
Under review as a conference paper at ICLR 2018

GRADNORM: GRADIENT NORMALIZATION FOR
ADAPTIVE LOSS BALANCING IN DEEP MULTITASK
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep multitask networks, in which one neural network produces multiple predic-
tive outputs, are more scalable and often better regularized than their single-task
counterparts. Such advantages can potentially lead to gains in both speed and
performance, but multitask networks are also difficult to train without finding the
right balance between tasks. We present a novel gradient normalization (Grad-
Norm) technique which automatically balances the multitask loss function by di-
rectly tuning the gradients to equalize task training rates. We show that for vari-
ous network architectures, for both regression and classification tasks, and on both
synthetic and real datasets, GradNorm improves accuracy and reduces overfitting
over single networks, static baselines, and other adaptive multitask loss balancing
techniques. GradNorm also matches or surpasses the performance of exhaustive
grid search methods, despite only involving a single asymmetry hyperparameter
α. Thus, what was once a tedious search process which incurred exponentially
more compute for each task added can now be accomplished within a few training
runs, irrespective of the number of tasks. Ultimately, we hope to demonstrate that
gradient manipulation affords us great control over the training dynamics of mul-
titask networks and may be one of the keys to unlocking the potential of multitask
learning.

1 INTRODUCTION

Single-task learning in computer vision has enjoyed much success in deep learning, with many
models now performing at or beyond human accuracies for a wide array of tasks. However, a system
that strives for full scene understanding cannot focus on one problem, but needs to perform many
diverse perceptual tasks simultaneously. Such systems must also be efficient, especially within the
restrictions of limited compute environments in embedded systems such as smartphones, wearable
devices, and robots/drones. Multitask learning most naturally lends itself to this problem by sharing
weights amongst different tasks within the same model and producing multiple predictions in one
forward pass. Such networks are not only scalable, but the shared features within these networks
tend to be better regularized and boost performance as a result. In the ideal limit, we can thus have
the best of both worlds with multitask networks: both more efficiency and higher performance.

The key difficulty in multitask learning lies in the balancing of tasks, and perhaps the simplest way
to control this balance is to choose the correct joint loss function. In practice, the multitask loss
function is often assumed to be linear in the single task losses, L =

∑
i wiLi, where the sum runs

over T tasks. The challenge is then to find the best value for each wi that balances the contribution
of each task for optimal model training. Our proposed method is furthermore an adaptive method,
allowing wi to vary with the training step t, and so wi = wi(t).

Our key insight lies in the observation that these wi(t) influence training only because they control
the magnitude of the gradients generated from task i. As such, manipulating the gradient norms
themselves would be a more direct way to control the training dynamics. More specifically, we
propose a simple heuristic that penalizes the network when backpropagated gradients from any task
are too large or too small. The correct balance is struck when tasks are training at similar rates; if task
i is training relatively quickly, then its weight wi(t) should decrease relative to other task weights

1

Under review as a conference paper at ICLR 2018

Figure 1: Gradient Normalization. Imbalanced gradient norms (left) result in suboptimal training
within a multitask network, so we implement a novel gradient loss Lgrad (right) which detects such
imbalances in gradient norms amongst tasks and tunes the weights in the loss function to compen-
sate. We illustrate here a simplified case where such balancing results in equalized gradient norms,
but in general some tasks may need higher or lower gradient norms relative to other tasks for optimal
task balancing (discussed further in Section 3).

wj(t)|j 6=i to allow other tasks more influence on the network. Our method can be said to be a form
of batch normalization (Ioffe & Szegedy (2015)) for backpropagation, ensuring that gradients from
each task per batch lie on a common statistical scale. We will show that, when implemented, gradient
normalization leads to across-the-board improvements in accuracy and suppresses overfitting.

Our main contributions to the field of multitask learning are as follows:

1. An attractively simple heuristic for multitask loss balancing involving training rate equal-
ization, which is implemented through a novel gradient loss function.

2. A simplification to exhaustive grid search (which has compute complexity O(NT) for N
grid points in one dimension) that only involves tuning one robust hyperparameter.

3. Demonstration that direct interaction with gradients provides a powerful way of reasoning
about multitask learning.

2 RELATED WORK

Multitask learning has existed well before the advent of deep learning (Caruana (1998); Bakker &
Heskes (2003)), but the robust learned features within deep networks have spurned renewed interest.
Although our primary application area is computer vision, multitask learning has applications in
multiple other fields, from natural language processing (Hashimoto et al. (2016); Collobert & We-
ston (2008); Søgaard & Goldberg (2016)) to speech synthesis (Wu et al. (2015); Seltzer & Droppo
(2013)), from very domain-specific applications like traffic prediction (Huang et al. (2014)) to very
general cross-domain work (Bilen & Vedaldi (2017)).

Multitask learning is very well-suited to the field of computer vision, where making multiple robust
predictions is crucial for complete scene understanding. Deep networks have been used to solve
various subsets of multiple vision tasks, from 3-task networks (Eigen & Fergus (2015); Teichmann
et al. (2016)) to much larger subsets as in UberNet (Kokkinos (2016)). Often, single computer vision
problems can even be framed as multitask problems, such as in Mask R-CNN for instance segmenta-
tion (He et al. (2017)) or YOLO-9000 for object detection (Redmon & Farhadi (2016)). Researchers
often assume a fixed loss function or network architecture, but there has also been significant work
on finding optimal ways to relate tasks to each other in a multitask model. Clustering methods have

2

Under review as a conference paper at ICLR 2018

shown success beyond deep models (Kang et al. (2011); Jacob et al. (2009)), while constructs such
as deep relationship networks (Long & Wang (2015)) and cross-stich networks (Misra et al. (2016))
search for meaningful relationships between tasks and learn which features to share between them.
Work in Warde-Farley et al. (2014) and Lu et al. (2016) use groupings amongst labels to search
through possible architectures for learning. Perhaps the most relevant to the current work, Kendall
et al. (2017) uses a joint likelihood formulation to derive task weights based on the intrinsic uncer-
tainty in each task.

3 METHODOLOGY

3.1 A GRADIENT LOSS FUNCTION BASED ON RATE BALANCING

We begin with the standard multitask loss function with time dependency, L(t) =
∑
wi(t)Li(t),

and our goal is to learn the functions wi(t). We argued in Section 1 that wi(t) is intimately related
to the norm of gradients from each task backpropagated into the network. We thus must motivate a
set of desirable gradient magnitudes, and use those desired magnitudes to set the task weights wi(t).

Consider the norms of gradients from task i on some set of weights W within the network,
norm(∇WLi(t)) (specific choices for W to be discussed later). Our method of gradient normal-
ization (hereafter referred to as GradNorm) works in two steps: (1) We first scale all gradient norms
to an equal value as a neutral starting point. This value is most naturally chosen to be the average
gradient norm amongst tasks, Etask[norm(∇WLi(t))], where we use Etask[X] to denote the average
value of a task-dependent quantity X across tasks. (2) We then modify gradient norms with a rate
balancing term that ensures no task trains relatively too slowly. The gradient norms of task i should
grow when task i trains relatively slowly, thereby boosting more sluggish tasks. Gradient norms
thus should be an increasing function of the relative inverse training rate for each task.

To quantify training rates, we choose the loss ratio of task i at training step t, L′
i(t) := Li(t)/Li(0),

as a measure of task i’s inverse training rate; smaller values of L′
i(t) would mean that task i has

trained more. If L′
i(t) denotes the inverse training rate of task i, then the relative inverse training

rate is just L′
i(t)/Etask[L

′
i(t)]. Using this simple loss ratio metric is valid for both regression squared

loss and classification cross-entropy loss, as we will see in Section 5.21.

Our desired gradient norms are therefore:

norm(∇WLi(t)) 7→ (average gradient norm)× (relative inverse training rate of task i)α

= Etask[norm(∇WL(t))]
(

L′
i(t)

Etask[L′
i(t)]

)α (1)

where α is an additional hyperparameter. α sets the strength of rate balancing in the multitask
problem, and also is a measure of the asymmetry between tasks. In cases where tasks are very
different in their complexity, leading to different learning dynamics, a higher value of α should
be used to pull tasks back towards a common training rate more forcefully. When tasks are more
symmetric (e.g. the synthetic examples in Section 4), a lower value of α is appropriate. Note that
α = 0 will always try to pin the norms of backpropped gradients from each task to be equal at W .

Equation 1 sets a desired target for our gradient norms, and we want to update our loss weights
wi(t) to move gradient norms towards this target. To accomplish this, GradNorm is implemented as
a loss function Lgrad which is just the L1 distance between actual gradient norms and the targets in
Equation 1:

L
(i)
grad(t;W) = |norm(∇WLi(t))− Etask[norm(∇WL(t))]

(
L′
i(t)

Etask[L′(t)]

)α
|. (2)

The above loss is for one task; the full loss is just the mean of the individual task losses,
Lgrad(t;W) = (1/T)

∑
i L

(i)
grad(t;W). Lgrad is then differentiated with respect to each wi(t), and its

1In general, if L is a L2 or CE loss, one may instead prefer a loss φ(L) for some invertible function φ. In
that case, the inverse training rate should be set to φ−1(L′i) to retain consistency. An L1 loss, for example,
would use (L′i)

2 as a measure of inverse training rate.

3

Under review as a conference paper at ICLR 2018

gradients are applied via standard update rules to update these weights (see Figure 1 for a schematic
view). In principle, it is also possible to update all network weights (not justwi(t)) based on gradient
of Lgrad, but in practice this adds undue complexity to the problem and often degrades performance.

We can choose W , the weights upon which we rate balance gradient norms, to be any subset of
weights within layers of our network. In practice, in order to save on compute overhead, we choose
W to be the weights in the last layer which is shared amongst all three tasks. This simplification
greatly shortens the number of layers Lgrad must be backpropagated through, and with this choice of
W in our experiments GradNorm only adds ∼ 5% of additional compute time. After every update
step, we also renormalize the weights wi(t) so that

∑
i wi(t) = T in order to decouple gradient

normalization from the global learning rate.

4 A SIMPLE TOY EXAMPLE

To illustrate GradNorm on a simple system, we consider T regression tasks onto the functions

fi(x) = σi tanh((B + εi)x), (3)

where tanh acts element-wise. We use squared loss to train each task. The matrices B and εi have
elements generated IID from N (0, 10) and N (0, 3.5), respectively. Our task is thus to perform
regression on multiple tasks with shared information B along with information specific to each
task, εi. The σi are fixed scalars which set the variance of the outputs fi. Higher values of σi induce
higher values of squared loss for that task. These tasks are harder to learn due to the higher variances
in their response values, but they also backpropagate larger gradients. Classically, such a scenario
can lead to suboptimal training dynamics as the higher σi tasks tend to dominate the training.

All toy problem runs use a 4-layer fully-connected ReLU-activated network with 100 neurons per
layer as a common trunk. A final affine transformation per task gives T final predictions. Inputs are
in R250, and outputs lie in R100. To ensure consistency, we only compare models initialized to the
same random values and fed data generated from a fixed random seed. The asymmetry α is set low
to 0.12 for these experiments, as the output functions fi are all of the same form.

In these toy problems, we measure the task-normalized test-time loss, which is the sum of the test
loss ratios for each task,

∑
i L

′
i(t). A simple sum of losses is wholly inadequate to judge the overall

performance of a multitask network, as it biases itself towards tasks with higher loss scales, and
there exists no general metric by which to judge multitask performance in any setting. Luckily, our
toy problem was designed with tasks which are statistically identical except for their loss scales σi.
For this simple example, there is therefore a clear measure of overall network performance, which
is the sum of losses with each loss normalized to its σi - precisely the sum of loss ratios.

In the case of T = 2, we choose the values (σ0, σ1) = (1.0, 100.0). Classically, task 1 can suppress
task 0’s influence during training due to its higher loss scale. As shown in the top panels of Figure
2, gradient normalization remedies the issue by increasing w0(t) to counteract the larger gradients
coming from T1, and the improved task balance results in better test-time performance.

The possible benefits of gradient normalization become even clearer when the number of tasks
increases. For T = 10, we sample the σi from a normal distribution and plot the results in the bottom
row of Figure 2. GradNorm significantly improves test time performance over naively weighting
each task the same. Like T = 2, for T = 10 the wi(t) grow larger for smaller σi tasks; GradNorm
is giving tasks with smaller loss scales more breathing room.

For both T = 2 and T = 10, GradNorm is more stable and outperforms the uncertainty weighting
proposed by Kendall et al. (2017). Uncertainty weighting, which enforces that wi(t) ∼ 1/Li(t),
tends to grow weights too large and too quickly as the loss for each task drops. Although such
networks train quickly at the onset, the training soon crashes as the global learning rate grows too
large. This issue is exacerbated as uncertainty weighting allows wi(t) to change unconstrained
(compared to GradNorm which ensures

∑
wi(t) = T always), which pushes global learning rate

up even further.

Overall, the traces for each wi(t) during a single GradNorm run seem fairly stable and convergent.
In fact, in Section 5.3 we will see how the time-averaged weights Et[wi(t)] lie close to the optimal
static weights, suggesting GradNorm can greatly simplify the tedious grid search procedure.

4

Under review as a conference paper at ICLR 2018

Figure 2: Gradient Normalization on a toy 2-task (top) and 10-task (bottom) system. Diagrams
of the network structure with loss scales are on the left, traces of wi(t) during training in the middle,
and task-normalized test loss curves on the right. α = 0.12 for all runs.

5 APPLICATION TO A LARGE REAL-WORLD DATASET

We primarily use NYUv2 as our dataset of choice. The standard NYUv2 dataset carries depth, sur-
face normals, and semantic segmentation labels (which we cluster into 13 distinct classes). NYUv2
is quite small as a dataset, with a training split of ∼800 examples, but contains both regression and
classification labels, making it a good choice to test the robustness of GradNorm.

To show GradNorm in action on a more large-scale multitask dataset, we also expand NYUv2 to
40,000 images complete with pixel-wise depth, surface normals, and room keypoint labels. Key-
point labels are obtained through professional human labeling services, while surface normals are
generated from camera parameters and the depth maps through standard methods.

Following Lee et al. (2017), the state-of-the-art in room layout prediction, all inputs are downsam-
pled to 320 x 320 pixels and outputs to 80 x 80 pixels. These resolutions also speed up training
without compromising complexity in the inputs or labels.

5.1 MODEL AND INDIVIDUAL TASK LOSSES

We try two different models: (1) a SegNet (Badrinarayanan et al. (2015); Lee et al. (2017)) network
with a symmetric VGG16 (Simonyan & Zisserman (2014)) encoder/decoder, and (2) an FCN (Long
et al. (2015)) network with a modified ResNet-50 (He et al. (2016)) encoder and shallow ResNet
decoder. The VGG SegNet reuses maxpool indices to perform upsampling, while the ResNet FCN
learns all upsampling filters. The ResNet architecture is further thinned (both in its filters and acti-
vations) to contrast with the heavier, more complex VGG SegNet: stride-2 layers are moved earlier
and all 2048-filter layers are replaced by 1024-filter layers. Ultimately, the VGG SegNet has 29M
parameters versus 15M for the thin ResNet. Although we will focus on the VGG SegNet in our
more in-depth analysis, by designing and testing on two extremely different network topologies we
will further demonstrate that GradNorm is very robust to the choice of base model.

We use standard pixel-wise loss functions for each task: cross entropy for segmentation, squared loss
for depth, and cosine similarity for normals. As in Lee et al. (2017), for room layout we generate
Gaussian heatmaps for each of 48 room keypoint types and predict these heatmaps with a pixel-wise
squared loss. Note that all regression tasks are quadratic losses (our surface normal prediction uses

5

Under review as a conference paper at ICLR 2018

Model Type and Depth Segmentation Normals
Weighting Method Error (m) 100-mIoU (%) Error (1-|cos|)

VGG SegNet, Depth Only 1.038 - -
VGG SegNet, Segmentation Only - 70.0 -

VGG SegNet, Normals Only - - 0.169
VGG SegNet, Equal Weights 0.944 70.1 0.192

VGG SegNet, GradNorm Converged Weights 0.939 67.5 0.171
VGG SegNet, GradNorm α = 1.5 0.925 67.8 0.174

Table 1: Test error, 320x320 NYUv2 for GradNorm and various baselines.

a cosine loss which is quadratic to leading order), allowing us to use the loss ratio L′
i(t) of each task

as a direct proxy for each task’s inverse training rate.

5.2 NETWORK PERFORMANCE

In Table 1 we display the performance of GradNorm on the NYUv2 dataset (with input/output res-
olutions as described in Section 5). Specific training schemes for all NYUv2 models are detailed in
Appendix A. We see that GradNorm improves the performance of all three tasks with respect to the
equal-weights baseline (where wi(t) = 1 for all t,i), and that GradNorm either surpasses or matches
(within statistical noise) the best performance of single networks for each task. The GradNorm Con-
verged Weights network is derived by calculating the GradNorm time-averaged weights Et[wi(t)]
for each task (e.g. by averaging curves like those found in Appendix B), and retraining a network
with weights fixed to those values. GradNorm thus can also be used to extract good values for static
weights. We pursue this idea further in Section 5.3 and show that these weights lie very close to the
optimal weights extracted from exhaustive grid search.

Model Type and Depth Keypoint Normals
Weighting Method Error (m) Error (%) Error (1-|cos|)

Thin ResNet FCN, Depth Only 0.725 - -
Thin ResNet FCN, Keypoint Only - 7.90 -
Thin ResNet FCN, Normals Only - - 0.155
Thin ResNet FCN, Equal Weights 0.697 7.80 0.172

Thin ResNet FCN, Unc. Weighting (Kendall et al. (2017)) 0.702 7.96 0.182
Thin ResNet FCN, GradNorm Converged Weights 0.695 7.63 0.156

Thin ResNet FCN, GradNorm α = 1.5 0.663 7.32 0.155
VGG SegNet, Depth Only 0.689 - -

VGG SegNet, Keypoint Only - 8.39 -
VGG SegNet, Normals Only - - 0.142
VGG SegNet, Equal Weights 0.658 8.39 0.155

VGG SegNet, Unc. Weighting (Kendall et al. (2017)) 0.649 8.00 0.158
VGG SegNet, GradNorm Converged Weights 0.638 7.69 0.137

VGG SegNet, GradNorm α = 1.5 0.629 7.73 0.139

Table 2: Test error, expanded 320x320 NYUv2 for GradNorm and various baselines.

To show how GradNorm can perform in the presence of a much larger dataset, we also perform
extensive experiments on the expanded NYUv2 dataset, which carries a factor of 50x more data. The
results are shown in Table 2. As with the standard NYUv2 runs, GradNorm networks outperform
other multitask methods, and either matches (within noise) or surpasses the performance of single-
task networks.

Figure 3 shows test and training loss curves for GradNorm (α = 1.5) and baselines on the expanded
NYUv2 dataset for our VGG SegNet models. GradNorm improves test-time depth error by ∼ 5%,
despite ending with much higher training loss. GradNorm achieves this by aggressively rate bal-
ancing the network (enforced by a high asymmetry α = 1.5), and ultimately suppresses the depth
weight wdepth(t) to lower than 0.10 (see Appendix B for more details). The same trend exists for
keypoint regression, and is a clear signal of network regularization. In contrast, the uncertainty
weighting technique (Kendall et al. (2017)) causes both test and training error to move in lockstep,
and thus is not a good regularizer. Only results for the VGG SegNet are shown here, but the Thin
ResNet FCN produces consistent results.

6

Under review as a conference paper at ICLR 2018

Figure 3: Test and training loss curves for all tasks in expanded NYUv2, VGG16 backbone.
GradNorm versus an equal weights baseline and uncertainty weighting (Kendall et al. (2017)).

5.3 GRADIENT NORMALIZATION FINDS OPTIMAL GRID-SEARCH WEIGHTS IN ONE PASS

For our VGG SegNet, we train 100 networks from scratch with random task weights on expanded
NYUv2. Weights are sampled from a uniform distribution and renormalized to sum to T = 3.
For computational efficiency, we only train for 15000 iterations out of the normal 80000, and then
compare the performance of that network to our GradNorm α = 1.5 VGG SegNet network at the
same 15000 steps. The results are shown in Figure 4.

Figure 4: Gridsearch performance for random task weights, expanded NYUv2. Average change
in performance across three tasks for a static network with weights wstatic

i is plotted against the
L2 distance between wstatic

i and our GradNorm network’s time-averaged weights, Et[wi(t)]. All
comparisons are made at 15000 steps of training.

7

Under review as a conference paper at ICLR 2018

Even after 100 networks trained, grid search still falls short of our GradNorm network. But even
more remarkably, there is a strong, negative correlation between network performance and task
weight distance to our time-averaged GradNorm weights. At an L2 distance of∼ 3, grid search net-
works on average have almost double the errors per task compared to our GradNorm network. Grad-
Norm has effectively allowed us to “cheat” and immediately find the optimal grid search weights
without actually performing grid search, simplifying a process that is usually notoriously laborious.

Figure 5: Visualizations at inference time. Expanded NYUv2 with room layout labels is shown on
the left, while downsampled NYUv2 with semantic segmentation labels is shown on the right.

5.4 QUALITATIVE RESULTS

Figure 5 shows visualizations of the VGG SegNet outputs on test set images along with the ground
truth, for both the expanded and downsampled NYUv2 datasets. Ground truth labels are juxtaposed
with outputs from the equal weights network, 3 single networks, and our best GradNorm network.
The qualitative improvements are incremental, but we find the GradNorm network tends to output
smoother, more detailed pixel map predictions when compared to the other two baselines.

6 CONCLUSIONS

Gradient normalization acts as a good model regularizer and leads to superb performance in mul-
titask networks by operating directly on the gradients in the network. GradNorm is driven by the
attractively simple heuristic of rate balancing, and can accommodate problems of varying complex-
ities within the same unified model using a single hyperparameter representing task asymmetry.
A GradNorm network can also be used to quickly extract optimal fixed task weights, removing the
need for exhaustive grid search methods that become exponentially more expensive with the number
of tasks. We hope that our work has not only introduced a new methodology for quickly balancing
multitask networks, but also has shown how direct gradient manipulation can be a powerful way to
reason about task relationships within a multitask framework.

8

Under review as a conference paper at ICLR 2018

REFERENCES

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. arXiv preprint arXiv:1511.00561, 2015.

Bart Bakker and Tom Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine
Learning Research, 4(May):83–99, 2003.

Hakan Bilen and Andrea Vedaldi. Universal representations: The missing link between faces, text, planktons,
and cat breeds. arXiv preprint arXiv:1701.07275, 2017.

Rich Caruana. Multitask learning. In Learning to learn, pp. 95–133. Springer, 1998.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the 25th international conference on Machine learning,
pp. 160–167. ACM, 2008.

David Eigen and Rob Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale
convolutional architecture. In Proceedings of the IEEE International Conference on Computer Vision, pp.
2650–2658, 2015.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-task model:
Growing a neural network for multiple nlp tasks. arXiv preprint arXiv:1611.01587, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arXiv preprint arXiv:1703.06870,
2017.

Wenhao Huang, Guojie Song, Haikun Hong, and Kunqing Xie. Deep architecture for traffic flow prediction:
deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 15
(5):2191–2201, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456, 2015.

Laurent Jacob, Jean-philippe Vert, and Francis R Bach. Clustered multi-task learning: A convex formulation.
In Advances in neural information processing systems, pp. 745–752, 2009.

Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature learning.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 521–528, 2011.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene
geometry and semantics. arXiv preprint arXiv:1705.07115, 2017.

Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level
vision using diverse datasets and limited memory. arXiv preprint arXiv:1609.02132, 2016.

Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz, and Andrew Rabinovich. Roomnet: End-to-end
room layout estimation. arXiv preprint arXiv:1703.06241, 2017.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440, 2015.

Mingsheng Long and Jianmin Wang. Learning multiple tasks with deep relationship networks. arXiv preprint
arXiv:1506.02117, 2015.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris. Fully-adaptive
feature sharing in multi-task networks with applications in person attribute classification. arXiv preprint
arXiv:1611.05377, 2016.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for multi-task
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3994–
4003, 2016.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. arXiv preprint arXiv:1612.08242, 2016.

Michael L Seltzer and Jasha Droppo. Multi-task learning in deep neural networks for improved phoneme
recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference
on, pp. 6965–6969. IEEE, 2013.

9

Under review as a conference paper at ICLR 2018

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Anders Søgaard and Yoav Goldberg. Deep multi-task learning with low level tasks supervised at lower layers.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, volume 2, pp.
231–235, 2016.

Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla, and Raquel Urtasun. Multinet: Real-
time joint semantic reasoning for autonomous driving. arXiv preprint arXiv:1612.07695, 2016.

David Warde-Farley, Andrew Rabinovich, and Dragomir Anguelov. Self-informed neural network structure
learning. arXiv preprint arXiv:1412.6563, 2014.

Zhizheng Wu, Cassia Valentini-Botinhao, Oliver Watts, and Simon King. Deep neural networks employing
multi-task learning and stacked bottleneck features for speech synthesis. In Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference on, pp. 4460–4464. IEEE, 2015.

10

Under review as a conference paper at ICLR 2018

Appendices
A GENERAL TRAINING CHARACTERISTICS

All runs are trained at a batch size of 24 across 4 Titan X GTX 12GB GPUs and run at 30fps on a
single GPU at inference. NYUv2 runs begin with a learning rate of 2e-5. Expanded NYUv2 runs
last 80000 steps with a learning rate decay of 0.2 every 25000 steps. Downsampled NYUv2 runs
last 20000 steps with a learning rate decay of 0.2 every 6000 steps. Updating wi(t) is performed
at a learning rate of 0.025 for both GradNorm and the uncertainty weighting (Kendall et al. (2017))
baseline. All optimizers are Adam, although we find that GradNorm is insensitive to the optimizer
chosen. We implement GradNorm using TensorFlow v1.2.1.

B EFFECTS OF TUNING THE ASYMMETRY α

The only hyperparameter in our technique is the asymmetry α. The optimal value of α for NYUv2
lies near α = 1.5, while in the highly symmetric toy example in Section 4 we used α = 0.12. This
observation reinforces why we call α an asymmetry parameter.

Figure 6: Weights wi(t) during training, expanded NYUv2. Traces of how the task weights wi(t)
change during training for two different values of α. A larger value of α pushes weights farther
apart, leading to less symmetry between tasks.

Tuning α leads to performance gains, but we found that for NYUv2, almost any value of 0 < α < 3
will improve network performance over an equal weights baseline. Figure 6 shows that higher values
of α tend to push the weights wi(t) further apart, which more aggressively reduces the influence of
tasks which overfit or learn too quickly (in our case, depth). Remarkably, at α = 1.75 (not shown)
wdepth(t) is suppressed to below 0.02 at no detriment to network performance on the depth task.

11

