
Workshop track - ICLR 2018

DECOUPLING DYNAMICS AND REWARD FOR TRANS-
FER LEARNING

Amy Zhang∗, Harsh Satija∗, Joelle Pineau
Department of Computer Science, McGill University
Facebook AI Research
{amyzhang, hsatija}@fb.com, jpineau@cs.mcgill.ca

ABSTRACT

Current reinforcement learning (RL) methods can successfully learn single tasks,
but often generalize poorly to modest perturbations in task domain or training
procedure. In this work we present a decoupled learning strategy for RL that
creates a shared representation space where knowledge can be robustly transferred.
We separate learning the task representation, the forward dynamics, the inverse
dynamics and the reward function of the domain, and show that this decoupling
improves performance within task and transfers well to changes in dynamics and
reward.

1 INTRODUCTION

Reinforcement Learning (RL) provides a sound decision-theoretic framework to optimize the behavior
of learning agents in an interactive setting. However, one of the limitations to applications of RL
to real-world tasks is the amount of data required for learning an optimal policy. Our goal is to
design an RL model that can be efficiently trained on new tasks, and produce solutions that generalize
well beyond the training environment. We take inspiration from Successor Features (Dayan, 1993),
which decouples the value function representation into dynamics and rewards, and learns them
separately. We take this further by explicitly decoupling learning the state representation, reward
function, forward dynamics, and inverse dynamics of the environment. We posit that we can learn a
representation space Z via this decoupling that makes downstream learning easier as: (1) the modules
can be learned separately enabling efficient reuse of common knowledge across tasks to quickly
adapt to new tasks; (2) the modules can be optimized jointly leading to a representation space that is
adapted to the policy and value function, rather than only the observation space; (3) the dynamics
model enables forward search and planning, in the usual model-based RL way. Our approach is the
first model-based RL method to explicitly incorporate learning of inverse dynamics, and we show
that this plays an important role in stabilizing learning.

2 DECOUPLING MODEL-BASED RL

Consider an RL agent deployed in an environment which is modelled as a Markov Decision Process
(MDP), i.e., defined by a set of states S, a set of actions A, dynamics p(·|s, a), and rewards r(s, a).
The behavior of the RL agent is defined by a policy π : S → A, specifying an action to apply
in each state. The goal is to learn an optimal policy, denoted π∗, that maximizes the expected
cumulative reward over trajectories. The value function V π(s) and state-action value function
Qπ(s, a) are defined as usual in the RL literature (Sutton & Barto, 1998). We define T to be the
space of tasks that share S and A, but dynamics p(·|s, a), and rewards r(s, a) can vary. We sample
from T at training time. When the agent is in a particular task Tk, it collects a set of trajectories,
DTk = {Dk

1 , D
k
2 , ..., D

k
n}, where Dk

i = {s0, a0, s1, a1, . . . , st, at, . . . , sT−1, aT−1, sT }.
Our objective is to provide a modular framework for model-based RL, leveraging a decomposition
of the learning problem to provide reusable components that can be bootstrapped to enable fast
re-training following changes in dynamics and rewards. The learning is decomposed into two

∗Equal contribution.

1



Workshop track - ICLR 2018

(a) Dynamics Module (b) Rewards Module.

Figure 1: ⊗ denotes the stop gradient operator, which doesn’t allow the gradients to propagate back.

complementary objectives, one for learning the state dynamics model and the other for learning the
reward function. Figures 1a & 1b give an overview of the proposed architecture.

A Modular Dynamics Model. The goal of this module is to learn the dynamics of the environment
p(·|s, a). We have an encoder and decoder pair, fenc(s; θenc) and fdec(z; θdec), that allows us to
learn a mapping between state space S and representation space Z . We define a forward model,
ffor(s, a; θfor), which predicts the transition probability p(·|s, a) in the Z space. The forward
model is learned using a recurrent architecture so the latent representation can incorporate temporal
dependencies, where ht denotes the hidden state of the recurrent model1. We add an additional
inverse model finv(s, s′; θinv), which observes the current and next state z, z′ ∈ Z , and aims to
predict which action was taken. We also posit the inverse model is a necessary constraint to maintain
causality in Z . As we learn the forward and inverse models in Z , we define the four functions:

zt = fenc(st; θenc), ẑt+1, ht = ffor(zt, at, ht−1; θfor),

ŝt = fdec(zt; θdec). ât = finv(zt, zt+1; θinv).

We first define the total dynamics loss:

Ldynamics(θdynamics) =
T∑
t=0

(λdecLdec + λforLfor + λinvLinv)

where λdec, λfor, λinv are constant hyper-parameters. The decoder loss, Ldec, consists of the
reconstruction loss between st and ŝt and the next state prediction loss between ŝt+1 and st+1.

Ldec(θenc, θdec, θfor) = (ŝt − st)2 + (ŝt+1 − st+1)
2.

The forward model loss and inverse model losses are similarly defined as:

Lfor(θfor, θenc) = (ẑt+1 − zt+1)
2, Linv(θinv) = (ât − at)2.

Where ât ∼ p(â) = finv(zt, zt+1; θinv).

By abstracting away the model of dynamics to a representation space Z , we can encode more or
less information than what exists in the given space S. We show that this abstraction allows for
easier learning and improved results across a variety of environments. Note that this module learns a
dynamics model purely with respect to trajectories; it ignores tasks and rewards.

A Modular Reward Model. The goal of the Reward Module is to learn the value function and policy
over Z instead of S . The reward module is the primary decision-making module – it selects the next
action and predicts the expected value. We use an Actor-Critic method (Sutton et al., 2000) to learn
the policy and value function simultaneously:

π(at|zt; θactor) = factor(zt; θactor)

V (zt; θcritic) = fcritic(zt; θcritic)

using TD learning with multi-step bootstraps (Sutton, 1988).

Training the Decoupled Model. We train the dynamics module in a supervised manner and off-
policy on trajectories generated with actions randomly drawn from a uniform distribution, since it
is decoupled from any specific task. We can also bootstrap data collected from previous tasks, and
exhibit more stable learning compared to on-policy training. Assuming that the policy used to collect
the data is sufficiently exploratory, we are able to learn a representation space that captures useful
information for a family of tasks. Clearly there is a trade-off here: more exploration provides more
robust information, but is less efficient than a narrowly targeted policy.

1We use an LSTM (Hochreiter & Schmidhuber, 1997) as the recurrent model

2



Workshop track - ICLR 2018

The representation space (encoder) is static while we train the reward module. We first train the
full dynamics module with sample trajectories collected offline (either off- or on-policy) then freeze
the encoder weights before training the reward module online from this fixed encoder. The rewards
module is trained online and on-policy, using an actor-critic approach analogous to A3C (Mnih et al.,
2016), with the distinction that the actor and critic operate on the representation space Z built by the
dynamics module.

3 EXPERIMENTS, ABLATIONS, AND RESULTS

We first consider the Simple Generalization case (Table 12). A3C (Mnih et al., 2016) is the most
suitable baseline here due to the efficiency it achieves through parallelization. The main trunk of
our architecture is the same for our method and the baseline for fair comparison. We evaluate on
continuous control tasks in MuJoCo (Todorov et al., 2012) and find that our model-based approach
significantly outperforms standard A3C.

Next we evaluate dynamics and reward transfer. For reward transfer, we modify the task by negating
the reward given by the environment3. In Table 2, for reward transfer – the more negative the score,
the better. For dynamics transfer, we increase density and damping on the joints. Finally, we consider
the case where both the reward and dynamics change. In all the transfer scenarios considered, the
results in Table 2 show a consistent advantage for DDR (Decoupled Dynamics and Reward, our
method) which is able to leverage pre-trained modules for the components that do not change.

MODEL SWIMMER ANT HOPPER HALFCHEETAH
A3C 55.4 24.3 8 124.8
DDR 68 508 36 869

Table 1: Main Results. Reward averaged over 5 runs, evaluated over 100 trajectories, trained for 1M episodes.

TASK MODEL CHANGE IN REWARD CHANGE IN DYNAMICS CHANGE IN BOTH
DDR -86.3 66.9 -65

SWIMMER A3C (F) 0.6 50.9 -5.1
DDR -908 793 -366

ANT A3C (F) -11.8 50 -50.8

Table 2: MuJoCo Transfer Experiments. A3C (f) = A3C finetuned. Reward transfer in this case is negating the
reward, so the more negative the better.

We next selectively ablate components of the dynamics model. Table 3 shows a significant drop
in performance when removing the forward model, but more surprisingly, an even greater drop in
performance when removing the inverse model. This suggests that the inverse model is essential for
regularizing the dynamics problem in preventing degenerate solutions; an important finding of this
work. Using a plain auto-encoder performs even worse. These results confirm that learning dynamics
with all four components is crucial for a good representation space.

AGENT FULL NO F NO I AE
SWIMMER 68 25.9 4.48 -3.3
ANT 508 281 80.5 37.5

Table 3: Ablation results averaged over 5 runs. Full = All four losses, No F = No forward model, No I = No
inverse model, AE = Autoencoder (no forward or inverse models).

In conclusion, we present a decoupled model-based RL framework that offers efficient and modular
reuse to pre-trained models and enables robust transfer across tasks. By learning an encoder jointly
with the dynamics we can focus representation on relevant information. The incorporation of an
inverse model has an important stabilizing effect on the dynamics model. The modularity of the
rewards model allows off- and on-policy learning as well as could be extended to other policy
optimization methods such as TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017).

2We set a maximum episode length of 500 for evaluation. Other work does not specify the episode length
used for the same environments, so our results are not directly comparable.

3The reward is computed as reward = forward reward - ctrl cost - contact cost + survive reward. Maximizing
the negative reward is not so simple as merely maximizing negative velocity.

3



Workshop track - ICLR 2018

REFERENCES

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural Computation, 5(4):613–624, 1993.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.
doi.org/10.1162/neco.1997.9.8.1735.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477, 2015. URL http://arxiv.org/abs/1502.
05477.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning, 3
(1):9–44, 1988.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, pp. 5026–5033. IEEE, 2012.

4

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Introduction
	Decoupling model-based RL
	Experiments, Ablations, and Results

