as a group, and compute the within and
between group variance. Specifically, denoting zki as the pixel value for a specific pixel k = 1, ..., d
for an image i = 1, ...., n. We partition the total sum of square SST =

∑
i,k(zki − z̄)2 as the within

group error SSW =
∑
i,k(zki − z̄k)2 and between group error SSB =

∑
i,k n(z̄k − z̄)2, where

z̄ and z̄k are the mean pixel values across all data and for a specific pixel k. Ideally we want the
samples to exhibit large variability across images (large SSW, within a group/pixel) and no structure
in the mean image (small SSB, across groups/pixels). Indeed, the MEFN has a larger SSW, implying
higher variability around the mean image, a smaller SSB, implying the stationarity of the generated
samples, and a larger SST, implying larger total variability also. The MEFN produces images that
are conclusively more variable without sacrificing the quality of the texture, implicating the broad
utility of ME.

Table 1: Quantitative measure of image diversity using 20 randomly sampled images

Method dL2 SST SSW SSB
Texture net 11534 128680 109577 19103
MEFN 17014 175604 161639 13964

5 CONCLUSION

In this paper we propose a general framework for fitting ME models. This approach is novel and
has three key features. First, by learning a transformation of a simple distribution rather than the
distribution itself, we are able to avoid explicitly computing an intractable normalizing constant for
the ME distribution. Second, by combining stochastic optimization with the augmented Lagrangian
method, we can fit the model efficiently, allowing us to evaluate the ME density of any point simply
and accurately. Third, critically, this construction allows us to trivially sample iid from a ME dis-
tribution, extending the utility and efficiency of the ME framework more generally. Also, accuracy
equivalent to the classic Gibbs approach is in itself a contribution (owing to these other features).
We illustrate the MEFN in both a simulated case with known ground truth and real data examples.

There are a few recent works encouraging sample diversity in the setting of texture model-
ing. Ulyanov et al. (2017) extended Ulyanov et al. (2016) by adding a penalty term using the
Kozachenko-Leonenko estimator Kozachenko & Leonenko (1987) of entropy. Their generative net-
work is an arbitrary deep neural network rather than a normalizing flow, which is more flexible but
cannot give the probability density of each sample easily so as to compute an unbiased estimator
of the entropy. Kozachenko-Leonenko is a biased estimator for entropy and requires a fairly large
number of samples to get good performance in high-dimensional settings, hindering the scalability
and accuracy of the method; indeed, our choice of normalizing flow networks was driven by these
practical issues with Kozachenko-Leonenko. Lu et al. (2016) extended Zhu et al. (1998) by using
a more flexible set of filters derived from a pre-trained deep neural networks, and using parallel
MCMC chains to learn and sample from the Gibbs distribution. Running parallel MCMC chains re-
sults in diverse samples but can be computationally intensive for generating each new sample image.
Our MEFN framework enables truly iid sampling with the ease of a feed forward network.
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A AUGMENTED LAGRANGIAN CONDITIONS

We give a more thorough discussion of the regularity conditions which ensure that the Augmented
Lagrangian method will work. The goal of this section is simply to state these conditions and give
intuitive arguments about why some should hold in our case, not to attempt to prove that they indeed
hold. The conditions (Bertsekas, 2014) are:

• There exists a strict local minimum φ∗ of the optimization problem of Equation 5:
If the function class F is rich enough that it contains a true solver of the maximum entropy
problem, then a global optimum exists. Although not rigorous, we would expect that even
in the finite expressivity case that a global optimum remains, and indeed, recent theoretical
work (Raghu et al., 2016; Poole et al., 2016) has gotten close to proving this.

• φ∗ is a regular point of the optimization problem, that is, the rows of∇φR(φ∗) are linearly
independent:
Again, this is not formal, but we should not expect this to cause any issues. This clearly
depends on the specific form of T , but the condition basically says that there should not be
redundant constraints at the optimum, so if T is reasonable this shouldn’t happen.

• H(pφ) and R(φ) are twice continuously differentiable on a neighborhood around φ∗:
This holds by the smoothness of the normalizing flows.

• y>∇2
φL(φ∗;λ∗, 0)y > 0 for every y 6= 0 such that ∇φR(φ∗)y = 0, where λ∗ is the true

Lagrange multiplier:
This condition is harder to justify. It would appear it is just asking that the Lagrangian
(not the augmented Lagrangian) be strictly convex in feasible directions, but it is actually
stronger than this and some simple functions might not satisfy the property. For example,
if the function we are optimizing was x4 and we had no constraints, the Lagrangian’s
Hessian would be 12x2, which is 0 at x∗ = 0 thus not satisfying the condition. Importantly,
these conditions are sufficient but not necessary, so even if this doesn’t hold the augmented
Lagrangian method might work (it certainly would for x4). Because of this and the non-
rigorous justifications of the first two conditions, we left these conditions for the appendix
and relied instead on the empirical performance to justify that we are indeed recovering the
maximum entropy distribution.

If all of these conditions hold, the augmented Lagrangian (for large enough c and λ close enough to
λ∗) has a unique optimum in a neighborhood around φ∗ that is close to φ∗ (as λ→ λ∗ it converges to
φ∗) and its hessian at this optimum is positive-definite. Furthermore, λk → λ. This implies that gra-
dient descent (with the usual caveats of being started close enough to the solution and with the right
steps) will correctly recover φ∗ using the augmented Lagrangian method. This of course just guar-
antees convergence to a local optimum, but if there are no additional assumptions such as convexity,
it can be very hard to ensure that it is indeed a global optimum. Some recent research has attempted
to explain why optimization algorithms perform so well for neural networks (Choromanska et al.,
2015; Kawaguchi, 2016), but we leave such attempts for our case for future research.

B RISK-NEUTRAL ASSET PRICE

We extract the risk-neutral asset price probability distribution based on option prices, an active and
interesting area for ME models. We give a brief introduction of the problem and refer interested
readers to see Buchen & Kelly (1996) for a more detailed explanation. Denoting St as the price
of an asset at time t, the buyer of a European call option for the stock that expires at time te with
strike price K will receive a payoff of cK = (Ste − K)+ = max(Ste − K, 0) at time te. Under
the efficient market assumption, the risk-neutral probability distribution for the stock price at time
te satisfies:

cK = D(te)Eq[(Ste −K)+], (12)

where D(te) is the risk-free discount factor and q is the risk-neutral measure. We also have that,
under the risk-neutral measure, the current stock price S0 is the discounted expected value of Ste :

S0 = D(te)Eq(Ste). (13)
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When givenm options that expire at time te with strikesK1, ...,Km and prices cK1
, ..., cKm , we get

m expectation constraints on q(Ste) from Equation 12, together with Equation 13, we have m + 1
expectation constraints in total. With that partial knowledge we can approximate q(Ste), which is
helpful for understanding the market expected volatility and identify mispricing in option markets,
etc.

Inferring the risk-neutral density of asset price from a finite number of option prices is an important
question in finance and has been studied extensively (Buchen & Kelly, 1996; Borwein et al., 2003;
Bondarenko, 2003; Figlewski, 2008). One popular method proposed by Buchen & Kelly (1996)
estimates the probability density as the maximum entropy distribution satisfying the expectation
constraints and a positivity support constraint by fitting a Gibbs distribution, which results in a
piece-wise linear log density:

p(z) ∝ exp

{
η0z +

m∑
i=1

ηi(z −Ki)+

}
1 (z ≥ 0) (14)

and optimize the distribution with numerical methods. Here we compare the performance of the
MEFN algorithm with the method proposed in Buchen & Kelly (1996). To enforce the positivity
constraint we choose g(z) = eaz+b, where a and b are additional parameters.

We collect the closing price of European call options on Nov. 1 2016 for the stock AAPL (Apple
inc.) that expires on te = Jun. 16 2017. We usem = 4 of the options with highest trading volume as
training data and the rest as testing data. On the left panel of figure 4, we show the fitted risk-neutral
density of Ste by MEFN (red line) with that of the fitted Gibbs distribution result (blue line). We
find that while the distributions share similar location and variability, the distribution inferred by
MEFN is smoother and arguably more plausible. In the middle panel we show a Q-Q plot of the
quantiles of the MEFN and Gibbs distributions. We can see that the quantile pairs match the identity
closely, which should happen if both methods recovered the exact same distribution. This highlights
the effectiveness of MEFN. There does exist a small mismatch in the tails: the distribution inferred
by MEFN has slightly heavier tails. This mismatch is difficult to interpret: given that both the Gibbs
and MEFN distributions are fit with option price data (and given that one can observe at most one
value from the distribution, namely the stock price at expiration), it is fundamentally unclear which
distribution is superior, in the sense of better capturing the true ME distribution’s tails. On the right
panel we show the fitted option price for the two fitted distributions (for each strike price, we can
recover the fitted option price by Equation 12). We noted that the fitted option price and strike price
lines for both methods are very similar (they are mostly indiscernible on the right panel of figure
4). We also compare the fitted performance on the test data by computing the root mean square
error for the fitted and test data. We observe that the predictive performances for both methods are
comparable.
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Figure 4: Constructing risk-neutral measure from observed option price. Left panel: fitted risk-
neutral measure by Gibbs and MEFN method. Middle panel: Q-Q plot for the quantiles from the
distributions on the left panel. Right panel: observed and fitted option price for different strikes.

We note that for this specific application, there are practical concerns such as the microstructure
noise in the data and inefficiency in the market, etc. Applying a pre-processing procedure and incor-
porating prior assumptions can be helpful for getting a more full-fledged method (see e.g. Figlewski
(2008)). Here we mainly focus on illustrating the ability of the MEFN method to approximate the
ME distribution for non-typical distributions. Future work for this application includes fitting a risk-
neutral distribution for multi-dimensional assets by incorporating dependence structure on assets.
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C MODELING IMAGES OF TEXTURES

We tried our texture modeling approach with many different textures, and although MEFN samples
don’t always exhibit more visual diversity than samples obtained from the texture network, they
always have more entropy as in figure 3. Figure 5 shows two positive examples, i.e. textures in
which samples from MEFN do exhibit higher visual diversity than those from the texture network, as
well as a negative example, in which MEFN achieves less visual diversity than the texture network,
regardless of the fact that MEFN samples do have larger entropy. We hypothesize that this curious
behavior is due to the optimization achieving a local optimum in which the brick boundaries and
dark brick locations are not diverse but the entropy within each brick is large. It should also be
noted that among the experiments that we ran, this was the only negative example that we got, and
that slightly modifying the hyperparameters caused the issue to disappear.

Input
(positive example)

Input
(positive example)

Input
(negative example)

Texture net (Ulyanov et al. (2016), less sample diversity)

MEFN (ours, more sample diversity)

Figure 5: MEFN and texture network samples.
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