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ABSTRACT

There has been an increasing use of neural networks for music information re-
trieval tasks. In this paper, we empirically investigate different ways of improv-
ing the performance of convolutional neural networks (CNNs) on spectral audio
features. More specifically, we explore three aspects of CNN design: depth of the
network, the use of residual blocks along with the use of grouped convolution, and
global aggregation over time. The application context is singer classification and
singing performance embedding and we believe the conclusions extend to other
types of music analysis using convolutional neural networks. The results show
that global time aggregation helps to improve the performance of CNNs the most.
Another contribution of this paper is the release of a singing recording dataset that
can be used for training and evaluation.

1 INTRODUCTION

Deploying deep neural networks to solve music information retrieval problems has benefited from
advancements in other areas such as computer vision and natural language processing. In this paper,
experiments are designed to investigate whether a few of the recent signature advancements in the
deep learning community can improve the learning capability of deep neural networks when applied
on time-frequency representations. Because time-frequency representations are frequently treated
as 2-D images similarly to image input for computer vision models, convolution layers are popular
choices as the first processing layers for time-frequency representations in audio and music analysis
applications. One of the recent convolutional layer variants is the residual neural network with a
bottleneck design (He et al.| 2016, ResNet. Another variant built upon ResNet is to use grouped
convolution inside the bottleneck as a generalization of the Inception Net (Krizhevsky et al., 2012;
Xie et al., |2016), ResNeXt. These two variants have enabled more deepening of the convolutional
layers of deep neural networks. Most existing music information retrieval research using convolu-
tional neural networks (CNNSs), utilizes vanilla convolutional layers with no more than 5 layers. In
this paper, the two convolution layer variants mentioned and a deeper architecture with more than 5
convolution layers is proposed and shown to be effective on audio time-frequency representations.

Conceptually, convolution layers take care of learning local patterns (neighboring pixels in images
or time frame/frequency bins in time-frequency representations) presented in the input matrices.
After learning feature maps from the convolution layers, one of the reoccurring issues, when the
input is a time-frequency representation, is how to model or capture temporal relations. Recurrent
neural networks has been used to solve this problem (Eyben et al.l [2010; Boulanger-Lewandowski
et al., |2013; |Chan et al.| 2015} |Choi et all [2017). Recent developments from natural language
processing in attention mechanisms(Bahdanau et al., 2014} |Chan et al., 2015; |Raffel & Ellis, [2015j
2016)) provide a different approach to model temporal dependencies and relations. In this paper, the
attention mechanism is viewed as a special case of a global aggregation operation along the time-
axis that has learnable parameters. Typical aggregation operations such as average or max have no
learnable parameters. The effects of global aggregation along the time axis using either average,
max or the attention mechanism is investigated experimentally.

Two specific applications are investigated in this paper: 1) singer classification of monophonic
recordings, and 2) singing performance embedding. The goal of singer classification is to predict
the singer‘s identity given an audio recording as input. A finite set of possible singers is considered
so this is a classification task. In singer performance embedding the goal is to create an embedding
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space in which singers with similar styles can be projected to be closer to each other compared to
singers with different styles. Ideally, it should be possible to identify “singing style” or “singing
characteristics” by examining (and listening to) the clusters formed from the projections of audio
recordings onto the embedding space. Many tasks in music and audio analysis can be formulated in
a similar way, in which similarity plays an essential role, therefore we believe that the conclusions
of this paper generalize to other audio and music tasks.

1.1 MOTIVATION

The main challenge and interesting point about this application context is how to isolate the “singer
effect” from the “song effect”. Classic hand-crafted audio features capture general aspects of sim-
ilarity. When the same song is performed by different singers audio-based similarity tends to be
higher than when different songs are performed - i.e the “song effect” (Mesaros et al.l 2007). In or-
der to effectively model singing we need to learn a representation that emphasizes singer similarity
while at the same time reduces the effect of song similarity.

As an analogy, consider the computer vision problem of face identification. When learning represen-
tations for this task we want the information about the identity of the face to be minimally affected
by the effect of the environment and pose. The interfering “song effect ““ is even more dominant in
the singing voice case than that of the environment/pose effect in face recognition. Extending this
analogy with computer vision, singing performance embedding is analogous to the use of learning
an embedded space for face verification (Chopra et al., [2005; |Schroff et al., 2015)). In this approach,
an embedded space of faces is learned with the goal of having pictures of the same person close to
each other, and having pictures of different persons away from each other in the learned embedding
space. This is accomplished by utilizing a siamese neural network instead of a classifier (Chopra
et al.| 2005; Hadsell et al., [2006; Raffel & Ellis, 2016)). The large amount of identities make the use
of a classifier impractical.

By learning an embedding space for singing voice audio recordings that places recordings of the
same identity closer to each other, and pushes the ones with different identities away from each other,
ideally “singing style” or “singing characteristics” can be identified by examining (and listening
to) the clusters formed from the embeddings of audio recordings in the learned embedding space.
For both the singer identity classification and the singing performance embedding, we employ an
architecture that uses CNNs to extract features followed by a global aggregation layer after which
fully connected dense layers are used.

The difference between the architectures used for these two tasks is that, for singer identity classi-
fication, the output layer is the standard softmax layer that outputs classification probabilities for
each singer included in the dataset, but for the singing performance embedding, the output layer is a
fully connected linear layer that will embed each input sample into a fixed length vector after which
a copy of the network is used to construct a siamese architecture to learn the embedding space.
Practically, having a model that embeds singing recordings into short fixed length vectors enables
the possibility of fastening the similarity comparison of two long spectrogram sequences (differ in
lengths) by calculating the Euclidean distance between their fixed length embedding vectors (Raffel
& Ellis| 2016). This allows a large database of singing recordings to be queried by input query
singing recordings more efficiently. In order to evaluate the singing performance embedding model
in an unbiased way (not biasing towards the collection of songs sang by a singer), a new set of “bal-
anced” singing recordings are gathered and released. The newly released dataset is an addition to
the existing DAMP (Smith} 2013) data set of monophonic vocal music performances.

The paper is structured as follows. In section[2] the details of the neural network constructing blocks
used in the experiments are described. The dataset used and the experiment details are disclosed in
section 3l Discussions and conclusions are in Sec[l

2 NEURAL NETWORKS DESIGN

The neural network architectures used in the experiments follow a general design pattern depicted in
Figure[I] The general design pattern is to feed the input time-frequency features as 2-D images into
convolutional layers/blocks, then feed the extracted feature maps to a global time-wise aggregation



Under review as a conference paper at ICLR 2018

layer. The output from the global time-wise aggregation layer is fed into dense layers, followed by
the output layer. The details of each construction block are described below.

2.1 CONVOLUTION VARIANTS

The basic convolution layer being used is the vanilla convolution layer that has shared weights and
tied biases across channels without any modification. The other variant being used in our exper-
iments is the residual network design with the bottleneck block introduced in ResNet (He et al.,
2016). This variant is extended by using the grouped convolutional block, introduced in ResNeXt
(Xie et al., [2016)), on top of the ResNet. Depictions of the vanilla convolution building block, the
ResNet, and ResNeXt are shown in Figure Let the outlets in Figure be 1, inlets be x, and f, g,
h be convolution operations. The vanilla convolutional block (a) in Figure [2f would be y = g(f(z)),
while the ResNet bottleneck block (b) is y = x + f(g(h(x))) and the ResNeXt bottleneck block
is y = x + I'(x) with I'(-) being the grouped convolution consisting of series of sliced f(g(h(-)))
operations over the channel axis of the input. Under the ResNeXt configuration, the ResNet config-
uration is a special case where the cardinality parameter equals 1 (Xie et al.,|2016)). A max pooling
layer with pool size (2, 2), and stride of (2, 2) is placed between convolutional blocks in the follow-
ing way: The first convolutional layer is followed immediately by a max pooling layer, while for all
the remaining layers the max pooling layers are inserted between every two consecutive convolu-
tional layers/blocks. A distinction between the terms convolution layer and block needs to be made
here. A convolutional layer refers to a single vanilla convolution layer, while a convolutional block
refers to any of the three architecture patterns show in Figure 2| In Table|l] in the column for the
number of CNN filters, each number represents the number of output channels for each convolu-
tional layer or block, with normal text for layer and bold text for block. Batch normalizations are
applied after each non-linearity activation throughout the convolutional layer/blocks.

Convolutional Global Time-Wise Output

Input o Layers Aggregation Layer Dense Layers > Layer

Figure 1: An overview of the neural network architecture used in this paper. Before feeding the
output of the convolutional layers to the global time-wise aggregation, the 3 — D feature map having
the shape (# of channels, # of time frames, # of frequency bins) as their dimensions will be reshaped
as 2-D matrices having the shape (# of time frames, # of channels x # of frequency bins)

2.2 GLOBAL AGGREGATION

Originally, the attention mechanism was introduced for sequence-to-sequence learning (Bahdanau
et al.| 2014)) in an RNN architecture, that allows the prediction at each time-step to access informa-
tion from every step in the input hidden sequence in a weighted way. Since the experiments done
in this paper do not need sequence-to-sequence prediction, the feed-forward version of attention
proposed in (Raffel & Ellis, [2015; |2016) is used instead of the original one. The feed-forward at-
tention is formulated as follows: Given the input matrix X € RV *? representing N frames of D
dimensional feature vectors, a weight vector o € R over the time-steps is calculated by

o = softmax(f(Xw + b)) (1)
where N
e' m
softmax(x)y, = —— ()
) 25:1 ern

and f is a non-linear function (tanh for the experiments done in this paper), and w € R” and
b € R are the learnable parameters, which can be learned by back-propagation. The output X of the
feed-forward attention layer is then calculated via

N
X = Z onXn 3)
n=1
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Figure 2: (a) is vanilla 2-layer CNN block, (b) is a ResNet 3-layer bottleneck block and can be seen
as a ResNeXt block with cardinality of 1, and (c) is a 3-layer ResNeXt block with cardinality of 4.
All three blocks in this example have similar time complexity. The numbers in boxes represent (# of
input channels, kernel size, # of output channels.)

and where X can be considered a weighted average of X with weights o, determined by the learn-
able parameters w and b. This attention operation can also be viewed as an aggregation operation
over the time-axis similar to max or average. The idea of aggregation over a specific axis could
then be generalized by having the feed-forward attention, max and average all in the same fam-
ily, except that the later two have no learnable parameters. This family of operations is different
from the standard max/average pooling in convolution layers, in that the aggregation is global to the
scope of the the input sample i.e the aggregation will reduce the dimension of the aggregation axis
to 1. A specific realization of the network architecture including both convolutional and the global
aggregation parts can be found in Appendix

3 EXPERIMENTS

The two tasks explored in this paper are singer identity classification and singing performance em-
bedding. In terms of experimentation with different hyper parameters and network architectures,
the singer classification problem provides clear evaluation criteria in terms of model performance.
That way different hyper parameters and architectural choices can be compared to each other. On
the other hand, the embedding task allows a more exploratory way to understand the input in the
sense that it is the spatial relationships between the embedded samples that are interesting to us. For
both tasks, numerical evaluation metrics, as well as plots of the embedded samples from the singing
performance embedding are provided in order for readers to examine the results both quantitatively
and qualitatively.

3.1 DATASETS

The dataset being used for the singer identity classification is the DAMP dataselﬂ The DAMP
dataset has a total of 34620 solo singing recordings by 3462 singers with each singer having 10
recordings. The collections of songs sang by each singer are different, and some singers sing the
same song multiples times. Therefore the DAMP dataset is “unbalanced”, and making it difficult
for the learning algorithm not to be biased to the singer-specific collection of songs when learning
to predict the singer identity. Therefore an additional dataset with each singer singing the same
collection of songs available for training and evaluation is collected and released. The set of added
collections of solo singing recordings is named the DAMP-balanced dataset. DAMP-balanced has a
total of 24874 singing recordings sang by 5429 singers. The song collection of the DAMP-balanced

'https://ccrma.stanford.edu/damp/
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has 14 songs. The structure of the DAMP-balanced is that the last 4 songs are designed to be the
test set, and the first 10 songs could be partitioned into any 6/4 train/validation split (permutation)
that the singers in train and validation set sang the same 6/4 songs collections according to the 6/4
split (the number of total recordings for train and validation set are different from split to split, since
there are different number of singers that all sang the same 6 /4 split for different split). The DAMP-
balanced dataset is suitable for the singing performance embedding task while the original DAMP
dataset can be used to train singer identity classification algorithms. The song list and detailed
descriptions of the DAMP-balanced is provided in Appendix

3.2 DATA PREPARATION

The input to the neural networks are time-frequency representations extracted from raw audio sig-
nals. These time-frequency representations are obtained by applying the short-time Fourier trans-
form that extracts frequency information for each short time window analyzed. As a result, most
time-frequency representations take the form of 2-D matrices with one axis representing time while
the other axis represents frequencies. The entries [, ] of the matrix represent the intensity of a
particular frequency ¢ corresponding to a particular time frame j. In this paper, the Mel-scaled
magnitude spectrogram (Mel-spectrogram)(Hinton et al. |2012)) is used as the input feature to the
neural network. Mel-spectrogram are used as input to neural network tasks in (Chan et al., 2015}
Grill & Schliiter} |2015}; |Choi et al.l [2017)). The other common choice of audio time-frequency in-
put, the constant-Q transformed spectrogram (CQT), which is used extensively in music information
retrieval tasks (Su et al., [2014) due to its capability of preserving the constant octave relationships
between frequency bins (log-scaled frequency bins). Since all neural network configurations using
CQT perform worse than their Mel-spectrogram versions, only a few representative results of using
CQT are shown in Table[I] The reason why CQT works worse is that although the CQT preserves
a linear relationships of the intervals of different pitches, the linear relationships do not apply to the
distances between different harmonics of one pitch. Since the audio recording being analyzed here
only has one single singing voice at each time frame, the constant octave relationship does not help
the neural networks learning the time-frequency patterns for singing voices.

The audio recordings are all re-sampled to have 22050Hz sampling rate, then the Mel-scaled magni-
tude spectrograms are obtained using a Fast Fourier Transform (FFT) with a length of 2048 samples,
hop size of 512 samples, a Hanning window and 96 Mel-scaled frequency bins. The extracted Mel-
spectrogram is squared to obtain the power spectrogram which is then transformed into decibels
(dB). The values below —60dB are clipped to be zero and an offset is added to the whole power
spectrogram in order to have values between 0 and 60.

For both tasks, each singing performance audio recording is transformed to a Mel-spectrogram as
described above. The Mel-spectrogram of each recording is then chopped into overlapping matrices
each of which has a duration of 6 seconds (256 time steps) and 20% hop size.

3.3 NEURAL NETWORK PARAMETERS

For both tasks the gradient decent is optimized by ADAM (Kingma & Bal |2014) with a learning
rate 0.0001 and a batch size of 32. A drop out of 10% is applied at the last fully connected dense
layers. Lo weight regularizations with a weight 1e — 6 are applied on all the learnable weights in
the neural network. The above hyper parameters are chosen by the Bayesian optimization package
SPEARMINT (Snoek et al., |2012). For both tasks, an early stopping test on the validation set is
applied every 50 epochs. For the singer identity classification, the patience is 300 epochs with at
least 99.5% improvement, and the patience for the singing performance embedding task is 1000. The
non-linear activation function used in all convolution layers and fully connected layers is the rectified
linear unit activation function. The convolutional filter sizes are (10, 10) for the first convolutional
layer and (5, 5) for all subsequent convolutional layers. For the fully connected dense layer, 3 layers
with each having 1024 hidden units are used before the last output layer.

3.4 SINGER CLASSIFICATION

A subset of 46 singers (23 males and 23 females) corresponding to 460 solo singing recordings from
the DAMP dataset is selected for the singer classification problem. A 10-fold cross validation is
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Table 1: Singer Identity Classification: In the column for the number of CNN filters, each number
represents the number of output channels for each convolutional layer or block, with normal text
for layer and bold text for block. The actual number of convolution layers for the shallower and
deeper architectures for vanilla CNNs are 3 and 13 respectively, and the corresponding numbers for
ResNeXt configurations are 4 and 19. The numbers in parentheses are standard deviations for the

accuracies.

Feature # of CNN filters Globa} # of CNN # of Train Test

aggregation  params total params accuracy accuracy

baseline 0.516(0.006) | 0.273(0.04)
CNN 64,128 none 621k 200000k 0.791(0.259) | 0.627(0.204)
CNN 64,128 max 621k 5867k 0.930(0.033) | 0.742(0.022)
CNN(CQT) 64,128 max 621k 5867k 0.886(0.041) | 0.637(0.026)
CNN 64,128 average 621k 5867k 0.927(0.017) | 0.729(0.013)
CNN 64,128 attention 621k 5867k 0.928(0.023) | 0.748(0.021)
CNN 16, 32, 32, 32, 64, 64, 64 none 708k 28000k 0.853(0.038) | 0.653(0.037)
CNN 16, 32, 32, 32, 64, 64, 64 max 708k 3560k 0.898(0.025) | 0.694(0.024)
CNN 16, 32, 32, 32, 64, 64, 64 average 708k 3560k 0.906(0.032) | 0.708(0.036)
CNN 16, 32, 32, 32, 64, 64, 64 attention 708k 3560k 0.894(0.035) | 0.699(0.027)
ResNeXt 64,128 none 54k 200000k 0.821(0.264) | 0.63(0.203)

ResNeXt 64,128 max 54k 5300k 0.883(0.025) 0.7(0.021)
ResNeXt 64,128 average 54k 5300k 0.931(0.024) | 0.738(0.02)
ResNeXt 64,128 attention 54k 5300k 0.931(0.01) | 0.741(0.019)
ResNeXt(CQT) 64, 128 attention 54k 5300k 0.849(0.039) | 0.593(0.031)
ResNeXt 32,64, 64, 64, 128, 128, 128 none 172k 52600k 0.883(0.041) | 0.688(0.028)
ResNeXt 32,64, 64, 64, 128, 128, 128 max 172k 3844k 0.91(0.033) | 0.705(0.018)
ResNeXt 32,64, 64, 64, 128, 128, 128 average 172k 3844k 0.928(0.022) | 0.731(0.027)
ResNeXt 32,64, 64, 64, 128, 128, 128 attention 172k 3844k 0.928(0.018) | 0.728(0.024)

used to obtain the test accuracies for different models with each fold using 1 recording from each
singer as the test set, while the training is performed on the rest 9 recordings with 1 of them selected
randomly as the validation set for early stopping. For the classification task we explore different
combinations of neural network configurations in terms of using either the vanilla CNN or ResNeXt
building blocks. Also different number of layers and different types of aggregation such as max,
average, feed-forward attention or no global aggregation are also investigated. A baseline SVM
classifier is also included by having the mean and standard deviation of chroma, MFCC, spectral
centroid, spectral roll-off, and spectral flux (Casey et al.,|2008) extracted from each ~ 6 second clip
as the input. The experimental results and associated measures of different models are displayed in
Table |1 The number of convolution filters is chosen so that the total number of parameters are on
the same scale between different configurations.

From Table[I] it can be seen that the baseline method achieved 27% accuracy which is above the
random prediction of 2.2% (4—16), while all the neural network models far exceeded the baseline by at
least 35%. For all the neural network models, the use of any global aggregation method improved the
performance by 5% ~ 10%. Among the neural network models, global aggregation with average
or feed-forward attention has slightly better performance than max except for the shallower CNN.

3.5 SINGING PERFORMANCE EMBEDDING

For the singing performance embedding experiment, a subset of 6/4/4 train/validation/test split
from the DAMP-balanced is usecﬂ The total number of recordings and singers for this specific
split are 276/88/224 and 46/22/56 respectively. We would like an embedding space that places
recordings by the same singer closer to each other and pushes recordings by different singers away
from each other, and a siamese neural network architecture (Chopra et al., 2005;|Hadsell et al., 2006;
Raffel & Ellis|, 2016)) is used. The inner twin neural network is constructed following the same

2The split is according to the index order provided in Appendix A.
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Table 2: Singing Performance Embedding

Global # of # of Test

Feature # of CNN filters aggregation CNN params total params loss
CNN 64,128 none 621k 200000k 0.3369
CNN 64,128 max 621k 5884k 0.3207
CNN 64, 128 average 621k 5884k 0.3305
CNN 64,128 attention 621k 5884k 0.3279
CNN 16, 32, 32, 32, 64, 64, 64 none 708k 28000k 0.3753
CNN 16, 32, 32, 32, 64, 64, 64 max 708k 3611k 0.3461
CNN 16, 32, 32, 32, 64, 64, 64 average 708k 3611k 0.3544
CNN 16, 32, 32, 32, 64, 64, 64 attention 708k 3611k 0.3697
ResNeXt 128, 128 none 56k 200000k 0.3351
ResNeXt 128,128 max 56k 5318k 0.3216
ResNeXt 128, 128 average 56k 5318k 0.3207
ResNeXt 128, 128 attention 56k 5318k 0.3315
ResNeXt 32, 64, 64, 64, 128, 128, 128 none 172k 52600k 0.3605
ResNeXt 32, 64, 64, 64, 128, 128, 128 max 172k 3861k 0.3423
ResNeXt 32, 64, 64, 64, 128, 128, 128 average 172k 3861k 0.3378
ResNeXt 32, 64, 64, 64, 128, 128, 128 attention 172k 3862k 0.3273

principle described earlier in section 2] The embedding dimension for the linear fully connected
output layer is chosen to be 16 by SPEARMINT. Since a siamese network learns the embedding by
shortening or lengthening the distance between pairs of embedded vectors based on their label, pairs
of samples from the dataset are arranged and labeled. Denote a pair of samples by 1, zo € R, and
y a binary label that equals 1 when x1, x5 have the same identity and equals 0 when their identities
are different. The distance metric optimized over the siamese network in this experiment is the
squared euclidean distance

D(x1,22) = |G (21) - G(z2)|3 )

then the contrastive loss (Chopra et al., [2005; [Hadsell et al., 2006} Raffel & Ellis, [2016) is used as
the optimization goal and is defined as

L(y,x1,x2) = %yD + %(1 —y)maz{0,m — D} 3)
where G is the non-linear function that represents the neural network and m is the target margin
between embedded vectors having different identities, and m = 1 throughout the experiments. To
train the siamese networks, pairs of chopped samples from the same singer or different ones are
randomly sampled in a 1 : 1 ratio and fed into the siamese networks. The contrastive losses on the
test set for different network configurations are shown in Table[2] The cardinalities for the ResNeXt
configurations in Table 2] are 4.

The training and validation error over epochs are plotted in Figure|3| The observation from the train-
ing/validation plots are that, 1) feed-forward attention and average aggregation tend to overfit the
data more than max and no aggregation by looking at training errors, 2) feed-forward attention and
average aggregations reach early stopping earlier than max and no aggregation by looking at the
best validation epoch, 3) Shallow architectures work slightly better than deeper ones if their number
of parameters are on the same scale. Results showing qualitative characteristic of the embedding
are shown in Figure [d In Figure [] the embeddings of 40 performances sang by 10 singers with
each singer sang the same 4 songs from the test split are plotted. The embedding of a performance
is obtained by taking the mean of the embeddings from all the chopped input samples of that per-
formance. A comparison is made between the embeddings from the shallow ResNeXt architecture
with/without feed-forward attention and the handcrafted features used in the baseline case for singer
classification. Both the embeddings and the extracted handcrafted audio features are projected down
to a 2-D space by t-SNE (Maaten & Hintonl, [2008)). It is obvious that the baseline handcrafted au-
dio feature captured the “song” effect while the learned embeddings from our singing performance
embedding experiment were able to group together the performances by the same singers while in-
variant to the “song” effect. The t-SNE projections of performed 6-second clips before summarized
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Figure 3: Train/validation losses over epochs on selected subsets of experimented networks config-
urations. The top shows results from two neural networks configurations with different aggregation
methods used. The bottom row depicts two sets of results that have either feed-forward attention or
average aggregation with varying CNN blocks choices and depths.

into songs are shown in Figure [/|in Appendix [B| To have another quantitative assessment of the
embeddings, leave-one-out k-nearest neighbor classifications using the embedded 16-dimensional
performance vectors are used as training points. For each & and each network configuration, every
sample is used as test sample once and the classification accuracies are obtained by averaging over
the outcomes of every test sample for all £ and network configurations. For the k-nearest neighbor
singer classification, all the 224 performances from 56 singers are used. The classification results
with multiple ks among the shallow ResNeXt configurations with/without feed-forward attention
and the handcrafted features are shown in Figure 5| In addition, k-nearest neighbor classifications
on performed songs are also conducted to demonstrate the “song effect”. From the k-nearest neigh-
bor classification results on singers and songs, it is evidence that the “song” effect exists and singing
performance embedding learning is able to dilute the “song” effect while extracting features that are
more relevant in terms of characterizing singers. Also the feed-forward global aggregation helped
the enhancement of “singer style” while reducing “song effect” slightly by looking at the k-nearest
neighbor classification accuracies. It is worth mentioning that the k-nearest neighbor classification
on performed songs is only possible due to the “balanced” nature of the dataset.

4 DISCUSSION AND CONCLUSIONS

In this paper, empirical investigations into how recent developments in the deep learning com-
munity could help solving singer identification and embedding problems were conducted. From
the experiment results, the obvious take away is that global aggregation over time improves per-
formance by a considerable margin in general. The performances among the three aggregation
strategies; max, average and feed-forward attention, are very close. The advantage of using feed-
forward attention from observing the experiment results is that it accelerates the learning process
compared to other non-learnable global aggregations. One way to explain such observation is
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Figure 4: t-SNE projections of the embedded performances compared to baseline handcrafted audio
features. The top row is colored by singer identities while the bottom is colored by song identities.
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Figure 5: Bar plots of classification accuracies using k-nearest neighbor classification, on the em-
beddings learned from the singing performance embedding experiment. ResNeXt configurations
with/without feed-forward attention and the handcrafted features (baseline) are and four & values
are experimented. Left bar plot is for singer classification, while the right plot is for performed song
classification.

that the feed-forward attention layer learns a “frequency template” for each convolutional chan-
nel fed into it. These “frequency templates” are encoded in w and enable each convolutional
channel fed into it to focus on different parts along the frequency axis (Since w € RP with
D = num of channels x num of frequency bins). In this paper we also have shown that training
a deep neural networks having more than 15 convolutional layers on time-frequency input is def-
initely feasible with the help of global time aggregation. To the authors‘ knowledge, there is no
previous music information retrieval research utilizing neural networks having more than 10 convo-
lutional layers. A dataset consisting of over 20000 single singing voice recordings is also released
and described in this paper. The released dataset, DAMP-balanced, could be partitioned in a way
that for singer classification, the performed songs for each singer are the same.

For future works, replacing max-pooling with striding in convolutional layers which recent works
in CNN suggest will be experimented. To improve global-aggregation, taking temporal order into
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consideration during the global-aggregation operation as suggested in (Vaswani et al.l 2017) will
also be experimented. Also the proposed neural network configurations will be experimented in
other music information retrieval tasks such as music structure segmentation.
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A THE DAMP-BALANCED DATASET SONG LIST

The DAMP-balanced dataset is a separate dataset from the original DAMP, but comes with the same
format of metadata as the original DAMP dataset does. The audio recordings and metadata of the
DAMP-balanced dataset are collected by querying the internal database of the Sing! Karaoke app
hosted by Smule, Inc., which is the same as the original DAMP dataset.

The difference between the DAMP and the DAMP-balanced datasets lies at how the querying is done
to collect the audio recordings and the metadata. For the original DAMP, 10 singing performances
from 3462 Sing! Karaoke app users are randomly selected. There are no specific constraints on
the collections of songs performed by each user. As a result, each user sang different collections
of songs from each other and one song could be sang multiple times by one user. On the contrary,
the queries to retrieve audio recordings and metadata for the DAMP-balanced dataset specifically
ask for a group of users that all sang one specific collections of songs at least once, with only one
performance returned for each song and each user, per query. 14 popular songs (defined as the
more times being sang the more popular) over the past year and are listed in Table [3| For the first
10 songs, 210 x 2 queries were created to retrieve audio recordings and metadata that cover all
different combinations of splitting the 10 songs into 6/4 song collections. Each query returns a set
of users, along with their singing performances and metadata, such that all users in that returned set
has only one performance of each of the songs in the specific 6 or 4 song collection. For example,
the train/validation sets used in this paper was the first 6 songs in Table [3| as training set and the
following 4 songs as validation set. This specific split has 276 performances for training and 88
performances for validation, and that lead to 46 and 22 singers respectively. Different 6/4 split
results in different number of singers in each set thus making the total number performances of
different songs differ from each other. For example, if instead the first 4 songs and the following 6
songs are taken as the 6/4 split of the first 10 songs, the first 4-song collection will have 459 users
and 1836 performances while the following 6-song collection having 3 users and 18 performances.
The “balanced” structure of the DAMP-balanced allows possible train/validation rotation within the
first 10 songs while leaving the last 4 songs as test set, or provides more possible “balanced” test
sets for models training on other datasets.

B SUPPLEMENT PLOTS
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Table 3: DAMP-balanced song list

Index Song Name Artist # of Performances

1 one call away Charlie Puth 3912
2 say you won'‘t let go James Arthur 3255
3 all of me John Legend 2856
4 closer The Chainsmokers 2873
5 seven years Lukas Graham 2942
6 despacito Luis Fonsi 1287
7 more than words Extreme 586
8 lost boy Ruth B. 1183
9 love yourself Justin Bieber 3019
10 rockabye Clean Bandit 2737
11 part of your world Jodi Benson 56
12 when I was your man Bruno Mars 56
13 chandelier Sia 56
14 cups Anna Kendrick 56
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Figure 6: A detailed specification of one of the network configuration used (ResNeXt shallow for
singer classification). Numbers next to arrows are the dimensions of the feature maps, while the
descriptions in the boxes are operation specifics. Left plot is a flowchart from input to just before
output layer, while the right plot is the detailed specifics for the RexNeXt configuration.
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Figure 7: t-SNE projections of the embedded performance clips compared to baseline handcrafted
audio features. The top row is colored by singer identities while the bottom is colored by song
identities.
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