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ABSTRACT

Combining deep model-free reinforcement learning with on-line planning is a
promising approach to building on the successes of deep RL. On-line planning with
look-ahead trees has proven successful in environments where transition models are
known a priori. However, in complex environments where transition models need
to be learned from data, the deficiencies of learned models have limited their utility
for planning. To address these challenges, we propose TreeQN, a differentiable,
recursive, tree-structured model that serves as a drop-in replacement for any value
function network in deep RL with discrete actions. TreeQN dynamically constructs
a tree by recursively applying a transition model in a learned abstract state space
and then aggregating predicted rewards and state-values using a tree backup to
estimate (Q-values. We also propose ATreeC, an actor-critic variant that augments
TreeQN with a softmax layer to form a stochastic policy network. Both approaches
are trained end-to-end, such that the learned model is optimised for its actual use
in the tree. We show that TreeQN and ATreeC outperform n-step DQN and A2C
on a box-pushing task, as well as n-step DQN and value prediction networks (Oh
et al., 2017) on multiple Atari games. Furthermore, we present ablation studies that
demonstrate the effect of different auxiliary losses on learning transition models.

1 INTRODUCTION

A promising approach to improving model-free deep reinforcement learning (RL) is to combine it
with on-line planning. The model-free value function can be viewed as a rough global estimate which
is then locally refined on the fly for the current state by the on-line planner. Crucially, this does not
require new samples from the environment but only additional computation, which is often available.

One strategy for on-line planning is to use look-ahead tree search (Knuth & Moore, 1975; Browne
et al., 2012). Traditionally, such methods have been limited to domains where perfect environment
simulators are available, such as board or card games (Coulom, 2006; Sturtevant, 2008). However, in
general, models for complex environments with high dimensional observation spaces and complex
dynamics must be learned from agent experience. Unfortunately, to date, it has proven difficult to
learn models for such domains with sufficient fidelity to realise the benefits of look-ahead planning
(Oh et al., 2015; Talvitie, 2017).

A simple approach to learning environment models is to maximise a similarity metric between model
predictions and ground truth in the observation space. This approach has been applied with some
success in cases where model fidelity is less important, e.g., for improving exploration (Chiappa et al.,
2017; Oh et al., 2015). However, this objective causes significant model capacity to be devoted to
predicting irrelevant aspects of the environment dynamics, such as noisy backgrounds, at the expense
of value-critical features that may occupy only a small part of the observation space (Pathak et al.,
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2017). Consequently, current state-of-the-art models still accumulate errors too rapidly to be used for
look-ahead planning in complex environments.

Another strategy is to train a model such that, when it is used to predict a value function, the error
in those predictions is minimised. Doing so can encourage the model to focus on features of the
observations that are relevant for the control task. An example is the predictron (Silver et al., 2017b),
where the model is used to aid policy evaluation without addressing control. Value prediction networks
(VPNs, Oh et al., 2017) take a similar approach but use the model to construct a look-ahead tree only
when constructing bootstrap targets and selecting actions, similarly to TD-search (Silver et al., 2012).
Crucially, the model is not embedded in a planning algorithm during optimisation.

We propose a new tree-structured neural network architecture to address the aforementioned problems.
By formulating the tree look-ahead in a differentiable way and integrating it directly into the Q-
function or policy, we train the entire agent, including its learned transition model, end-to-end. This
ensures that the model is optimised for the correct goal and is suitable for on-line planning during
execution of the policy.

Since the transition model is only weakly grounded in the actual environment, our approach can
alternatively be viewed as a model-free method in which the fully connected layers of DQN are
replaced by a recursive network that applies transition functions with shared parameters at each tree
node expansion.

The resulting architecture, which we call TreeQN, encodes an inductive bias based on the prior
knowledge that the environment is a stationary Markov process, which facilitates faster learning of
better policies. We also present an actor-critic variant, ATreeC, in which the tree is augmented with a
softmax layer and used as a policy network.

We show that TreeQN and ATreeC outperform their DQN-based counterparts in a box-pushing
domain and a suite of Atari games, with deeper trees often outperforming shallower trees, and
TreeQN outperforming VPN (Oh et al., 2017) on most Atari games. We also present ablation
studies investigating various auxiliary losses for grounding the transition model more strongly in
the environment, which could improve performance as well as lead to interpretable internal plans.
While we show that grounding the reward function is valuable, we conclude that how to learn
strongly grounded transition models and generate reliably interpretable plans without compromising
performance remains an open research question.

2 BACKGROUND

We consider an agent learning to act in a Markov Decision Process (MDP), with the goal of max-
imising its expected discounted sum of rewards R; = Zfi o V'r¢, by learning a policy 7(s) that
maps states s € S to actions a € A. The state-action value function (Q-function) is defined as
Q™ (s,a) = E, [Rt|s: = s, a; = a; the optimal Q-function is Q*(s, a) = max, Q" (s, a).

The Bellman optimality equation writes Q* recursively as
Q*(s,a) =TQ*(s,a) =r(s,a) +7 Z P(s'[s,a) max Q*(s',a’),
s’ ¢

where P is the MDP state transition function and r is a reward function, which for simplicity we
assume to be deterministic. ()-learning (Watkins & Dayan, 1992) uses a single-sample approximation
of the contraction operator 7 to iteratively improve an estimate of Q*.

In deep Q-learning (Mnih et al., 2015), @ is represented by a deep neural network with parameters
6, and is improved by regressing Q(s, a) to a target r + ymax, Q(s’,a’;07), where 6~ are the
parameters of a target network periodically copied from 6.

We use a version of n-step (Q-learning (Mnih et al., 2016) with synchronous environment threads. In
particular, starting at a timestep ¢, we roll forward ne,, = 16 threads for n = 5 timesteps each. We
then bootstrap off the final states only and gather all n.,, x n = 80 transitions in a single batch for
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the backward pass, minimising the loss:
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If the episode terminates, we use the remaining episode return as the target, without bootstrapping.

This algorithm’s actor-critic counterpart is A2C, a synchronous variant of A3C (Mnih et al., 2016) in
which a policy 7 and state-value function V (s) are trained using the gradient:

Ab = Z Z Vo, log m(atin—jlSt+n—5)Aj(St4n—j, atan—;s) + BVo, H(m(St4n—;))

envs j=1
2
+aVe, Aj(St4n—js atan—j)”, (2)

where A; is an advantage estimate given by Zizl VR e YV (Seam) — V(St4n—j), H is
the policy entropy, S is a hyperparameter tuning the degree of entropy regularisation, and « is a
hyperparameter controlling the relative learning rates of actor and critic.

These algorithms were chosen for their simplicity and reasonable wallclock speeds, but TreeQN
can also be used in other algorithms, as described in Section 3. Our implementations are based on
OpenAl Baselines (Hesse et al., 2017).

The canonical neural network architecture in deep RL with vi-
sual observations has a series of convolutional layers followed
by two fully connected layers, where the final layer produces
one output for each action-value. We can think of this network St
as first calculating an encoding z; of the state s; which is then
evaluated by the final layer to estimate Q* (s, a) (see Fig. 1).

evaluate

encode

In tree-search on-line planning, a look-ahead tree of possible

future states is constructed by recursively applying an environ- Figure 1: High-level structure of DQN.
ment model. These states are typically evaluated by a heuristic,

a learned value function, or Monte-Carlo rollouts. Backups through the tree aggregate these values
along with the immediate rewards accumulated along each path to estimate the value of taking an
action in the current state. This paper focuses on a simple tree-search with a deterministic transition
function and no value uncertainty estimates, but our approach can be extended to tree-search variants
like UCT (Kocsis & Szepesviri, 2006; Silver et al., 2016) if the components remain differentiable.

3 TREEQN

In this section, we propose TreeQN, a novel end-to-end differentiable tree-structured architecture for
deep reinforcement learning. We first give an overview of the architecture, followed by details of
each model component and the training procedure.

TreeQN uses a recursive tree-structured neural network between the encoded state z; and the predicted
state-action values Q(s¢, a), instead of directly estimating the state-action value from the current
encoded state z; using fully connected layers as in DQN (Mnih et al., 2015). Specifically, TreeQN
uses a recursive model to refine its estimate of QQ(s;, a) via learned transition, reward, and value
functions, and a tree backup (see Fig. 2). Because these learned components are shared throughout
the tree, TreeQN implements an inductive bias, missing from DQN, that reflects the prior knowledge
that the -values are properties of a stationary Markov process. We also encode the inductive bias
that Q-values may be expressed as a sum of scalar rewards and values.

Specifically, TreeQN learns an action-dependent transition function that, given a state representation
)¢, predicts the next state representation z?j’rll , for action a; € A, and the corresponding reward fl“‘t
To make the distinction between internal planning steps and steps taken in the environment explicit,
we write z;|; to denote the encoded state at time ¢ after [ internal transitions, starting with z, for the
encoding of s;. TreeQN applies this transition function recursively to construct a tree containing the
state representations and rewards received for all possible sequences of actions up to some predefined

depth d (“Tree Transitioning” in Fig. 2).
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Figure 2: High-level structure of TreeQN with a tree depth of two and shared transition and evaluation functions
(reward prediction and value mixing omitted for simplicity).

The value of each predicted state V' (z) is estimated with a value function module. Using these values
and the predicted rewards, TreeQN then performs a tree backup, mixing the k-step returns along
each path in the tree using TD(\) (Sutton, 1988; Sutton & Barto, 1998). This corresponds to “Value
Prediction & Backup” in Fig. 2 and can be formalized as

Q' (21, ai) = 72y, ;) + VN (2 41)0) 3)

V(z% l=d
VN (zy,) = i) 1 (s &)
(1—)\)V(zl|t)—|—/\b(Q (zl+1|t,aj)) l<d

where b is a function to recursively perform the backup. For 0 < A < 1, value estimates of the
intermediate states are mixed into the final ()-estimate, which encourages the intermediate nodes of

the tree to correspond to meaningful states, and reduces the impact of outlier values.

When A = 1, and b is the standard hard max function, then Eq. 3 simplifies to a backup through the
tree using the familiar Bellman equation:

YV (zg,) l=d-1
¥ maxg, Q(Zﬁut’aj) l<d-1.

Q(zy)¢, ai) = r(zy, a;) + { &)

We note that even for a tree depth of only one, TreeQN imposes a significant structure on the value
function by decomposing it as a sum of action-conditional reward and next-state value, and using a
shared value function to evaluate each next-state representation.

Crucially, during training we backpropagate all the way from the final ()-estimate, through the value
prediction, tree transitioning, and encoding layers of the tree, i.e., the entire network shown in Fig. 2.
Learning these components jointly ensures that they are useful for planning on-line.

3.1 MODEL COMPONENTS

In this section, we describe each of TreeQN’s components in more detail.

Encoder function. As in DQN, a series of convolutional layers produces an embedding of the
observed state, zo; = encode(s;).
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Transition function. We first apply a single fully connected layer to the current state embedding,
shared by all actions. This generates an intermediate representation (z?ﬂrvl‘ ;) that could carry informa-
tion about action-agnostic changes to the environment. In addition, we use a fully connected layer per
action, which is applied to the intermediate representation to calculate a next-state representation that

carries information about the effect of taking action a;. We use residual connections for these layers:
Z e =z + tanh(W*z; + b™),

a; __ env a; . env
Ziae = Zitat + tanh(W* 2z} ), (6)
where W@ W™ ¢ RFXF ben ¢ RF are learnable parameters. Note that the next-state representa-
tion is calculated for every action a,; independently using the respective transition matrix W but
this transition function is shared for the same action throughout the tree.

A caveat is that the model can still learn to use different parts of the latent state space in different
parts of the tree, which could undermine the intended parameter sharing in the model structure. To
help TreeQN learn useful transition functions that maintain quality and diversity in their latent states,
we introduce a unit-length projection of the state representations by simply dividing a state’s vector
representation by its L2 norm before each application of the transition function, z;), := 2,/ Hz”t H
This prevents the magnitude of the representation from growing or shrinking, which encourages the
behaviour of the transition function to be more consistent throughout the tree.

Reward function. In addition to predicting the next state, we also predict the immediate reward for
every action a; € A in state z;); using

(z;) = WyReLU(W/{'zy, + b]) + bs, 7

where W7 € Rmxk W3 € RIMIX™ and ReLU is the rectified linear unit (Nair & Hinton, 2010),

and the predicted reward for a particular action Tt is the i-th element of the vector t(z;;).
Value function. The value of a state representation z is estimated as

V(z) =w'z+b, (8)
where w € R”.

Backup function. We use the following function that can be recursively applied to calculate the tree
backup:

b(x) = sz softmax(x);. )

Using a hard max for calculating the backup would result in gradient information only being used
to update parameters along the maximal path in the tree. By contrast, the softmax allows us to use
downstream gradient information to update parameters along all paths. Furthermore, it potentially
reduces the impact of outlier value predictions. With a learned temperature for the softmax, this
function could represent the hard max arbitrarily closely. However, we did not find an empirical
difference so we left the temperature at 1.

3.2 GROUNDING THE MODEL COMPONENTS

The TreeQN architecture is fully differentiable, so we can directly use it in the place of a Q)-function
in any deep RL algorithm with discrete actions. Differentiating through the entire tree ensures that
the learned components are useful for planning on-line, as long as that planning is performed in the
same way as during training.

However, it seems plausible that auxiliary objectives based on minimising the error in predicting
rewards or observations could improve the performance by helping to ground the transition and reward
functions to the environment. It could also encourage TreeQN to perform model-based planning in
an interpretable manner. In principle, such objectives could give rise to a spectrum of methods from
model-free to fully model-based. At one extreme, TreeQN without auxiliary objectives can be seen as
a model-free approach that draws inspiration from tree-search planning to encode valuable inductive
biases into the neural network architecture. At the other extreme, perfect, grounded reward and
transition models could in principle be learned. Using them in our architecture would then correspond
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to standard model-based lookahead planning. The sweet spot could be an intermediate level of
grounding that maintains the flexibility of end-to-end model-free learning while benefiting from the
additional supervision of explicit model learning. To investigate this spectrum, we experiment with
two auxiliary objectives.

Reward grounding. We experiment with an L2 loss regressing f;llg"“’l

level [ of the tree corresponding to the selected action sequence {as . .. at4;—1}, to the true observed
rewards. For each of the n timesteps of n-step Q-learning this gives:

n d o 9
L= Laspo +1r D D O (P ™™ = regiiaa) (10)

envs j=1 [=1

, the predicted reward at

where 7, is a hyperparameter weighting the loss, and d = min(d,n — j + 1) restricts the sum to
rewards for which we have already observed the true value.

State grounding. We experiment with a grounding in the latent space, using an L2 loss to regress
the predicted latent state zfltt”“ at level [ of the tree to zg;;, the initial encoding of the true state
corresponding to the actions actually taken:

n d - 9
L= Logep + s Z Z Z (Zl\;17g:‘t+'7+l_l - Z0|t+j+l) : Y

envs j=1 [=1

By employing an additional decoder module, we could use a similar loss to regress decoded observa-
tions to the true observations. In informal experiments, joint training with such a decoder loss did not
yield good performance, as also found by Oh et al. (2017).

In Section 7.1, we present results on the use these objectives, showing that reward grounding gives
better performance, but that our method for state grounding does not.

4 ATREEC

The intuitions guiding the design of TreeQN
are as applicable to policy search as to value-
based RL, in that a policy can use a tree planner
to improve its estimates of the optimal action
probabilities (Gelly & Silver, 2007; Silver et al.,
2017a). As our proposed architecture is trained
end-to-end, it can be easily adapted for use as a

[0}
policy network. s, Té
In particular, we propose ATreeC, an actor-critic o
extension of TreeQN. In this architecture, the Zt
policy network is identical to TreeQN, with an
additional softmax layer that converts the @ esti- Figure 3: High-level structure of ATreeC.

mates into the probabilities of a stochastic policy.

The critic shares the encoder parameters, and predicts a scalar state value with a single fully connected
layer: Ve (s) = w;';z + b.,. We used different parameters for the critic value function and the actor’s
tree-value-function module, but found that sharing these parameters had little effect on performance.
The entire setup, shown in Fig. 3, is trained with A2C as described in Section 2, with the addition of
the same auxiliary losses used for TreeQN. Note that TreeQN could also be used in the critic, but we
leave this possibility to future work.

5 RELATED WORK

There is a long history of work combining model-based and model-free RL. An early example is
Dyna-Q (Sutton, 1990) which trains a model-free algorithm with samples drawn from a learned
model. Similarly, van Seijen et al. (2011) train a sparse model with some environment samples that
can be used to refine a model-free Q)-function. Gu et al. (2016) use local linear models to generate
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additional samples for their model-free algorithm. However, these approaches do not attempt to use
the model on-line to improve value estimates.

In deep RL, value iteration networks (Tamar et al., 2016) use a learned differentiable model to plan
on the fly, but require planning over the full state space, which must also possess a spatial structure
with local dynamics such that convolution operations can execute the planning algorithm.

The predictron (Silver et al., 2017b) instead learns abstract-state transition functions in order to predict
values. However, it is restricted to policy evaluation without control. Value prediction networks
(VPNs, Oh et al., 2017) take a similar approach but are more closely related to our work because
the learned model components are used in a tree for planning. However, in their work this tree is
only used to construct targets and choose actions, and not to compute the value estimates during
training. Such estimates are instead produced from non-branching trajectories following on-policy
action sequences. By contrast, TreeQN is a unified architecture that constructs the tree dynamically at
every timestep and differentiates through it, eliminating any mismatch between the model at training
and test time. Furthermore, we do not use convolutional transition functions, and hence do not
impose spatial structure on the latent state representations. These differences simplify training, allow
our model to be used more flexibly in other training regimes, and explain in part our substantially
improved performance on the Atari benchmark.

Donti et al. (2017) propose differentiating through a stochastic programming optimisation using
a probabilistic model to learn model parameters with respect to their true objective rather than a
maximum likelihood surrogate. However, they do not tackle the full RL setting, and do not use the
model to repeatedly or recursively refine predictions.

Imagination-augmented agents (Weber et al., 2017) learn to improve policies by aggregating rollouts
predicted by a model. However, they rely on pretraining an observation-space model, which we argue
will scale poorly to more complex environments. Further, their aggregation of rollout trajectories
takes the form of a generic RNN rather than a value function and tree backup, so the inductive bias
based on the structure of the MDP is not explicitly present.

A class of value gradient methods (Deisenroth & Rasmussen, 2011; Fairbank & Alonso, 2012; Heess
et al., 2015) also differentiates through models to train a policy. However, this approach does not use
the model during execution to refine the policy, and requires continuous action spaces.

Oh et al. (2015) and Chiappa et al. (2017) propose methods for learning observation-prediction
models in the Atari domain, but use these models only to improve exploration. Variants of scheduled
sampling (Bengio et al., 2015) may be used to improve robustness of these models, but scaling to
complex domains has proven challenging (Talvitie, 2014).

6 EXPERIMENTS

We evaluate TreeQN and ATreeC in a simple box-pushing environment, as well as on the subset of
nine Atari environments that Oh et al. (2017) use to evaluate VPN. The experiments are designed to
determine whether or not TreeQN and ATreeC outperform DQN, A2C, and VPN, and whether they
can scale to complex domains. We also investigate how to best ground the the transition function
with auxiliary losses. Furthermore, we compare against alternative ways to increase the number of
parameters and computations of a standard DQN architecture, and study the impact of tree depth.
Full details of the experimental setup, as well as architecture and training hyperparameters, are given
in the appendix.

Grounding. We perform a hyperparameter search over the coefficients 7, and 7, of the reward
and state grounding auxiliary losses, on the Atari environment Seaquest. These experiments aim to
determine the relevant trade-offs between the flexibility of a model-free approach and the potential
benefits of a more model-based algorithm.

Box Pushing. We randomly place an agent, 12 boxes, 5 goals and 6 obstacles on the center 6 x 6
tiles of an 8 x 8 grid. The agent’s goal is to push boxes into goals in as few steps as possible while
avoiding obstacles. Boxes may not be pushed into each other. The obstacles, however, are ‘soft’ in
that they are do not block movement, but generate a negative reward if the agent or a box moves onto
an obstacle. This rewards better planning without causing excessive gridlock. This environment is
inspired by Sokoban, as used by Weber et al. (2017), in that poor actions can generate irreversibly
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Figure 4: Grounding the reward and transition functions using auxiliary losses: final returns on Seaquest plotted
against the coefficient of the auxiliary loss.

bad configurations. However, the level generation process for Sokoban is challenging to reproduce
exactly and has not been open-sourced. More details of the environment and rewards are given in
Appendix A.1.

Atari. To demonstrate the general applicability of TreeQN and ATreeC to complex environments, we
evaluate them on the Atari 2600 suite (Bellemare et al., 2013). Following Oh et al. (2017), we use
their set of nine environments and a frameskip of 10 to facilitate planning over reasonable timescales.

TreeQN adds additional parameters to a standard DQN architecture. We compare TreeQN to two
baseline architectures with increased computation and numbers of parameters to verify the benefit of
the additional structure and grounding. DQN-Wide doubles the size of the embedding dimension (1024
instead of 512). DON-Deep inserts two additional fully connected layers with shared parameters and
residual connections between the two fully-connected layers of DQN. This is in effect a non-branching
version of the TreeQN architecture that also lacks explicit reward prediction.

7 RESULTS & DISCUSSION

In this section, we present our experimental results for TreeQN and ATreeC.

7.1 GROUNDING

Fig. 4 shows the result of a hyperparameter search on 7, and 7, the coefficients of the auxiliary
losses on the predicted rewards and latent states. An intermediate value of 7, helps performance but
there is no benefit to using the latent space loss. Subsequent experiments use 7,, = 1 and s = 0.

The predicted rewards that the reward-grounding objective encourages the model to learn appear both
in its own -value prediction and in the target for n-step Q-learning. Consequently, we expect this
auxiliary loss to be well aligned with the true objective. By contrast, the state-grounding loss (and
other potential auxiliary losses) might help representation learning but would not explicitly learn
any part of the desired target. It is possible that this mismatch between the auxiliary and primary
objective leads to degraded performance when using this form of state grounding. One potential route
to overcoming this obstacle to joint training would be pre-training a model, as done by Weber et al.
(2017). Inside TreeQN this model could then be fine-tuned to perform well inside the planner. We
leave this possiblity to future work.

7.2 BOX PUSHING

Fig. 5a shows the results of TreeQN with tree depths 1, 2, and 3, compared to a DQN baseline. In this
domain, there is a clear advantage for the TreeQN architecture over DQN. TreeQN learns policies
that are substantially better at avoiding obstacles and lining boxes up with goals so they can be easily
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Figure 5: Box-pushing results: the z-axis shows the number of transitions observed across all of the synchronous
environment threads.

pushed in later. TreeQN also substantially speeds up learning. We believe that the greater structure
brought by our architecture regularises the model, encouraging appropriate state representations to
be learned quickly. Even a depth-1 tree improves performance significantly, as disentangling the
estimation of rewards and next-state values makes them easier to learn. This is further facilitated by
the sharing of value-function parameters across branches.

When trained with n-step Q-learning, the deeper depth-2 and depth-3 trees learn faster and plateau
higher than the shallow depth-1 tree. In the this domain, useful transition functions are relatively easy
to learn, and the extra computation time with those transition modules can help refine value estimates,
yielding advantages for additional depth.

Fig. 5b shows the results of ATreeC with tree depths 1, 2, and 3, compared to an A2C baseline. As with
TreeQN, ATreeC substantially outperforms the baseline. Furthermore, thanks to its stochastic policy,
it substantially outperforms TreeQN. Whereas TreeQN and DQN sometimes indecisively bounce
back and forth between adjacent states, ATreeC captures this uncertainty in its policy probabilities
and thus acts more decisively. However, unlike TreeQN, ATreeC shows no pronounced differences
for different tree depths. This is in part due to a ceiling effect in this domain. However, ATreeC is
also gated by the quality of the critic’s value function, which in these experiments was a single linear
layer after the state encoding as described in Section 4. Nonetheless, this result demonstrates the
ease with which TreeQN can be used as a drop-in replacement for any deep RL algorithm that learns
policies or value functions for discrete actions.

7.3 ATARI

Table 1 summarises all our Atari results, while Fig. 6 shows learning curves in depth. TreeQN
shows substantial benefits in many environments compared to our DQN baseline, which itself often
outperforms VPN (Oh et al., 2017). ATreeC always matches or outperforms A2C. We present the
mean performance of five random seeds, while the VPN results reported by Oh et al. (2017), shown
as dashed lines in Fig. 6, are the mean of the best five seeds of an unspecified number of trials.

TreeQN. In all environments except Frostbite, TreeQN outperforms DQN on average, with the most
significant gains in Alien, CrazyClimber, Enduro, Krull, and Seaquest. Many of these environments
seem well suited to short horizon look-ahead planning, with simple dynamics that generalise well
and tradeoffs between actions that become apparent only after several timesteps. For example, an
incorrect action in Alien can trap the agent down a corridor with an alien. In Seaquest, looking ahead
could help determine whether it is better to go deeper to collect more points or to surface for oxygen.
However, even in a game with mostly reactive decisions like the racing game Enduro, TreeQN shows
significant benefits.

TreeQN also outperforms the additional baselines of DQN-Wide and DQN-Deep, indicating that the
additional structure and grounding of our architecture brings benefits beyond simply adding model
capacity and computation. In particular, it is interesting that DQN-Deep is often outperformed by
the vanilla DQN baseline, as optimisation difficulties grow with depth. In contrast, the additional
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Figure 6: Results for the Atari domain. The y-axis shows the moving average over 100 episodes. Each of five
random seeds is plotted faintly, with the mean in bold.
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| Alien Amidar Crazy Climber Enduro Frostbite ~ Krull Ms. Pacman Q*Bert Seaquest

DQN (Ohetal., 2017) | 1804 535 41658 326 3058 12438 2804 12592 2951
VPN (Ohetal,, 2017) | 1429 641 54119 382 3811 15930 2689 14517 5628
n-step DQN | 1969 1033 71623 625 3968 7860 2774 14468 3465
DQN-Deep | 1906 825 53101 745 493 8605 2410 15094 3575
DQN-Wide | 2187 1074 91380 682 3493 6603 3061 15794 3909

TreeQN-1 | 2321 1030 107983 800 2254 10836 3030 15688 9302

TreeQN-2 | 2497 1170 104932 825 581 11035 3277 15970 8241

A2C | 2673 1525 102776 642 297 5784 4352 24451 1734

ATreeC-1 | 3448 1578 102546 678 1035 8227 4866 25159 1734

ATreeC-2 | 2813 1566 110712 649 281 8134 4450 25459 2176

Table 1: Summary of Atari results. Each number is the best score throughout training, calculated as the mean of
the last 100 episode rewards averaged over exactly five agents trained with different random seeds. Note
that Oh et al. (2017) report the same statistic, but average instead over the best five of an unspecified
number of agents.

structure and auxiliary loss employed by TreeQN turn its additional depth from a liability into a
strength.

ATreeC. ATreeC matches or outperforms its baseline (A2C) in all environments. Compared to
TreeQN, ATreeC’s performance is better across most environments, particularly on Qbert, reflecting
an overall advantage for actor-critic also found by Mnih et al. (2016) and in our box-pushing
experiments. However, performance is much worse on Seaquest, revealing a deficiency in exploration
as policy entropy collapses too rapidly and consequently the propensity of policy gradient methods to
become trapped in a local optimum.

In Krull and Frostbite, most algorithms have poor performance, or high variance in returns from run
to run, as agents are gated by their ability to explore. Both of these games require the completion of
sub-levels in order to accumulate large scores, and none of our agents reliably explore beyond the
initial stages of the game. Mean performance appears to favor TreeQN and ATreeC in Krull, and
perhaps DQN in Frostbite, but the returns are too variable to draw conclusions from this number of
random seeds. Combining TreeQN and ATreeC with smart exploration mechanisms is an interesting
direction for future work to improve robustness of training in these types of environments.

Compared to the box-pushing domain, there is less of a clear performance difference between trees
of different depths. In some environments (Amidar, MsPacman), greater depth does appear to be
employed usefully by TreeQN to a small extent, resulting in the best-performing individual agents.
However, for the Atari domain the embedding size for the transition function we use is much larger
(512 compared to 128), and the dynamics are much more complex. Consequently, we expect that
optimisation difficulties, and the challenge of learning abstract-state transition functions, impede the
utility of deeper trees in some cases. We look to future work to further refine methods for learning
to plan abstractly in complex domains. However, the decomposition of Q-value into reward and
next-state value employed by the first tree expansion is clearly of utility in a broad range of tasks.

When inspecting the learned policies and trees, we find that the values sometimes correspond to
intuitive reasoning about sensible policies, scoring superior action sequences above poorer ones.
However, we find that the actions corresponding to branches of the tree that are scored most highly
are frequently not taken in future timesteps. The flexibility of TreeQN and ATreeC allows our agents
to find any useful way to exploit the computation in the tree to refine action-value estimates. As we
found no effective way to strongly ground the model components without sacrificing performance,
the interpretability of learned trees is limited.

8 CONCLUSIONS & FUTURE WORK

We presented TreeQN and ATreeC, new architectures for deep reinforcement learning in discrete-
action domains that integrate differentiable on-line tree planning into the action-value function or
policy. Experiments on a box-pushing domain and a set of Atari games show the benefit of these
architectures over their counterparts, as well as over VPN. In future work, we intend to investigate
enabling more efficient optimisation of deeper trees, encouraging the transition functions to produce
interpretable plans, and integrating smart exploration.
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A APPENDIX

A.1 BOX PUSHING

Environment. For each episode, a new level is generated by placing an agent, 12 boxes, 5 goals and
6 obstacles in the center 6 X 6 tiles of an 8 x 8 grid, sampling locations uniformly. The outer tiles are
left empty to prevent initial situations where boxes cannot be recovered.

The agent may move in the four cardinal directions. If the agent steps off the grid, the episode ends
and the agent receives a penalty of —1. If the agent moves into a box, it is pushed in the direction of
movement. Moving a box out of the grid generates a penalty of —0.1. Moving a box into another box
is not allowed and trying to do so generates a penalty of —0.1 while leaving all positions unchanged.
When a box is pushed into a goal, it is removed and the agent receives a reward of 1.

Obstacles generate a penalty of —0.2 when the agent or a box is moved onto them. Moving the agent
over goals incurs no penalty. Lastly, at each timestep the agent receives a penalty of —0.01. Episodes
terminate when 75 timesteps have elapsed, the agent has left the grid, or no boxes remain.

The observation is given to the model as a tensor of size 5 x 8 x 8. The first four channels are binary
encodings of the position of the agent, goals, boxes, and obstacles respectively. The final channel is
filled with the number of timesteps remaining (normalised by the total number of timesteps allowed).

Architecture. The encoder consists of (conv-3x3-1-24, conv-3x3-1-24, conv-4x4-1-48, fc-128),
where conv-wxh-s-n denotes a convolution with n filters of size w x h and stride s, and fc-h denotes
a fully connected layer with A hidden units. All layers are separated with ReLU nonlinearities. The
hidden layer of the reward function MLP has 64 hidden units.

A.2 ATARI

Preprocessing of inputs follows the procedure of Mnih et al. (2015), including concatenation of the
last four frames as input, although we use a frameskip of 10.

Architecture. The Atari experiments have the same architecture as for box-pushing, except for the
encoder architecture which is as follows: (conv-8x8-4-16, conv-4x4-2-32, fc-512).

A.3 OTHER HYPERPARAMETERS

All experiments use RMSProp (Tieleman & Hinton, 2012) with a learning rate of 1e-4, a decay of
a = 0.99, and € = 1e-5.

The learning rate was tuned coarsely by running DQN on the Seaquest environment, and kept the
same for all subsequent experiments (box-pushing and Atari).

For DQN and TreeQN, ¢ for e-greedy exploration was decayed linearly from 1 to 0.05 over the first
4 million environment transitions observed (after frameskipping, so over 40 million atomic Atari
timesteps).

For A2C and ATreeC, we use a value-function loss coefficient « = 0.5 and an entropy regularisation
8 =0.01.

The reward prediction loss was scaled by 1, = 1.
We use ngeps = 5 and neqys = 16, for a total batch size of 80.

The discount factor is v = 0.99 and the target networks are updated every 40,000 environment
transitions.
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