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ABSTRACT

Recent neural network and language models have begun to rely on softmax distri-
butions with an extremely large number of categories. In this context calculating
the softmax normalizing constant is prohibitively expensive. This has spurred a
growing literature of efficiently computable but biased estimates of the softmax.
In this paper we present the first two unbiased algorithms for maximizing the soft-
max likelihood whose work per iteration is independent of the number of classes
and datapoints (and does not require extra work at the end of each epoch). We
compare our unbiased methods’ empirical performance to the state-of-the-art on
seven real world datasets, where they comprehensively outperform all competi-
tors.

1 INTRODUCTION

Under the softmax model1 the probability that a random variable y takes on the label ` ∈ {1, ...,K},
is given by

p(y = `|x;W ) =
ex
>w`∑K

k=1 e
x>wk

, (1)

where x ∈ RD is the covariate, wk ∈ RD is the vector of parameters for the k-th class, and
W = [w1, w2, ..., wK ] ∈ RD×K is the parameter matrix. Given a dataset of N label-covariate pairs
D = {(yi, xi)}Ni=1, the ridge-regularized maximum log-likelihood problem is given by

L(W ) =

N∑
i=1

x>i wyi − log(

K∑
k=1

ex
>
i wk)− µ

2
‖W‖22, (2)

where ‖W‖2 denotes the Frobenius norm.

This paper focusses on how to maximize (2) when N,K,D are all large. Having large N,K,D is
increasingly common in modern applications such as natural language processing and recommenda-
tion systems, where N,K,D can each be on the order of millions or billions (Partalas et al., 2015;
Chelba et al., 2013; Bhatia et al.).

A natural approach to maximizing L(W ) with large N,K,D is to use Stochastic Gradient Descent
(SGD), sampling a mini-batch of datapoints each iteration. However if K,D are large then the
O(KD) cost of calculating the normalizing sum

∑K
k=1 e

x>i wk in the stochastic gradients can still
be prohibitively expensive. Several approximations that avoid calculating the normalizing sum have
been proposed to address this difficulty. These include tree-structured methods (Bengio et al., 2003;
Daume III et al., 2016; Grave et al., 2016), sampling methods (Bengio & Senécal, 2008; Mnih &
Teh, 2012; Joshi et al., 2017) and self-normalization (Andreas & Klein, 2015). Alternative models
such as the spherical family of losses (de Brébisson & Vincent, 2015; Vincent et al., 2015) that do not
require normalization have been proposed to sidestep the issue entirely (Martins & Astudillo, 2016).
Krishnapuram et al. (2005) avoid calculating the sum using a maximization-majorization approach
based on lower-bounding the eigenvalues of the Hessian matrix. All2 of these approximations are
computationally tractable for largeN,K,D, but are unsatisfactory in that they are biased and do not
converge to the optimal W ∗ = argmaxL(W ).

1Also known as the multinomial logit model.
2The method of Krishnapuram et al. (2005) does converge to the optimal MLE, but has O(ND) runtime

per iteration which is not feasible for large N,D.
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Recently Raman et al. (2016) managed to recast (2) as a double-sum overN andK. This formulation
is amenable to SGD that samples both a datapoint and class each iteration, reducing the per iteration
cost to O(D). The problem is that vanilla SGD when applied to this formulation is unstable, in that
the gradients suffer from high variance and are susceptible to computational overflow. Raman et al.
(2016) deal with this instability by occasionally calculating the normalizing sum for all datapoints at
a cost of O(NKD). Although this achieves stability, its high cost nullifies the benefit of the cheap
O(D) per iteration cost.

The goal of this paper is to develop robust SGD algorithms for optimizing double-sum formulations
of the softmax likelihood. We develop two such algorithms. The first is a new SGD method called
U-max, which is guaranteed to have bounded gradients and converge to the optimal solution of
(2) for all sufficiently small learning rates. The second is an implementation of Implicit SGD, a
stochastic gradient method that is known to be more stable than vanilla SGD and yet has similar
convergence properties (Toulis et al., 2016). We show that the Implicit SGD updates for the double-
sum formulation can be efficiently computed and has a bounded step size, guaranteeing its stability.

We compare the performance of U-max and Implicit SGD to the (biased) state-of-the-art methods
for maximizing the softmax likelihood which cost O(D) per iteration. Both U-max and Implicit
SGD outperform all other methods. Implicit SGD has the best performance with an average log-loss
4.29 times lower than the previous state-of-the-art.

In summary, our contributions in this paper are that we:

1. Provide a simple derivation of the softmax double-sum formulation and identify why
vanilla SGD is unstable when applied to this formulation (Section 2).

2. Propose the U-max algorithm to stabilize the SGD updates and prove its convergence (Sec-
tion 3.1).

3. Derive an efficient Implicit SGD implementation, analyze its runtime and bound its step
size (Section 3.2).

4. Conduct experiments showing that both U-max and Implicit SGD outperform the previous
state-of-the-art, with Implicit SGD having the best performance (Section 4).

2 CONVEX DOUBLE-SUM FORMULATION

2.1 DERIVATION OF DOUBLE-SUM

In order to have an SGD method that samples both datapoints and classes each iteration, we need
to represent (2) as a double-sum over datapoints and classes. We begin by rewriting (2) in a more
convenient form,

L(W ) =

N∑
i=1

− log(1 +
∑
k 6=yi

ex
>
i (wk−wyi

))− µ

2
‖W‖22. (3)

The key to converting (3) into its double-sum representation is to express the negative logarithm
using its convex conjugate:

− log(a) = max
v<0
{av − (− log(−v)− 1)} = max

u
{−u− exp(−u)a+ 1} (4)

where u = − log(−v) and the optimal value of u is u∗(a) = log(a). Applying (4) to each of the
logarithmic terms in (3) yields

L(W ) =

N∑
i=1

max
ui∈R
{−ui − e−ui(1 +

∑
k 6=yi

ex
>
i (wk−wyi

)) + 1} − µ

2
‖W‖22

= −min
u≥0
{f(u,W )}+N,

where

f(u,W ) =

N∑
i=1

∑
k 6=yi

ui + e−ui

K − 1
+ ex

>
i (wk−wyi

)−ui +
µ

2
‖W‖22 (5)
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is our double-sum representation that we seek to minimize and the optimal solution for ui is
u∗i (W ) = log(1 +

∑
k 6=yi e

x>i (wk−wyi
)) ≥ 0. Clearly f is a jointly convex function in u and W .

In Appendix A we prove that the optimal value of u and W is contained in a compact convex set
and that f is strongly convex within this set. Thus performing projected-SGD on f is guaranteed
to converge to a unique optimum with a convergence rate of O(1/T ) where T is the number of
iterations (Lacoste-Julien et al., 2012).

2.2 INSTABILITY OF VANILLA SGD

The challenge in optimizing f using SGD is that it can have problematically large magnitude gradi-
ents. Observe that f = Eik[fik] where i ∼ unif({1, ..., N}), k ∼ unif({1, ...,K} − {yi}) and

fik(u,W ) = N
(
ui + e−ui + (K − 1)ex

>
i (wk−wyi

)−ui)
)

+
µ

2
(βyi‖wyi‖22 + βk‖wk‖22), (6)

where βj = N
nj+(N−nj)(K−1) is the inverse of the probability of class j being sampled either through

i or k, and nj = |{i : yi = j, i = 1, ..., N}|. The corresponding stochastic gradient is:

∇wk
fik(u,W ) = N(K − 1)ex

>
i (wk−wyi

)−uixi + µβkwk

∇wyi
fik(u,W ) = −N(K − 1)ex

>
i (wk−wyi

)−uixi + µβyiwyi

∇wj /∈{k,yi}
fik(u,W ) = 0

∇uifik(u,W ) = −N(K − 1)ex
>
i (wk−wyi

)−ui +N(1− e−ui) (7)

If ui equals its optimal value u∗i (W ) = log(1+
∑
k 6=yi e

x>i (wk−wyi
)) then ex

>
i (wk−wyi

)−ui ≤ 1 and
the magnitude of the N(K − 1) terms in the stochastic gradient are bounded by N(K − 1)‖xi‖2.
However if ui � x>i (wk −wyi), then ex

>
i (wk−wyi

)−ui � 1 and the magnitude of the gradients can
become extremely large.

Extremely large gradients lead to two major problems: (a) the gradients may computationally over-
flow floating-point precision and cause the algorithm to crash, (b) they result in the stochastic gra-
dient having high variance, which leads to slow convergence3. In Section 4 we show that these
problems occur in practice and make vanilla SGD both an unreliable and inefficient method4.

The sampled softmax optimizers in the literature (Bengio & Senécal, 2008; Mnih & Teh, 2012;
Joshi et al., 2017) do not have the issue of large magnitude gradients. Their gradients are bounded
by N(K−1)‖xi‖2 due to their approximations to u∗i (W ) always being greater than x>i (wk−wyi).
For example, in one-vs-each (Titsias, 2016), u∗i (W ) is approximated by log(1 + ex

>
i (wk−wyi

)) >
x>i (wk−wyi). However, as they only approximate u∗i (W ) they cannot converge to the optimalW ∗.

The goal of this paper is to design reliable and efficient SGD algorithms for optimizing the double-
sum formulation f(u,W ) in (5). We propose two such methods: U-max (Section 3.1) and an
implementation of Implicit SGD (Section 3.2). But before we introduce these methods we should
establish that f is a good choice for the double-sum formulation.

2.3 CHOICE OF DOUBLE-SUM FORMULATION

The double-sum in (5) is different to that of Raman et al. (2016). Their formulation can be derived
by applying the convex conjugate substitution to (2) instead of (3). The resulting equations are
L(W ) = minū

{
1
N

∑N
i=1

1
K−1

∑
k 6=yi f̄ik(ū,W )

}
+N where

f̄ik(ū,W ) = N
(
ūi − x>i wyi + ex

>
i wyi

−ūi + (K − 1)ex
>
i wk−ūi

)
+
µ

2
(βyi‖wyi‖22 + βk‖wk‖22)

(8)
3The convergence rate of SGD is inversely proportional to the second moment of its gradients (Lacoste-

Julien et al., 2012).
4The same problems arise if we approach optimizing (3) via stochastic composition optimization (Wang

et al., 2016). As is shown in Appendix B, stochastic composition optimization yields near-identical expressions
for the stochastic gradients in (7) and has the same stability issues.
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and the optimal solution for ūi is ū∗i (W
∗) = log(

∑K
k=1 e

x>i w
∗
k).

Although both double-sum formulations can be used as a basis for SGD, our formulation tends to
have smaller magnitude stochastic gradients and hence faster convergence. To see this, note that
typically x>i wyi = argmaxk{x>i wk} and so the ūi, x>i wyi and ex

>
i wyi

−ūi terms in (8) are of the
greatest magnitude. Although at optimality these terms should roughly cancel, this will not be the
case during the early stages of optimization, leading to stochastic gradients of large magnitude. In
contrast the function fik in (6) only has x>i wyi appearing as a negative exponent, and so if x>i wyi is
large then the magnitude of the stochastic gradients will be small. In Section 4 we present numerical
results confirming that our double-sum formulation leads to faster convergence.

3 STABLE SGD METHODS

3.1 U-MAX METHOD

As explained in Section 2.2, vanilla SGD has large gradients when ui � x>i (wk − wyi). This
can only occur when ui is less than its optimum value for the current W , since u∗i (W ) = log(1 +∑
j 6=yi e

x>i (wk−wyi
)) ≥ x>i (wk − wyi). A simple remedy is to set ui = log(1 + ex

>
i (wk−wyi

))

whenever ui � x>i (wk − wyi). Since log(1 + ex
>
i (wk−wyi

)) > x>i (wk − wyi) this guarantees that
ui > x>i (wk − wyi) and so the gradients are bounded. It also brings ui closer5 to its optimal value
for the current W and thereby decreases the the objective f(u,W ).

This is exactly the mechanism behind the U-max algorithm — see Algorithm 1 in Appendix C for
its pseudocode. U-max is the same as vanilla SGD except for two modifications: (a) ui is set equal
to log(1 + ex

>
i (wk−wyi

)) whenever ui ≤ log(1 + ex
>
i (wk−wyi

)) − δ for some threshold δ > 0, (b)
ui is projected onto [0, Bu], and W onto {W : ‖W‖2 ≤ BW }, where Bu and BW are set so that
the optimal u∗i ∈ [0, Bu] and the optimal W ∗ satisfies ‖W ∗‖2 ≤ BW . See Appendix A for more
details on how to set Bu and BW .

Theorem 1. Let Bf = max‖W‖22≤B2
W ,0≤u≤Bu, maxik ‖∇fik(u,W )‖2. Suppose a learning rate

ηt ≤ δ2/(4B2
f ), then U-max with threshold δ converges to the optimum of (2), and the rate is at

least as fast as SGD with same learning rate, in expectation.

Proof. The proof is provided in Appendix D.

U-max directly resolves the problem of extremely large gradients. Modification (a) ensures that
δ ≥ x>i (wk − wyi) − ui (otherwise ui would be increased to log(1 + ex

>
i (wk−wyi

))) and so the
magnitude of the U-max gradients are bounded above by N(K − 1)eδ‖xi‖2.

In U-max there is a trade-off between the gradient magnitude and learning rate that is controlled
by δ. For Theorem 1 to apply we require that the learning rate ηt ≤ δ2/(4B2

f ). A small δ yields
small magnitude gradients, which makes convergence fast, but necessitates a small ηt, which makes
convergence slow.

3.2 IMPLICIT SGD

Another method that solves the large gradient problem is Implicit SGD6 (Bertsekas, 2011; Toulis
et al., 2016). Implicit SGD uses the update equation

θ(t+1) = θ(t) − ηt∇f(θ(t+1), ξt), (9)

where θ(t) is the value of the tth iterate, f is the function we seek to minimize and ξt is a random
variable controlling the stochastic gradient such that ∇f(θ) = Eξt [∇f(θ, ξt)]. The update (9)
differs from vanilla SGD in that θ(t+1) appears on both the left and right side of the equation,

5Since ui < x>i (wk − wyi) < log(1 + ex
>
i (wk−wyi

)) < log(1 +
∑

j 6=yi
ex
>
i (wk−wyi

)) = u∗i (W ).
6Also known to as an “incremental proximal algorithm” (Bertsekas, 2011).
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whereas in vanilla SGD it appears only on the left side. In our case θ = (u,W ) and ξt = (it, kt)
with∇f(θ(t+1), ξt) = ∇fit,kt(u(t+1),W (t+1)).

Although Implicit SGD has similar convergence rates to vanilla SGD, it has other properties that can
make it preferable over vanilla SGD. It is known to be more robust to the learning rate (Toulis et al.,
2016), which important since a good value for the learning rate is never known a priori. Another
property, which is of particular interest to our problem, is that it has smaller step sizes.

Proposition 1. Consider applying Implicit SGD to optimizing f(θ) = Eξ[f(θ, ξ)] where f(θ, ξ) is
m-strongly convex for all ξ. Then

‖∇f(θ(t+1), ξt)‖2 ≤ ‖∇f(θ(t), ξt)‖2 −m‖θ(t+1) − θ(t)‖2

and so the Implicit SGD step size is smaller than that of vanilla SGD.

Proof. The proof is provided in Appendix E.

The bound in Proposition 1 can be tightened for our particular problem. Unlike vanilla SGD whose
step size magnitude is exponential in x>i (wk−wyi)−ui, as shown in (7), for Implicit SGD the step
size is asymptotically linear in x>i (wk − wyi) − ui. This effectively guarantees that Implicit SGD
cannot suffer from computational overflow.

Proposition 2. Consider the Implicit SGD algorithm where in each iteration only one datapoint i
and one class k 6= yi is sampled and there is no ridge regularization. The magnitude of its step size
in w is O(x>i (wk − wyi)− ui).

Proof. The proof is provided in Appendix F.2.

The difficulty in applying Implicit SGD is that in each iteration one has to compute a solution to (9).
The tractability of this procedure is problem dependent. We show that computing a solution to (9) is
indeed tractable for the problem considered in this paper. The details of these mechanisms are laid
out in full in Appendix F.

Proposition 3. Consider the Implicit SGD algorithm where in each iteration n datapoints and m
classes are sampled. Then the Implicit SGD update θ(t+1) can be computed to within ε accuracy in
runtime O(n(n+m)(D + n log(ε−1))).

Proof. The proof is provided in Appendix F.3.

In Proposition 3 the log(ε−1) factor comes from applying a first order method to solve the strongly
convex Implicit SGD update equation. It may be the case that performing this optimization is more
expensive than computing the x>i wk inner products, and so each iteration of Implicit SGD may be
significantly slower than that of vanilla SGD or U-max. However, in the special case of n = m = 1
we can use the bisection method to give an explicit upper bound on the optimization cost.

Proposition 4. Consider the Implicit SGD algorithm with learning rate η where in each iteration
only one datapoint i and one class k 6= yi is sampled and there is no ridge regularization. Then
the Implicit SGD iterate θ(t+1) can be computed to within ε accuracy with only two D-dimensional
vector inner products and at most log2(ε−1)+log2(|x>i (wk−wyi)−ui|+2ηN‖xi‖22 +log(K−1))
bisection method function evaluations.

Proof. The proof is provided in Appendix F.1

For any reasonably large dimensionD, the cost of the twoD-dimensional vector inner products will
outweigh the cost of the bisection, and Implicit SGD will have roughly the same speed per iteration
as vanilla SGD or U-max.

In summary, Implicit SGD is robust to the learning rate, does not have overflow issues and its updates
can be computed in roughly the same time as vanilla SGD.
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Table 1: Datasets with a summary of their properties. Where the number of classes, dimension or
number of examples has been altered, the original value is displayed in brackets.

DATASET CLASSES DIMENSION EXAMPLES

MNIST 10 780 60,000
Bibtex 147 (159) 1,836 4,880
Delicious 350 (983) 500 12,920
Eurlex 838 (3,993) 5,000 15,539
AmazonCat-13K 2,709 (2,919) 10,000 (203,882) 100,000 (1,186,239)
Wiki10 4,021 (30,938) 10,000 (101,938) 14,146
Wiki-small 18,207 (28,955) 10,000 (2,085,164) 90,737 (342,664)

4 EXPERIMENTS

Two sets of experiments were conducted to assess the performance of the proposed methods. The
first compares U-max and Implicit SGD to the state-of-the-art over seven real world datasets. The
second investigates the difference in performance between the two double-sum formulations dis-
cussed in Section 2.3. We begin by specifying the experimental setup and then move onto the
results.

4.1 EXPERIMENTAL SETUP

Data. We used the MNIST, Bibtex, Delicious, Eurlex, AmazonCat-13K, Wiki10, and Wiki-small
datasets7, the properties of which are summarized in Table 1. Most of the datasets are multi-label
and, as is standard practice (Titsias, 2016), we took the first label as being the true label and discarded
the remaining labels. To make the computation more manageable, we truncated the number of
features to be at most 10,000 and the training and test size to be at most 100,000. If, as a result of
the dimension truncation, a datapoint had no non-zero features then it was discarded. The features
of each dataset were normalized to have unit L2 norm. All of the datasets were pre-separated into
training and test sets. We only focus on the performance on the algorithms on the training set, as the
goal in this paper is to investigate how best to optimize the softmax likelihood, which is given over
the training set.

Algorithms. We compared our algorithms to the state-of-the-art methods for optimizing the softmax
which have runtime O(D) per iteration8. The competitors include Noise Contrastive Estimation
(NCE) (Mnih & Teh, 2012), Importance Sampling (IS) (Bengio & Senécal, 2008) and One-Vs-Each
(OVE) (Titsias, 2016). Note that these methods are all biased and will not converge to the optimal
softmax MLE, but something close to it. For these algorithms we set n = 100,m = 5, which are
standard settings9. For Implicit SGD we chose to implement the version in Proposition 4 which has
n = 1,m = 1. Likewise for U-max we set n = 1,m = 1 and the threshold parameter δ = 1. The
ridge regularization parameter µ was set to zero for all algorithms.

Epochs and losses. Each algorithm is run for 50 epochs on each dataset. The learning rate is
decreased by a factor of 0.9 each epoch. Both the prediction error and log-loss (2) are recorded at
the end of 10 evenly spaced epochs over the 50 epochs.

Learning rate. The magnitude of the gradient differs in each algorithm, due to either under- or over-
estimating the log-sum derivative from (2). To set a reasonable learning rate for each algorithm on

7All of the datasets were downloaded from http://manikvarma.org/downloads/XC/
XMLRepository.html, except Wiki-small which was obtained from http://lshtc.iit.
demokritos.gr/.

8Raman et al. (2016) have runtime O(NKD) per epoch, which is equivalent to O(KD) per iteration. This
is a factor of K slower than the methods we compare against.

9We also experimented setting n = 1,m = 1 in these methods and there was virtually no difference except
the runtime was slower. For example, in Appendix G we plot the performance of NCE with n = 1,m = 1
and n = 100,m = 5 applied to the Eurlex dataset for different learning rates and there is very little difference
between the two.

6
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Table 2: Tuned initial learning rates for each algorithm on each dataset. The learning rate in
100,±1,±2,±3 with the lowest log-loss after 50 epochs using only 10% of the data is displayed.
Vanilla SGD applied to AmazonCat, Wiki10 and Wiki-small suffered from overflow with a learning
rate of 10−3, but was stable with smaller learning rates (the largest learning rate for which it was
stable is displayed).

DATASET OVE NCE IS Vanilla U-max Implicit

MNIST 101 101 101 10−2 101 10−1

Bibtex 102 102 102 10−2 10−1 101

Delicious 101 103 103 10−3 10−2 10−2

Eurlex 10−1 102 102 10−3 10−1 101

AmazonCat 101 103 103 10−5 10−2 10−3

Wiki10 10−2 103 102 10−4 10−2 100

Wiki-small 103 103 103 10−4 10−3 10−3
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Figure 1: The x-axis is the number of epochs and the y-axis is the log-loss from (2) calculated at the
current value of W .

each dataset, we ran them on 10% of the training data with initial learning rates η = 100,±1,±2,±3.
The learning rate with the best performance after 50 epochs is then used when the algorithm is
applied to the full dataset. The tuned learning rates are presented in Table 2. Note that vanilla SGD
requires a very small learning rate, otherwise it suffered from overflow.

4.2 RESULTS

Comparison to state-of-the-art. Plots of the performance of the algorithms on each dataset are
displayed in Figure 1 with the relative performance compared to Implicit SGD given in Table 3. The
Implicit SGD method has the best performance on virtually all datasets. Not only does it converge
faster in the first few epochs, it also converges to the optimal MLE (unlike the biased methods that
prematurely plateau). On average after 50 epochs, Implicit SGD’s log-loss is a factor of 4.29 lower
than the previous state-of-the-art. The U-max algorithm also outperforms the previous state-of-the-
art on most datasets. U-max performs better than Implicit SGD on AmazonCat, although in general
Implicit SGD has superior performance. Vanilla SGD’s performance is better than the previous
state-of-the-art but worse than U-max and Implicit SGD. The difference in performance between
vanilla SGD and U-max can largely be explained by vanilla SGD requiring a smaller learning rate
to avoid computational overflow.
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Table 3: Relative log-loss. The values for each dataset are normalized by dividing by the corre-
sponding Implicit SGD log-loss. The lowest log-loss for each dataset is in bold.

DATASET OVE NCE IS VANILLA-SGD U-MAX. IMPLICIT SGD

MNIST 5.73 6.05 5.74 1.43 1.56 1.00
Bibtex 29.03 28.52 32.71 15.18 9.77 1.00

Delicious 1.90 1.91 1.89 1.25 1.11 1.00
Eurlex 6.47 6.39 6.38 3.59 2.11 1.00

AmazonCat 2.12 2.15 2.12 1.47 0.98 1.00
Wiki10 7.04 7.13 6.97 5.99 2.39 1.00

Wiki-small 1.02 1.36 1.35 1.15 1.03 1.00

Average 7.62 7.64 8.17 4.29 2.71 1.00

0 20 40
Epochs

101

102

103

104

Lo
g-

lik
el

ih
oo

d

Double-sum formulations

Learning rates

Figure 2: Log-loss of U-max on Eurlex for different learning rates with our proposed double-sum
formulation and that of Raman et al. (2016).

The sensitivity of each method to the initial learning rate can be seen in Appendix G, where the re-
sults of running each method on the Eurlex dataset with learning rates η = 100,±1,±2,±3 is presented.
The results are consistent with those in Figure 1, with Implicit SGD having the best performance for
most learning rate settings. For learning rates η = 103,4 the U-max log-loss is extremely large. This
can be explained by Theorem 1, which does not guarantee convergence for U-max if the learning
rate is too high.

Comparison of double-sum formulations. Figure 2 illustrates the performance on the Eurlex
dataset of U-max using the proposed double-sum in (6) compared to U-max using the double-sum
of Raman et al. (2016) in (8). The proposed double-sum clearly outperforms for all10 learning rates
η = 100,±1,±2,−3,−4, with its 50th-epoch log-loss being 3.08 times lower on average. This supports
the argument from Section 2.3 that SGD methods applied to the proposed double-sum have smaller
magnitude gradients and converge faster.

5 CONCLUSION

In this paper we have presented the U-max and Implicit SGD algorithms for optimizing the softmax
likelihood. These are the first algorithms that require only O(D) computation per iteration (without
extra work at the end of each epoch) that converge to the optimal softmax MLE. Implicit SGD can
be efficiently implemented and clearly out-performs the previous state-of-the-art on seven real world
datasets. The result is a new method that enables optimizing the softmax for extremely large number
of samples and classes.

So far Implicit SGD has only been applied to the simple softmax, but could also be applied to
any neural network where the final layer is the softmax. Applying Implicit SGD to word2vec type
models, which can be viewed as softmaxes where both x and w are parameters to be fit, might be
particularly fruitful.

10The learning rates η = 103,4 are not displayed in the Figure 2 for visualization purposes. It had similar
behavior as η = 102.
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A PROOF OF VARIABLE BOUNDS AND STRONG CONVEXITY

We first establish that the optimal values of u and W are bounded. Next, we show that within these
bounds the objective is strongly convex and its gradients are bounded.
Lemma 1 ((Raman et al., 2016)). The optimal value of W is bounded as ‖W ∗‖22 ≤ B2

W where
B2
W = 2

µN log(K).

Proof.

−N log(K) = L(0) ≤ L(W ∗) ≤ −µ
2
‖W ∗‖22

Rearranging gives the desired result.

Lemma 2. The optimal value of ui is bounded as u∗i ≤ Bu where Bu = log(1 + (K − 1)e2BxBw)
and Bx = maxi{‖xi‖2}

Proof.

u∗i = log(1 +
∑
k 6=yi

ex
>
i (wk−wyi

))

≤ log(1 +
∑
k 6=yi

e‖xi‖2(‖wk‖2+‖wyi
‖2))

≤ log(1 +
∑
k 6=yi

e2BxBw)

= log(1 + (K − 1)e2BxBw)

Lemma 3. If ‖W‖22 ≤ B2
W and ui ≤ Bu then f(u,W ) is strongly convex with convexity constant

greater than or equal to min{exp(−Bu), µ}.

Proof. Let us rewrite f as

f(u,W ) =

N∑
i=1

ui + e−ui +
∑
k 6=yi

ex
>
i (wk−wyi

)−ui +
µ

2
‖W‖22

=

N∑
i=1

a>i θ + e−ui +
∑
k 6=yi

eb
>
ikθ +

µ

2
‖W‖22.

where θ = (u>, w>1 , ..., w
>
k ) ∈ RN+KD with ai and bik being appropriately defined. The Hessian

of f is

∇2f(θ) =

N∑
i=1

e−uieie
>
i +

∑
k 6=yi

eb
>
ikθbikb

>
ik + µ · diag{0N , 1KD}

where ei is the ith canonical basis vector, 0N is an N -dimensional vector of zeros and 1KD is a
KD-dimensional vector of ones. It follows that

∇2f(θ) � I ·min{ min
0≤u≤Bu

{e−ui}, µ}

= I ·min{exp(−Bu), µ}
� 0.

Lemma 4. If ‖W‖22 ≤ B2
W and ui ≤ Bu then the 2-norm of both the gradient of f and each

stochastic gradient fik are bounded by

Bf = N max{1, eBu − 1}+ 2(NeBuBx + µmax
k
{βk}BW ).

10
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Proof. By Jensen’s inequality
max

‖W‖22≤B2
W ,0≤u≤Bu

‖∇f(u,W )‖2 = max
‖W‖22≤B2

W ,0≤u≤Bu

‖∇Eikfik(u,W )‖2

≤ max
‖W‖22≤B2

W ,0≤u≤Bu

Eik‖∇fik(u,W )‖2

≤ max
‖W‖22≤B2

W ,0≤u≤Bu

max
ik
‖∇fik(u,W )‖2.

Using the results from Lemmas 1 and 2 and the definition of fik from (6),

‖∇uifik(u,W )‖2 = ‖N
(

1− e−ui − (K − 1)ex
>
i (wk−wyi

)−ui)
)
‖2

= N |1− e−ui(1 + (K − 1)ex
>
i (wk−wyi

))|
≤ N max{1, (1 + (K − 1)e‖xi‖2(‖wk‖2+‖wyi

‖2))− 1}
≤ N max{1, eBu − 1}

and for j indexing either the sampled class k 6= yi or the true label yi,

‖∇wj
fik(u,W )‖2 = ‖ ±N(K − 1)ex

>
i (wk−wyi

)−uixi + µβjwj‖2
≤ N(K − 1)e‖xi‖2(‖wk‖2+‖wyi

‖2)‖xi‖2 + µβj‖wj‖2
≤ NeBuBx + µmax

k
{βk}BW .

Letting
Bf = N max{1, eBu − 1}+ 2(NeBuBx + µmax

k
{βk}BW )

we have
‖∇fik(u,W )‖2 ≤ ‖∇uifik(u,W )‖2 + ‖∇wk

fik(u,W )‖2 + ‖∇wyi
fik(u,W )‖2 = Bf .

In conclusion:
max

‖W‖22≤B2
W ,0≤u≤Bu

‖∇f(u,W )‖2 ≤ max
‖W‖22≤B2

W ,ui≤Bu,
max
ik
‖∇fik(u,W )‖2 ≤ Bf .

B STOCHASTIC COMPOSITION OPTIMIZATION

We can write the equation for L(W ) from (3) as (where we have set µ = 0 for notational simplicity),

L(W ) = −
N∑
i=1

log(1 +
∑
k 6=yi

ex
>
i (wk−wyi ))

= Ei[hi(Ek[gk(W )])]

where i ∼ unif({1, ..., N}), k ∼ unif({1, ...,K}), hi(v) ∈ R, gk(W ) ∈ RN and
hi(v) = −N log(1 + e>i v)

[gk(W )]i =

{
Kex

>
i (wk−wyi

) if k 6= yi
0 otherwise

.

Here e>i v = vi ∈ R is a variable that is explicitly kept track of with vi ≈ Ek[gk(W )]i =∑
k 6=yi e

x>i (wk−wyi ) (with exact equality in the limit as t → ∞). Clearly vi in stochastic com-
position optimization has a similar role as ui has in our formulation for f in (5).

If i, k are sampled with k 6= yi in stochastic composition optimization then the updates are of the
form (Wang et al., 2016)

wyi = wyi + ηtNK
ex
>
i (zk−zyi )

1 + vi
xi

wk = wk − ηtNK
ex
>
i (zk−zyi )

1 + vi
xi,

where zk is a smoothed value of wk. These updates have the same numerical instability issues as

vanilla SGD on f in (5): it is possible that e
x>i zk

1+vi
� 1 where ideally we should have 0 ≤ ex

>
i zk

1+vi
≤ 1.
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C U-MAX PSEUDOCODE

Algorithm 1: U-max

Input : Data D = {(yi, xi) : yi ∈ {1, . . . ,K}, xi ∈ Rd}Ni=1, number of classes K, number of
datapoints N , learning rate ηt, class sampling probability βk = N

nk+(N−nk)(K−1) ,
threshold parameter δ > 0, bound BW on W such that ‖W‖2 ≤ BW and bound Bu on u
such that ui ≤ Bu for i = 1, ..., N

Output: W

1 Initialize
2 for k = 1 to K do
3 wk ← 0
4 end
5 for i = 1 to N do
6 ui ← log(K)
7 end

8 Run SGD
9 for t = 1 to T do

10 Sample indices
11 i ∼ unif({1, ..., N})
12 k ∼ unif({1, ...,K} − {yi})

13 Increase ui

14 if ui < log(1 + ex
>
i (wk−wyi

))− δ then
15 ui ← log(1 + ex

>
i (wk−wyi

))

16 SGD step

17 wk ← wk − ηt[N(K − 1)ex
>
i (wk−wyi

)−uixi + µβkwk]

18 wyi ← wyi − ηt[−N(K − 1)ex
>
i (wk−wyi

)−uixi + µβyiwyi ]

19 ui ← ui − ηt[N(1− e−ui − (K − 1)ex
>
i (wk−wyi

)−ui)]

20 Projection
21 wk ← wk ·min{1, BW /‖wk‖2}
22 wyi ← wyi ·min{1, BW /‖wyi‖2}
23 ui ← max{0,min{Bu, ui}}
24 end

D PROOF OF CONVERGENCE OF U-MAX METHOD

In this section we will prove the claim made in Theorem 1, that U-max converges to the softmax
optimum. Before proving the theorem, we will need a lemma.

Lemma 5. For any δ > 0, if ui ≤ log(1+ex
>
i (wk−wyi

))−δ then setting ui = log(1+ex
>
i (wk−wyi

))
decreases f(u,W ) by at least δ2/2.

Proof. As in Lemma 3, let θ = (u>, w>1 , ..., w
>
k ) ∈ RN+KD. Then setting ui = log(1 +

ex
>
i (wk−wyi

)) is equivalent to setting θ = θ + ∆ei where ei is the ith canonical basis vector and
∆ = log(1 + ex

>
i (wk−wyi

))− ui ≥ δ. By a second order Taylor series expansion

f(θ)− f(θ + ∆ei) ≥ ∇f(θ + ∆ei)
>ei∆ +

∆2

2
e>i ∇2f(θ + λ∆ei)ei (10)

for some λ ∈ [0, 1]. Since the optimal value of ui for a given value of W is u∗i (W ) = log(1 +∑
k 6=yi e

x>i (wk−wyi
)) ≥ log(1+ex

>
i (wk−wyi

)), we must have∇f(θ+∆ei)
>ei ≤ 0. From Lemma 3

12



Under review as a conference paper at ICLR 2018

we also know that

e>i ∇2f(θ + λ∆ei)ei = exp(−(ui + λ∆)) +
∑
k 6=yi

ex
>
i (wk−wyi

)−(ui+λ∆)

= exp(−λ∆)e−ui(1 +
∑
k 6=yi

ex
>
i (wk−wyi

))

= exp(−λ∆) exp(−(log(1 + ex
>
i (wk−wyi

))−∆))(1 +
∑
k 6=yi

ex
>
i (wk−wyi

))

≥ exp(∆− λ∆)

≥ exp(∆−∆)

= 1.

Putting in bounds for the gradient and Hessian terms in (10),

f(θ)− f(θ + ∆ei) ≥
∆2

2
≥ δ2

2
.

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Let θ(t) = (u(t),W (t)) ∈ Θ denote the value of the tth iterate. Here Θ = {θ :
‖W‖22 ≤ B2

W , ui ≤ Bu} is a convex set containing the optimal value of f(θ).

Let π(δ)
i (θ) denote the operation of setting ui = log(1 + ex

>
i (wk−wyi

)) if ui ≤ log(1 +

ex
>
i (wk−wyi

)) − δ. If indices i, k are sampled for the stochastic gradient and ui ≤ log(1 +

ex
>
i (wk−wyi

))− δ, then the value of f at the t+ 1st iterate is bounded as

f(θ(t+1)) = f(πi(θ
(t))− ηt∇fik(πi(θ

(t))))

≤ f(πi(θ
(t))) + max

θ∈Θ
‖ηt∇fik(πi(θ))‖2 max

θ∈Θ
‖∇f(θ)‖2

≤ f(πi(θ
(t))) + ηtB

2
f

≤ f(θ(t))− δ2/2 + ηtB
2
f

≤ f(θ(t) − ηt∇fik(θ(t)))− δ2/2 + 2ηtB
2
f

≤ f(θ(t) − ηt∇fik(θ(t))),

since ηt ≤ δ2/(4B2
f ) by assumption. Alternatively if ui ≥ log(1 + ex

>
i (wk−wyi

))− δ then

f(θ(t+1)) = f(πi(θ
(t))− ηt∇fik(πi(θ

(t))))

= f(θ(t) − ηt∇fik(θ(t))).

Either way f(θ(t+1)) ≤ f(θ(t) − ηt∇fik(θ(t))). Taking expectations with respect to i, k,

Eik[f(θ(t+1))] ≤ Eik[f(θ(t) − ηt∇fik(θ(t)))].

Finally let P denote the projection of θ onto Θ. Since Θ is a convex set containing the optimum we
have f(P (θ)) ≤ f(θ) for any θ, and so

Eik[f(P (θ(t+1)))] ≤ Eik[f(θ(t) − ηt∇fik(θ(t)))],

which shows that the rate of convergence in expectation of U-max is at least as fast as that of standard
SGD.

13
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E PROOF OF GENERAL IMPLICIT SGD GRADIENT BOUND

Proof of Theorem 2. Let f(θ, ξ) be m-strongly convex for all ξ. The vanilla SGD step size is
ηt‖∇f(θ(t), ξt)‖2 where ηt is the learning rate for the tth iteration. The Implicit SGD step size
is ηt‖∇f(θ(t+1), ξt)‖2 where θ(t+1) satisfies θ(t+1) = θ(t) − ηt∇f(θ(t+1), ξt). Rearranging,
∇f(θ(t+1), ξt) = (θ(t)−θ(t+1))/ηt and so it must be the case that∇f(θ(t+1), ξt)

>(θ(t)−θ(t+1)) =
‖∇f(θ(t+1), ξt)‖2‖θ(t) − θ(t+1)‖2.

Our desired result follows:

‖∇f(θ(t), ξt)‖2 ≥
∇f(θ(t))>(θ(t) − θ(t+1))

‖θ(t) − θ(t+1)‖2

≥ ∇f(θ(t+1))>(θ(t) − θ(t+1)) +m‖θ(t) − θ(t+1)‖22
‖θ(t) − θ(t+1)‖2

=
‖∇f(θ(t+1))‖2‖θ(t) − θ(t+1)‖2 +m‖θ(t) − θ(t+1)‖22

‖θ(t) − θ(t+1)‖2
= ‖∇f(θ(t+1))‖2 +m‖θ(t) − θ(t+1)‖2

where the first inequality is by Cauchy-Schwarz and the second inequality by strong convexity.

F UPDATE EQUATIONS FOR IMPLICIT SGD

In this section we will derive the updates for Implicit SGD. We will first consider the simplest case
where only one datapoint (xi, yi) and a single class is sampled in each iteration with no regularizer.
Then we will derive the more complicated update for when there are multiple datapoints and sampled
classes with a regularizer.

F.1 SINGLE DATAPOINT, SINGLE CLASS, NO REGULARIZER

Equation (6) for the stochastic gradient for a single datapoint and single class with µ = 0 is

fik(u,W ) = N(ui + e−ui + (K − 1)ex
>
i (wk−wyi

)−ui).

The Implicit SGD update corresponds to finding the variables optimizing

min
u,W

{
2ηfik(u,W ) + ‖u− ũ‖22 + ‖W − W̃‖22

}
,

where η is the learning rate and the tilde refers to the value of the old iterate (Toulis et al., 2016, Eq.
6). Since fik is only a function of ui, wk, wyi the optimization reduces to

min
ui,wk,wyi

{
2ηfik(ui, wk, wyi) + (ui − ũi)2 + ‖wyi − w̃yi‖22 + ‖wk − w̃k‖22

}
= min
ui,wk,wyi

{
2ηN(ui + e−ui + (K − 1)ex

>
i (wk−wyi

)−ui)

+ (ui − ũi)2 + ‖wyi − w̃yi‖22 + ‖wk − w̃k‖22
}
.

The optimal value of wk, wyi must deviate from the old value w̃k, w̃yi in the direction of xi. Fur-
thermore we can observe that the deviation of wk must be exactly opposite that of wyi , that is:

wyi = w̃yi + a
xi

2‖xi‖22
wk = w̃k − a

xi
2‖xi‖22

(11)

for some a ≥ 0. The optimization problem reduces to

min
ui,a≥0

{
2ηN(ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−a−ui) + (ui − ũi)2 + a2 1

2‖xi‖22

}
. (12)

14
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We’ll approach this optimization problem by first solving for a as a function of ui and then optimize
over ui. Once the optimal value of ui has been found, we can calculate the corresponding optimal
value of a. Finally, substituting a into (11) will give us our updated value of W .

Solving for a
We solve for a by setting its derivative equal to zero in (12)

0 = ∂a

{
2ηN(ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−a−ui) + (ui − ũi)2 + a2 1

2‖xi‖22

}
= −2ηN(K − 1)ex

>
i (w̃k−w̃yi

)−uie−a + a
1

‖xi‖22
⇔ aea = 2ηN(K − 1)‖xi‖22ex

>
i (w̃k−w̃yi

)−ui . (13)

The solution for a can be written in terms of the principle branch of the Lambert W function P ,

a(ui) = P (2ηN(K − 1)‖xi‖22ex
>
i (w̃k−w̃yi

)−ui)

= P (ex
>
i (w̃k−w̃yi

)−ui+log(2ηN(K−1)‖xi‖22)). (14)

Substituting the solution to a(ui) into (12), we now only need minimize over ui:

min
ui

{
2ηNui+ 2ηNe−ui + 2ηN(K − 1)ex

>
i (w̃k−w̃yi

)e−a(ui)−ui + (ui − ũi)2+ a(ui)
2 1

2‖xi‖22

}
= min

ui

{
2ηNui + 2ηNe−ui + a(ui)‖xi‖−2

2 + (ui − ũi)2 + a(ui)
2 1

2‖xi‖22

}
(15)

where we used the fact that e−P (z) = P (z)/z. The derivative with respect to ui in (15) is

∂ui

{
2ηNui + 2ηNe−ui + a(ui)‖xi‖−2

2 + (ui − ũi)2 + a(ui)
2 1

2‖xi‖22

}
= 2ηN − 2ηNe−ui + ∂ui

a(ui)‖xi‖−2
2 + 2(ui − ũi) + 2a(ui)∂ui

a(ui)
1

2‖xi‖22

= 2ηN − 2ηNe−ui − a(ui)

1 + a(ui)
‖xi‖−2

2 + 2(ui − ũi)−
a(ui)

2

(1 + a(ui))‖xi‖22
(16)

where to calculate ∂ui
a(ui) we used the fact that ∂zP (z) = P (z)

z(1+P (z)) and so

∂ui
a(ui) = − a(ui)

ex
>
i (w̃k−w̃yi

)−ui+log(2ηN(K−1)‖xi‖22)(1 + a(ui))
ex
>
i (w̃k−w̃yi

)−ui+log(2ηN(K−1)‖xi‖22)

= − a(ui)

1 + a(ui)
.

Bisection method for ui
We can solve for ui using the bisection method. Below we show how to calculate the initial lower
and upper bounds of the bisection interval and prove that the size of the interval is bounded (which
ensures fast convergence).

Start by calculating the derivative in (16) at ui = ũi. If the derivative is negative then the optimal ui
is lower bounded by ũi. An upper bound is provided by

ui = argmin
ui

{
2ηN(ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−a(ui)−ui) + (ui − ũi)2 +
a(ui)

2

2‖xi‖22

}
≤ argmin

ui

{
2ηN(ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−ui) + (ui − ũi)2

}
≤ argmin

ui

{
2ηN(ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−ui)

}
= log(1 + (K − 1)ex

>
i (w̃k−w̃yi

)).
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In the first inequality we set a(ui) = 0, since by the envelop theorem the gradient of ui is monotoni-
cally increasing in a. In the second inequality we used the assumption that ui is lower bounded by ũi.
Thus if the derivative in (16) is negative at ui = ũi then ũi ≤ ui ≤ log(1+(K−1)ex

>
i (w̃k−w̃yi

)). If
(K− 1)ex

>
i (w̃k−w̃yi

) ≤ 1 then the size of the interval must be less than log(2), since ũi ≥ 0. Other-
wise the gap must be at most log(2(K−1)ex

>
i (w̃k−w̃yi

))−ũi = log(2(K−1))+x>i (w̃k−w̃yi)−ũi.
Either way, the gap is upper bounded by log(2(K − 1)) + |x>i (w̃k − w̃yi)− ũi|.
Now let us consider if the derivative in (16) is positive at ui = ũi. Then ui is upper bounded by ũi.
Denoting a′ as the optimal value of a, we can lower bound ui using (12)

ui = argmin
ui

{
2ηN(ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−a
′−ui) + (ui − ũi)2

}
≥ argmin

ui

{
ui + e−ui + (K − 1)ex

>
i (w̃k−w̃yi

)e−a
′−ui

}
= log(1 + (K − 1) exp(x>i (w̃k − w̃yi)− a′))
≥ log(K − 1) + x>i (w̃k − w̃yi)− a′ (17)

where the first inequality comes dropping the (ui − ũi)2 term due to the assumption that ui < ũi.
Recall (13),

a′ea
′

= 2ηN(K − 1)‖xi‖22ex
>
i (w̃k−w̃yi

)−ui .

The solution for a′ is strictly monotonically increasing as a function of the right side of the equation.
Thus replacing the right side with an upper bound on its value results in an upper bound on a′.
Substituting the bound for ui,

a′ ≤ min{a : aea = 2ηN(K − 1)‖xi‖22ex
>
i (w̃k−w̃yi

)−(log(K−1)+x>i (w̃k−w̃yi
)−a)}

= min{a : a = 2ηN‖xi‖22}
= 2ηN‖xi‖22. (18)

Substituting this bound for a′ into (17) yields

ui ≥ log(K − 1) + x>i (w̃k − w̃yi)− 2ηN‖xi‖22.
Thus if the derivative in (16) is postive at ui = ũi then log(K− 1) +x>i (w̃k− w̃yi)− 2ηN‖xi‖22 ≤
ui ≤ ũi. The gap between the upper and lower bound is ũi−x>i (w̃k−w̃yi)+2ηN‖xi‖22−log(K−1).

In summary, for both cases of the sign of the derivative in (16) at ui = ũi we are able to calculate a
lower and upper bound on the optimal value of ui such that the gap between the bounds is at most
|ũi − x>i (w̃k − w̃yi)| + 2ηN‖xi‖22 + log(K − 1). This allows us to perform the bisection method
where for ε > 0 level accuracy we require only log2(ε−1)+log2(|ũi−x>i (w̃k−w̃yi)|+2ηN‖xi‖22+
log(K − 1)) function evaluations.

F.2 BOUND ON STEP SIZE

Here we will prove that the step size magnitude of Implicit SGD with a single datapoint and sampled
class with respect to w is bounded as O(x>i (w̃k − w̃yi)− ũi). We will do so by considering the two
cases u′i ≥ ũi and u′i < ũi separately, where u′i denotes the optimal value of ui in the Implicit SGD
update and ũi is its value at the previous iterate.

Case: u′i ≥ ũi
Let a′ denote the optimal value of a in the Implicit SGD update. From (14)

a′ = a(u′i)

= P (ex
>
i (w̃k−w̃yi

)−u′i+log(2ηN(K−1)‖xi‖22))

= P (ex
>
i (w̃k−w̃yi

)−ũi+log(2ηN(K−1)‖xi‖22)).

Now using the fact that P (z) = O(log(z)),

a′ = O(x>i (w̃k − w̃yi)− ũi + log(2ηN(K − 1)‖xi‖22))

= O(x>i (w̃k − w̃yi)− ũi)
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Case: u′i < ũi
If u′i < ũi then we can lower bound a′ from (18) as

a′ ≤ 2ηN‖xi‖22.

Combining cases
Putting together the two cases,

a′ = O(max{x>i (w̃k − w̃yi)− ũi, 2ηN‖xi‖22})
= O(x>i (w̃k − w̃yi)− ũi).

The actual step size in w is ±a xi

2‖xi‖22
. Since a is O(x>i (w̃k − w̃yi)− ũi), the step size magnitude is

also O(x>i (w̃k − w̃yi)− ũi).

F.3 MULTIPLE DATAPOINTS, MULTIPLE CLASSES

The Implicit SGD update when there are multiple datapoints, multiple classes, with a regularizer is
similar to the singe datapoint, singe class, no regularizer case described above. However, there are a
few significant differences. Firstly, we will require some pre-computation to find a low-dimensional
representation of the x values in each mini-batch. Secondly, we will integrate out ui for each data-
point (not wk). And thirdly, since the dimensionality of the simplified optimization problem is large,
we’ll require first order or quasi-Newton methods to find the optimal solution.

F.3.1 DEFINING THE MINI-BATCH

The first step is to define our mini-batches of size n. We will do this by partitioning the datapoint
indices into sets S1, ..., SJ with Sj = {j` : ` = 1, ..., n} for j = 1, ..., bN/nc, SJ = {J` : ` =
1, ..., N mod n}, Si ∩ Sj = ∅ and ∪Jj=1Sj = {1, ..., N}.

Next we define the set of classes Cj which can be sampled for the jth mini-batch. The set Cj is
defined to be all sets of m distinct classes that are not equal to any of the labels y for points in the
mini-batch, that is, Cj = {(k1, ..., km) : ki ∈ {1, ...,K}, ki 6= k` ∀` ∈ {1, ...,m} − {i}, ki 6=
y` ∀` ∈ Sj}.
Now we can write down our objective from (5) in terms of an expectation of functions corresponding
to our mini-batches:

f(u,W ) = E[fj,C(u,W )]

where j is sampled with probability pj = |Sj |/N and C is sampled uniformly from Cj and

fj,C(u,W ) = p−1
j

∑
i∈Sj

ui + e−ui +
∑

k∈Sj−{i}

ex
>
i (wk−wyi

)−ui +
K − n
m

∑
k∈C

ex
>
i (wk−wyi

)−ui


+
µ

2

∑
k∈C∪Sj

βk‖wk‖22.

The value of the regularizing constant βk is such that E[I[k ∈ C ∪ Sj ]βk] = 1, which requires that

β−1
k = 1− 1

J

J∑
j=1

I[k 6= Sj ](1−
m

K − |Sj |
).

F.3.2 SIMPLIFYING THE IMPLICIT SGD UPDATE EQUATION

The Implicit SGD update corresponds to solving

min
u,W

{
2ηfj,C(u,W ) + ‖u− ũ‖22 + ‖W − W̃‖22

}
,
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where η is the learning rate and the tilde refers to the value of the old iterate (Toulis et al., 2016,
Eq. 6). Since fj,C is only a function of uSj

= {ui : i ∈ Sj} and Wj,C = {wk : k ∈ Sj ∪ C} the
optimization reduces to

min
uSj

,Wj,C

{
2ηfj,C(uSj

,Wj,C) + ‖uSj
− ũSj

‖22 + ‖Wj,C − W̃j,C‖22
}
.

The next step is to analytically minimize the uSj
terms. The optimization problem in (21) decom-

poses into a sum of separate optimization problems in ui for i ∈ Sj ,

min
ui

{
2ηp−1

j (ui + e−uidi) + (ui − ũi)2

}
where

di(Wj,C) = 1 +
∑

k∈Sj−{i}

ex
>
i (wk−wyi

) +
K − n
m

∑
k∈C

ex
>
i (wk−wyi

).

Setting the derivative of ui equal to zero yields the solution

ui(Wj,C) = ũi − ηp−1
j + P (ηp−1

j di(Wj,C) exp(ηp−1
j − ũi))

where P is the principle branch of the Lambert W function. Substituting this solution into our
optimization problem and simplifying yields

min
Wj,C

{∑
i∈Sj

(1 + P (ηp−1
j di(Wj,C) exp(ηp−1

j − ũi)))
2 + ‖Wj,C − W̃j,C‖22 +

µ

2

∑
k∈C∪Sj

βk‖wk‖22
}
,

(19)

where we have used the identity e−P (z) = P (z)/z. We can decompose (19) into two parts by
splitting Wj,C = W

‖
j,C + W⊥j,C , its components parallel and perpendicular to the span of {xi :

i ∈ Sj} respectively. Since the leading term in (19) only depends on W
‖
j,C , the two resulting

sub-problems are

min
W
‖
j,C

{∑
i∈Sj

(1 + P (ηp−1
j di(W

‖
j,C) exp(ηp−1

j − ũi)))
2 + ‖W ‖j,C − W̃

‖
j,C‖

2
2 +

µ

2

∑
k∈C∪Sj

βk‖w‖k‖
2
2

}
,

min
W⊥j,C

{
‖W⊥j,C − W̃⊥j,C‖22 +

µ

2

∑
k∈C∪Sj

βk‖w⊥k ‖22
}

(20)

Let us focus on the perpendicular component first. Simple calculus yields the optimal value w⊥k =
1

1+µβk/2
w̃⊥k for k ∈ Sj ∪ C.

Moving onto the parallel component, let the span of {xi : i ∈ Sj} have an orthonormal basis11

Vj = (vj1, ..., vjn) ∈ RD×n with xi = Vjbi for some bi ∈ Rn. With this basis we can write
w
‖
k = w̃

‖
k + Vjak for ak ∈ Rn which reduces the parallel component optimization problem to12

min
Aj,C

{∑
i∈Sj

(1 + P (zijC(Aj,C)))2 +
∑

k∈Sj∪C

(1 +
µβk

2
)‖ak‖22 + µβkw̃

>
k Vjak

}
, (21)

where Aj,C = {ak : k ∈ Sj ∪ C} ∈ R(n+m)×n and

zijC(Aj,C) = ηp−1
j exp(ηp−1

j )

(
exp(−ũi) +

∑
k∈Sj−{i}

ex
>
i (w̃k−w̃yi

)−ũieb
>
i (ak−ayi )

+
K − n
m

∑
k∈C

ex
>
i (w̃k−w̃yi

)−ũieb
>
i (ak−ayi )

)
.

11We have assumed here that dim(span({xi : i ∈ Sj})) = n, which will be most often the case. If the
dimension of the span is lower than n then let Vj be of dimension D × dim(span({xi : i ∈ Sj})).

12Note that we have used w̃k instead of w̃‖k in writing the parallel component optimization problem. This
does not make a difference as w̃k always appears as an inner product with a vector in the span of {xi : i ∈ Sj}.
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The eb
>
i (ak−ayi ) factors come from

x>i wk = x>i (w̃
‖
k + a>k Vj)

= x>i w̃k + (Vjbi)
>Vjak

= x>i w̃k + b>i V
>
j Vjak

= x>i w̃k + b>i ak,

since Vj is an orthonormal basis.

F.3.3 OPTIMIZING THE IMPLICIT SGD UPDATE EQUATION

To optimize (21) we need to be able to take the derivative:

∇a`

∑
i∈Sj

(1 + P (zijC(Aj,C)))2 +
∑

k∈Sj∪C

(1 +
µβk

2
)‖ak‖22 + µβkw̃

>
k Vjak


=
∑
i∈Sj

2(1 + P (zijC(Aj,C)))∂zijC(Aj,C)P (zijC(Aj,C))∇a`zijC(Aj,C)

+ (2 + µβ`)a` + µβ`w̃
>
` Vj

=
∑
i∈Sj

2(1 + P (zijC(Aj,C)))
P (zijC(Aj,C))

zijC(Aj,C)(1 + P (zijC(Aj,C)))
∇a`zijC(Aj,C)

+ (2 + µβ`)a` + µβ`w̃
>
` Vj

=
∑
i∈Sj

2
P (zijC(Aj,C))

zijC(Aj,C)
∇a`zijC(Aj,C) + (2 + µβ`)a` + µβ`w̃

>
` Vj

=
∑
i∈Sj

2e−P (zijC(Aj,C))∇a`zijC(Aj,C) + (2 + µβ`)a` + µβ`w̃
>
` Vj

where we used that ∂zP (z) = P (z)
z(1+P (z)) and e−P (z) = P (z)/z. To complete the calculation of the

derivate we need,

∇a`zijC(Aj,C) = ∇a`ηp
−1
j exp(ηp−1

j )

(
exp(−ũi) +

∑
k∈Sj−{i}

ex
>
i (w̃`−w̃yi

)−ũieb
>
i (a`−ayi )

+
K − n
m

∑
k∈C

ex
>
i (w̃`−w̃yi

)−ũieb
>
i (a`−ayi )

)
= ηp−1

j exp(ηp−1
j )bi

·
(
I[` ∈ Sj − {i}]ex

>
i (w̃`−w̃yi

)−ũieb
>
i (a`−ayi )

+ I[` ∈ C]
K − n
m

ex
>
i (w̃`−w̃yi

)−ũieb
>
i (a`−ayi )

− I[` = yi]

( ∑
k∈Sj−{i}

ex
>
i (w̃`−w̃yi

)−ũieb
>
i (a`−ayi )

+
K − n
m

∑
k∈C

ex
>
i (w̃`−w̃yi

)−ũieb
>
i (a`−ayi )

))
.

In order to calculate the full derivate with respect to Aj,C we need to calculate b>i ak for all i ∈ Sj
and k ∈ Sj ∪ C. This is a total of n(n + m) inner products of n-dimensional vectors, costing
O(n2(n + m)). To find the optimum of (21) we can use any optimization procedure that only uses
gradients. Since (21) is strongly convex, standard first order methods can solve to ε accuracy in
O(log(ε−1)) iterations (Boyd & Vandenberghe, 2004, Sec. 9.3). Thus once we can calculate all of
the terms in (21), we can solve it to ε accuracy in runtime O(n2(n+m) log(ε−1)).
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Once we have solved for Aj,C , we can reconstruct the optimal solution for the parallel component
of wk as w‖k = w̃

‖
k + Vjak. Recall that the solution to the perpendicular component is w⊥k =

1
1+µβk/2

w̃⊥k . Thus our optimal solution is wk = w̃
‖
k + Vjak + 1

1+µβk/2
w̃⊥k .

If the features xi are sparse, then we’d prefer to do a sparse update to w, saving computation time.
We can achieve this by letting

wk = γk · rk

where γk is a scalar and rk a vector. Updating wk = w̃
‖
k + Vjak + 1

1+µβk/2
w̃⊥k is equivalent to

γk = γ̃k ·
1

1 + µβk/2

rk = r̃k + µβk/2 · r̃‖k + γ̃−1
k (1 + µβk/2) · Vjak.

Since we only update rk along the span of {xi : i ∈ Sj}, its update is sparse.

F.3.4 RUNTIME

There are two major tasks in calculating the terms in (21). The first is to calculate x>i w̃k for i ∈ Sj
and k ∈ Sj ∪ C. There are a total of n(n + m) inner products of D-dimensional vectors, costing
O(n(n + m)D). The other task is to find the orthonormal basis Vj of {xi : i ∈ Sj}, which can
be achieved using the Gram-Schmidt process in O(n2D). We’ll assume that {Vj : j = 1, ..., J} is
computed only once as a pre-processing step when defining the mini-batches. It is exactly because
calculating {Vj : j = 1, ..., J} is expensive that we have fixed mini-batches that do not change
during the optimization routine.

Adding the cost of calculating the x>i w̃k inner products to the costing of optimizing (21) leads to the
claim that solve the Implicit SGD update formula to ε accuracy in runtime O(n(n+m)D+n2(n+
m) log(ε−1)) = O(n(n+m)(D + n log(ε−1))).

F.3.5 INITIALIZING THE IMPLICIT SGD OPTIMIZER

As was the case in Section F.1, it is important to initialize the optimization procedure at a point where
the gradient is relatively small and can be computed without numerical issues. These numerical
issues arise when an exponent x>i (w̃k − w̃yi) − ũi + b>i (ak − ayi) � 0. To ensure that this does
not occur for our initial point, we can solve the following linear problem,13

R = min
Aj,C

∑
k∈C∪Sj

‖ak‖1

s.t. x>i (w̃k − w̃yi)− ũi + b>i (ak − ayi) ≤ 0 ∀i ∈ Sj , k ∈ C ∪ Sj (22)

Note that if k = yi then the constraint 0 ≥ x>i (w̃k−w̃yi)−ũi+b>i (ak−ayi) = −ũi is automatically
fulfilled since ũi ≥ 0. Also observed that setting ak = −V >j w̃k satisfies all of the constraints, and
so

R ≤
∑

k∈C∪Sj

‖V >j w̃k‖1 ≤ (n+m) max
k∈C∪Sj

‖V >j w̃k‖1.

We can use the solution to (22) to gives us an upper bound on (21). Consider the optimal value
A

(R)
j,C of the linear program in (22) with the value of the minimum being R. Since A(R)

j,C satisfies

the constrain in (22) we have zijC(A
(R)
j,C ) ≤ Kηp−1

j exp(ηp−1
j ). Since P (z) is a monotonically

increasing function that is non-negative for z ≥ 0 we also have (1 + P (zijC(A
(R)
j,C )))2 ≥ (1 +

P (Kηp−1
j exp(ηp−1

j )))2. Turning to the norms, we can use the fact that ‖a‖2 ≤ ‖a‖1 for any

13Instead bounding the constraints on the right with 0, we could also have used any small positive number,
like 5.
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vector a to bound∑
k∈Sj∪C

(1 +
µβk

2
)‖ak‖22 + µβkw̃

>
k Vjak

≤
∑

k∈Sj∪C

(1 +
µβk

2
)‖ak‖21 + µβk‖w̃>k Vj‖1‖ak‖1

≤
(

1 + µ · max
k∈Sj∪C

{βk}/2
) ∑
k∈Sj∪C

‖ak‖21 + µ max
k∈Sj∪C

{βk‖w̃>k Vj‖1}
∑

k∈Sj∪C

‖ak‖1

≤
(

1 + µ · max
k∈Sj∪C

{βk}/2
)
R2 + µ max

k∈Sj∪C
{βk} max

k∈Sj∪C
{‖w̃>k Vj‖1}R

≤
(

1 + µ · max
k∈Sj∪C

{βk}/2
)(

(n+m) max
k∈C∪Sj

‖V >j w̃k‖1
)2

+ µ max
k∈Sj∪C

{βk} max
k∈Sj∪C

{‖w̃>k Vj‖1}
(

(n+m) max
k∈C∪Sj

‖V >j w̃k‖1
)

≤ (1 + µ · max
k∈Sj∪C

{βk})(n+m)2 max
k∈C∪Sj

‖V >j w̃k‖21

≤ (1 + µ · max
k∈Sj∪C

{βk})(n+m)2 max
k∈C∪Sj

‖w̃k‖21.

Putting the bounds together we have that the optimal value of (21) is upper bounded by its value at
the solution to (22), which in turn is upper bounded by

n(1 + P (Kηp−1
j exp(ηp−1

j )))2 + (1 + µ · max
k∈Sj∪C

{βk})(n+m)2 max
k∈C∪Sj

‖w̃k‖21.

This bound is guarantees that our initial iterate will be numerically stable.

G LEARNING RATE PREDICTION AND LOSS

Here we present the results of using different learning rates for each algorithm applied to the Eurlex
dataset. In addition to the Implicit SGD, NCE, IS, OVE and U-max algorithms, we also provide
results for NCE with n = 1,m = 1, denoted as NCE (1,1) . NCE and NCE (1,1) have near identical
performance.
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Figure 3: Log-loss on Eurlex different learning rates.
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