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ABSTRACT

Disentangling underlying generative factors of a data distribution is important
for interpretability and generalizable representations. In this paper, we intro-
duce two novel disentangling methods. Our first method, Unlabeled Disentan-
gling GAN (UD-GAN, unsupervised), decomposes the latent noise by generating
similar/dissimilar image pairs and it learns a distance metric on these pairs with
siamese networks and a contrastive loss. This pairwise approach provides con-
sistent representations for similar data points. Our second method (UD-GAN-G,
weakly supervised) modifies the UD-GAN with user-defined guidance functions,
which restrict the information that goes into the siamese networks. This constraint
helps UD-GAN-G to focus on the desired semantic variations in the data. We show
that both our methods outperform existing unsupervised approaches in quantita-
tive metrics that measure semantic accuracy of the learned representations. In ad-
dition, we illustrate that simple guidance functions we use in UD-GAN-G allow
us to directly capture the desired variations in the data.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) are generative model estima-
tors, where two neural networks (generator and discriminator) are trained in an adversarial setting,
so that likelihood-based probabilistic modeling is not necessary. This works particularly well for
sampling from a complex probability distribution, such as images. Although GANs yield realistic
looking images (Radford et al., 2015), the original formulation in (Goodfellow et al., 2014) only
allows for randomly sampling from the data distribution without disentangled structural or semantic
control over the generated data points.

One way to disentangle the generation process is to use conditional GANs (Mirza & Osindero, 2014
Odena et al., 2017). These models modify the generator by conditioning it with supervised labels.
Then, they either take the same labels as input in the discriminator (Mirza & Osindero, |2014) and
measure the image-label compatibility, or classify the correct label at the output, given the generated
image (Odena et al.,[2017)). Conditional GANSs rely on a dataset with labels, which might not always
be available or might be time-consuming to collect.

In this paper, we propose two GAN-based methods that learns disentangled representations without
using labeled data. Our first method, Unlabeled Disentangling GAN (UD-GAN), generates image
pairs, then embeds them with Siamese Networks (Chopra et al., 2005), and finally learns a distance
metric on a disentangled representation space. Whereas our second method, UD-GAN-G, uses
guidance functions to restrict the input to our siamese networks, so that they capture desired semantic
variations.

2 RELATED WORK

There have been many studies on learning disentangled representations in generative models, which
can be grouped into the level of supervision/labeled data they require.

Disentangled representations (supervised). In (Zhu et al.,[2014; Yang et al., [2015), the identity
and the viewpoint of an object are disentangled via reconstructing the same object from a different
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viewpoint and minimizing a reconstruction loss. Whereas in (Kingma et al, 2014; | Makhzani et al.,
2016)), the style and category of an object is separated via autoencoders, where an encoder embeds
the style of an input image to a latent representation, and a decoder takes the category and style input
to reconstruct the input image. In (Tran et al.,|2017; |Yin et al.| 2017)), autoencoders and GANs are
combined to decompose identity and attribute of an object, where the disentangled representation is
obtained at the encoder outputs, and image labels are used at the output of the discriminator.

Disentangled representations (semi-supervised). In (Reed et al., 2014)), they clamp the hidden
units for a pair of images with the same identity but with different pose or expression to have the
same identity representation. Whereas in (Kulkarni et all 2015)), synthesized images are used to
disentangle pose, light, and shape of an object by passing a batch of images where only one attribute
varies and the rest of the representation is clamped to be the same. These techniques only require a
batch of samples with one attribute different at a time.

Disentangled representations (unsupervised). InfoGAN (Chen et al. [2016) is an unsupervised
technique that discovers categorical and continuous factors by maximizing the mutual information
between a GAN’s noise variables and the generated image. 3-VAE (Higgins et al.,2017)) and DIP-
VAE (Kumar et al.,[2018) are unsupervised autoencoder-based techniques that disentangle different
factors in the latent representation of an encoded image. In 5-VAE, the KL-divergence between the
latent and a prior distribution is weighted with a factor 8 > 1 to encourage disentanglement in the
posterior latent distributions. Wheres in DIP-VAE, the covariance matrix of the latent distribution is
encouraged to be an identity matrix, thus leading to uncorrelated latent representations.

For all of the unsupervised methods, after a model is trained, a human needs to investigate which
factors map to which semantic property. In addition, as the methods are unsupervised, not all desir-
able factors might be represented. In contrast, our method builds on existing approaches with two
important modifications: (i) We operate on pairs of similar/dissimilar image pairs. (ii) We compute
the image embeddings using separate networks, which allows us to guide the disentangling process
with information restriction.

3 UNLABELED DISENTANGLING GAN

3.1 BACKGROUND: GENERATIVE ADVERSARIAL NETWORKS

In GANS, the generator, G(.), maps a latent variable z, which has an easy-to-sample distribution,
into a more complex and unknown distribution, such as images. On the other hand, the discriminator
D(.) tries to distinguish real images from the ones that are generated by G. In (Goodfellow et al.,
2014), the training is performed as a minimax game as follows:

minmaxV(G,D) = E [logD(x)]+ E [log(l1 — D(G(z)))], (D
G D x~Pg z~Py,

where Pr and Pz are the probability distributions of real images and the latent variable z, respec-
tively. We train our GAN by using the loss in equation[T} In order to increase stability, we modify the
generator loss by maximzing log(D(G(z))), instead of minimizing the second term in equation

3.2 A NOVEL GAN ARCHITECTURE: UD-GAN

In a standard GAN setting, all of the variation in the distribution of real images is captured by the
latent variable z. However, a single dimension or a slice of z does not necessarily have a semantic
meaning. In this paper, our target is to slice the latent variable into multiple vectors, where each
vector controls a different semantic variation.

Our network architecture is visualized in Figure m In our method, the latent vector z =
(41,9, -, 9y, ] is the concatenation of N4 knobs, {q;} Y4, which represent different attributes
we aim to disentangle. One can add a final variable that captures the variation (and the noise) that
is not picked up by the knobs. In our experiments, this additional variable did not have a notable
effect. In our notation, q; refers to all of the knobs, except q;. In order to train our model, first, for

each q;, we sample two different vectors, ql(-l) and ql(-2) from Unif(—1,1). If we would attempt to

form a batch by combinatorially concatenating all knob samples, we get a batch size of 24, which
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grows exponentially with the number of attributes. To avoid this computational burden, we train
our model through stochastic sampling of one attribute at a time. For example, if the i*" attribute is
chosen, we generate four images as shown in Figure|T]
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Figure 1: The flowchart of our architecture. Sampled latents from different attributes are combined
into latent vectors. Generated images are grouped with respect to different attributes (here, repre-
sented by shape) by Siamese Networks (denoted as ¢;).

The image pairs that are generated with the same q; vectors, {X11,X12} or {X21,X22}, should have
the same ‘" attribute, regardless of the values of d;. We can ensure this via embedding the gen-
erated image pairs into a representation space with Siamese Networks (Chopra et al., [2005)), which
are denoted as ¢,(.), and then learning a distance metric on the embedding vectors by employing
Contrastive Loss (Hadsell et al.l [2006). An optional guidance function is used to restrict the infor-
mation that goes into a siamese network, thus letting us approximate a desired representation space.
The guidance is disabled for our unsupervised UD-GAN approach. Whereas for UD-GAN-G, the
guidance is a simple, user-defined function, which is discussed in Section @}

We use a Contrastive Loss function to pull similar image pairs together, and push dissimilar pairs
apart as follows:

2 2 2
1 1
L. =5 Y pilxnXn2)* + 1 > > max(0,57" —pixaz, xom:))’, @)

n;=1 ny=1ms;=1

where, L is the Contrastive Loss for the i*" Siamese Network ¢, (.), the function p; (x,,1,Xp,2) =
(1,2)

i

|| #s(xn,1) — ¢ (%Xn,2)] |2 is a shorthand for embedding distance between x,,,1 and x,,,2, and

is an adaptive margin of the form 71(1’2) = ||qz(-1) — qu) ||2 Using an adaptive margin makes

the distance between two latent samples semantically meaningful and we empirically found that it
improves the training stability.

The discriminator network D is not modified and is trained to separate real and generated image
distributions. [Donahue et al.| (2018) use a similar latent variable slicing for capturing illumination
and pose variations of a face with a fixed identity. Their discriminator needs image pairs, which
must be labeled for real images, to judge the quality and identity of the faces. Our method does
not require any labels for the real images. Instead, we create similar and dissimilar image pairs via
concatenating latent variables and generating image batches. Our final loss function is:

Ly=MXp, Ly, i~ Cat(Ny)
mgn max V(G,D) = Lgan + Ly, 3)
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where, Lyygan is the GAN loss described in equation |1 Ag, is the weight of the embedding loss,
and the sampling of the latent variables depends on 7 and is performed as described above.

3.3 DISENTANGLING WITH GUIDANCE FUNCTIONS: UD-GAN-G

A guidance function reduces the information content that flows into a siamese network and causes
the corresponding embedding space to capture only the variations in the restricted input. For exam-
ple, consider we want to capture the hair-related attributes in the CelebA dataset 2015),
which contains aligned images of human faces. By cropping every region but the top part of a gen-
erated image, we are able to guide ¢,,,(.) to learn only the variations in the “Hair Color” as shown
in the first row of Figure 2| Note that, the knob q,,, (that corresponds to ¢,,,,(.)) changes the hair
color not only at the cropped part of the image but as a whole. This is due to the interplay between
the adversarial part of our loss (see equation [3), which enforces global realism in images, and the
contrastive loss, which administers disentangled representations. As shown in Figure 2] different
guidance functions leads to capturing different variations in the CelebA dataset.
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Figure 2: (left) Four of our siamese networks are guided with differently cropped images. (right)
Varying latent variables that correspond to guided siamese networks captures desired variations.

3.4 PROBABILISTIC INTERPRETATION

We can gain a probabilistic interpretation of our method on a toy example. Let us assume a problem,
where we want to generate images of colored polygons (see Figure [I), where there are two inde-
pendent factors of variation: shape and color, which we want to capture using two knobs q; and q;,
respectively. When we set q; to a certain value and vary q;, we want to generate polygons with the
same color, but different shapes, and vice versa.

Let IP be the probability distribution of colored polygons. For each attribute, P can be decomposed
into a mixture distribution as follows:

N; Nj
P= Z wgk)(@gk) + for attribute 7, P= Z Wj(k)Q;k) < for attribute ;7 (4)
k=1

where, ng) is a mixture component and ﬂfk) is its corresponding probability of choosing it, and IV,

is the number of different values an attribute (in our example, ¢ corresponds to shape) can take. A
similar explanation can be made for attribute j, i.e. color. For the sake of this analysis, we accept
that for each attribute, P can be decomposed into different discrete mixture distributions as shown

in Figure For this specific case, le) and QZ@) are the distributions of colored squares and colored
diamonds, respectively. For the color attribute, which is indexed by j, each (@;k) corresponds to a
distribution of polygons with a single color (i.e., green polygons).

Our contrastive loss in equation [2 has two terms. The first term is minimizing the spread of each
mixture component ng) . This spread is inversely related to disentanglement. If all samples from
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Figure 3: Illustration of the embedding spaces and separated probability distributions after training
our model.

Ql(.k) are mapped to the same embedding vector, the effect of j (and any other attribute) on the rep-
resentation ¢, (.) disappears and disentangling is achieved. During training, we stochastically go
through all embedding spaces and minimize their spread, thus resulting in a disentangled represen-
tation in Table [9]in Appendix [G]

The second term in equation separates all ng) from each other using an adaptive margin #’2).

This margin depends on the difference between input latent pairs, so that the resulting embedding
space is smooth. In other words, we separate rectangles, circles, and ovals from each other, but
circles should be closer to ovals than squares, due to their relative similarity. In the following, we
focus on the shape attribute that is represented by ¢, however, derivations carry over to the color
attribute j.

In order to separate the probability distributions over image embeddings, one can maximize a diver-

gence between all pairs from Ql(-k). One way to measure the distance between these distributions is
to use the unbiased estimator of the energy distance (Székely & Rizzo||2004):

2 2
SN pilxing xom,)? 5)
njzlmjzl

The energy distance in equation [5) can be interpreted as an instance of Maximum Mean Discrep-
ancy (Binkowski et al) 2018)) and resembles the Contrastive Loss (Hadsell et al.| [2006). We can
rewrite equation [5|using the Contrastive Loss in equation[2]as follows:

W~ =

2
. 1
D@, Q5 61) = =5 Y piln1 Xni2)” +

TL,;:l

2 2
1
Dg =— ﬁdn +Z Z Z Pi(Xlnj7X2m]»)2 + maX(Ov%(l’Q) —pi(Xlnj,X2mj))2 (6)

nj=1m;=1

Each element in the second sum is quadratic function and has its minimum at p;(X1in;,Xom;) =
7(1,2 (1,2)
; .

2 . .
i "7)7/2. So, we can rewrite equatlon@as follows:

) /2 and the value of the minimum is (v
(1,2)

2
DE(le),QEQ); Gi,J) > % — Ly, - Q)

Therefore, as the margin 71(1’2) depends only on the input latent variables and is not trainable, min-

imizing our embedding loss £, maximizes the lower bound for the energy distance Dg. This
corresponds to learning a Siamese Network ¢,(.) that separates two probability distributions le)

and QEQ), i.e., colored squares and colored diamonds, from each other and minimizes the spread of
each distribution, thus resulting in disentangling the effect of 57 from . The same derivation can
be made for the color attribute. After jointly training the Siamese Networks, we can achieve the
embedding spaces represented in Figure[3] An example of one such disentangled embedding space
is illustrated for MNIST (LeCun & Cortes, [2010) digits in Figure ] in Appendix [B]
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4 EXPERIMENTS

4.1 SETUP

We perform our experiments on a server with Intel Xeon Gold 6134 CPU, 256GB system memory,
and an NVIDIA V100 GPU with 16GB of graphics memory. Our generator and discriminator ar-
chitectures are outlined in our Appendix |Al Each knob is a 1-dimensional slice of the latent variable
and is sampled from Unif(—1,1). We use ADAM (Kingma & Bal 2014) as an optimizer for our
training with the following parameters: learning rate=0.0002 and 5; = 0.5. We will release our
code after the review process.

Datasets. We evaluate our method on two image datasets: (i) the CelebA dataset (Liu et al.,|2015)),
which consists of over 200,000 images of aligned faces. We cropped the images to 64 x 64 pixels
in size. (ii) the 2D Shapes (Higgins et al.,[2017), which is a dataset that is synthetically created with
different properties, such as shape, scale, orientation, and x-y locations. Both datasets are divided
into training and test sets with a 90%-10% ratio. The weight values for the contrastive lossis Ay = 1
for the CelebA dataset and A\, = 5 for the 2D shapes dataset. We use a 32 and 10-dimensional latent
variables for the CelebA and the 2D Shapes datasets, respectively.

Baselines. We have two versions of our algorithm. UD-GAN refers to the results that are obtained
without any guidance at the input of our siamese networks, whereas UD-GAN-G represents a guided
training. We compare our method against 5-VAE (Higgins et al.| [2017), DIP-VAE (Kumar et al.|
2018), and InfoGAN (Chen et al. |2016) to compare against both autoencoder and GAN-based
approaches. We get the quantitative and visual results for 5-VAE and DIP-VAE from (Higgins
et al.,|2017) and (Kumar et al.,|2018)), and use our own implementation of InfoGAN for training and
testing. The same generator/discriminator architecture is used for InfoGAN and our method.

Guidance. For the CelebA dataset, the first 28 of 32 latent knobs are unguided and therefore are pro-
cessed by the same siamese network that outputs a 28-dimensional embedding Vecto Whereas the
remaining four knobs correspond to four siamese networks (¢;,,,; @piv» Pmits Poor) that are guided
with cropped images in Figure 2] For the 2D shapes dataset, we have 10 knobs, where the first 7
dimensions are unguided. In order to guide the remaining three networks, we estimate the center
of mass (Mm, My) and the size S of the generated object and feed them to our siamese networks,

b (M), ¢y (M,), and ¢4 (S). More information for this computation can be found in Appendix@

4.2 RESULTS

Disentanglement Metric. This metric was proposed by |Higgins et al.|(2017) and measures whether
learned disentangled representations can capture separate semantic variations in a dataset. In /-
VAE and DIP-VAE, this representation is the output of the encoder, i.e., the inferred latent variable.
For InfoGAN, we use the representation learned by the discriminator. In our method, we use the
concatenated outputs of our siamese networks, which we denote as ¢(.).

The disentanglement metric scores for different methods are illustrated in Table E} Here, we can
see that both of our methods outperforms the baseline on the CelebA dataset. All of the baseline
approaches relate the latent variables to generated images on per-image basis. Whereas our approach
attempts to relate similarities/differences of latent variable pairs to image pairs, which provides a
discriminative image embedding, where each dimension is invariant to unwanted factors (Hadsell
et al., [2006).

For both datasets, our guided network (UD-GAN-G) performs better than our unguided approach,
especially on the CelebA dataset. This might be due to the correlations between irrelevant attributes.
For example the correlation coefficient between “Wearing Lipstick” and “Wavy Hair” attributes is
0.36, although they are not necessarily dependent. One of our guided networks receive the cropped
image around the mouth of a person, which prevents cluttering it with hairstyle. Therefore, this
guidance provides better disentanglement and results in an improved score as shown in Table [1}
Due to containing simple synthetic images, our disentanglement scores for the 2D shapes dataset
are very high. The reason we get 100.0 score on our guided method is because of the guidances we
choose, which are highly correlated with the ground truth labels, as shown in Table[7)in Appendix[D}

"Note that each dimension is still an independently evaluated
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Table 1: Disentanglement metric scores (Higgins et al., |2017), which measure how strongly and
independently the dataset attributes are captured by a method.

Method 2D Shapes | CelebA
B-VAE 99.2 7.1
InfoGAN 88.4 12.3
DIP-VAE 98.7 14.8
UD-GAN 99.1 15.4

UD-GAN-G 100.0 16.5

CelebA Attribute Classification. Kumar et al.| (2018) introduced a binary classification metric
for the CelebA attributes that project a test image embedding onto average embedding vectors of
attributes. In Table[2] we compare our method against baseline approaches on CelebA attribute clas-
sification accuracy using the aforementioned projection vector. Similar to the results in Table[I] our
guided approach slightly outperforms our unguided method and the other completely unsupervised
techniques. This is because some attributes in the CelebA dataset can be spatially isolated via crop-
ping, which leads to a better classification performance. For example, the attributes that are related
to hair (Black Hair, Blond Hair, Wavy Hair) and mouth (Mouth Slightly Open, Wearing Lipstick)
are captured better by the guided approach, because our top and bottom crops (see Figure [2)) are
detaching the effects of other variations and are making attributes less correlated. The accuracy on
the attribute “Bangs” is worse on the guided approach. This might be due to heuristic cropping we
perform that divides the relevant image region into two slits.

Table 2: CelebA attribute classification accuracy.

[=]
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B-VAE 71.6 726 90.6 793 89.1 793 835 76.1 869 67.8 959 824
DIP-VAE 737 732 909 806 919 815 859 759 853 7TI.5 962 84.7
InfoGAN 747 738 909 809 915 826 874 769 887 743 973 869
UD-GAN 75.0 748 90.5 821 915 842 862 797 875 751 965 85.6
UD-GAN-G | 750 75,5 90.2 823 921 842 899 822 877 1756 96.7 873

Visual Comparison. In Table[3] we illustrate images generated by different methods on the CelebA
dataset. Each of the three rows capture the change in a semantic property: smile, azimuth, and hair
color, respectively. Within each image group, a latent dimension is varied (from top to bottom) to
visualize the semantic change in that property. Compared to adversarial methods, such as InfoGAN
and UD-GAN-G, the DIP-VAE method generates blurrier images, due to the data likelihood term in
VAE-based approaches, which is usually implemented as a pixel-wise image reconstruction loss. In
GAN-based approaches, this is handled via a learnable discriminator in an adversarial setting. In Ta-
ble[[]and 2] we quantitatively show the advantage of using our guided approach. Another advantage
is to have better control over the captured attributes. For example, in all unsupervised approaches
(including UD-GAN), we need to check which latent dimension represents corresponds to which vi-
sual attribute. In some cases, a semantic attribute might not be captured due to the correlated nature
of a dataset. Whereas, in UD-GAN-G, we directly obtain the variations in smile, azimuth, and hair
color through cropping the bottom, middle, and top part of our images, respectively. Thanks to our
guidance in Figure [2] we can directly manipulate these three attributes using the knobs gy, Q-
and q,,, as shown in Table 3]

The same trend is true for the 2D Shapes dataset results in Table 4] Although the X and Y positions
and the scale of the synthetic object is captured by both our unsupervised and guided approaches,
the guidance we choose directly captures the desired feature on in advance chosen knobs q ., qy-,
and qg, respectively.
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Table 3: Images generated by varying a latent dimension, which corresponds to a semantic property.
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Table 4: Generated images for the 2D Shapes dataset by varying a latent dimension, which corre-

sponds to a semantic property (first row: UD-GAN, second row: UD-GAN-G).

X Position Y Position Scale
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4.3 DISCUSSION

In completely unsupervised approaches, there is no guarantee to capture all of the desired semantic
variations. The main premise behind UD-GAN-G is to find very simple, yet effective ways to
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capture some of the variation in the data. This weak supervision helps us to obtain proxies to certain
semantic properties, so that we get the desired features without training the model multiple times
with different hyperparameters or initializations.

In the aligned the CelebA dataset, each face is roughly centered around the nose. This reduces the
variation and simplifies the problem of guidance design, as we show in Figure [2| In more complex
scenarios, where the objects can appear in a large variety of scales, translations, and viewpoints, one
can use a pre-trained object detection and localization method, such as YOLO (Redmon et al.,|2015),
as a guidance network. This enables us to use the knowledge obtained from a labeled dataset, such
as ImageNet (Russakovsky et al.|[2015) to disentangle a new unlabeled dataset. Note that backprop-
agating the gradients of a deep network into an image might cause adversarial samples (Szegedy
et al.,[2014). However, the discriminator can alleviate this by rejecting problematic images.

In order to backpropagate the gradients from the siamese networks to the generator, the guidance
function we use needs to be differentiable. This might pose a limitation to our method; however,
differentiable relaxations can instead be used to guide our network. For example, one can employ
differentiable relaxation of the superpixel segmentation in (Jampani et al., 2018)) to disentangle a
low-level image segmentation.

Our latent variables are sampled from a uniform distribution. In addition, image similarity is mea-
sured by using L2-distance between a pair of image embeddings. We experimented with modeling
some latent dimensions as categorical variables. However, we encountered training stability issues,
due to computing the softmax loss between two learnable categorical image embeddings, instead of
one embedding and one fixed label vector as it is usually done. We plan to tackle that problem in
our future work.

5 CONCLUSION

In this paper we introduced UD-GAN and UD-GAN-G, novel GAN formulations which employ
Siamese networks with contrastive losses in order to make slices of the latent noise space disen-
tangled and more semantically meaningful. Our experiments encompassed guided and unguided
approaches for the embedding networks, and illustrated how our methods can be used for seman-
tically meaningful image manipulation. Our qualitative and quantiative results confirm that our
method can adjust well to the intrinsic factors of variation of the data and outperform the current
state-of-the-art methods on the CelebA and 2D Shapes datasets. In future work, we plan to investi-
gate more powerful forms of embedders, e.g. extracting information from pre-trained networks for
semantic segmentation and landmark detection. This allows for even more powerful novel image
manipulation techniques.
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APPENDIX

A NEURAL NETWORK ARCHITECTURES

In Table [5] we show the neural network layers we use in our generator for different datasets. Our
discriminator and siamese network architectures are the inverted version of our generator. Each fully
connected and Conv2D layer is followed by a Leaky ReLLU non-linearity, except the last layer.

Table 5: The architectures of our generator networks.

Layer CelebA 2D Shapes
Latents (32) (10)
Fully Connected (2048) (512)
Reshape (128 x 4 x 4) (32 x4 x4
Conv2D-Transpose (3 x 3) (128 x 8 x 8) (32 x 8 X 8)
Conv2D (3 x 3) (128 x 8 x 8) (32 x 8 x 8)

Conv2D-Transpose (3 x 3)
Conv2D (3 x 3)
Conv2D-Transpose (3 x 3)
Conv2D (3 x 3)
Conv2D-Transpose (3 x 3)
Conv2D (3 x 3)
Conv2D (1 x 1)

(128 x 16 x 16)
(128 x 16 x 16)
(128 x 32 x 32)
(128 x 32 x 32)
(128 x 64 x 64)
(128 x 64 x 64)

(3 x 64 x 64)

(32 x 16 x 16)
(32 x 16 x 16)
(32 x 32 x 32)
(32 x 32 x 32)
(32 x 64 x 64)
(32 x 64 x 64)

(1 x 64 x 64)

B CHOOSING SEMANTICS WITH GUIDANCE

The Siamese Networks ¢, are desired to map images into embedding spaces, where they can be
grouped within a distinct semantic context. For the example shown in Figure i} where we disen-
tangle the shape and the color, this might not be directly achievable in a completely unsupervised
setting, because the separation in equation [] is not unique. However, we can still benefit from
the disentangling capability of our method via small assumptions and domain knowledge, without
collecting labeled data.

Consider the toy example, where we extend the MNIST dataset (LeCun & Cortes| 2010) to have a
random color, sampled from a uniform RGB color distribution. We define our problem to indepen-
dently capture the shape of a digit with q; and its color with qs.

In Figure we show images created by a generator, which is trained along with two networks,
¢, and ¢, without any guidance in an unsupervised setting. We can see that the knobs, q; and
d,. capture the variations in the data, however, these variations are coupled with multiple semantic
properties. Each knob modifies a complicated combination of shape and color.

However, if we design a network architecture in a slightly smarter way, we should be able to separate
the shape and the color attributes. This is exemplified in Figure @b)l where instead of feeding the
whole image to ¢,, we feed the average color of some randomly sampled pixels from a generated
image. This choice prevents ¢, to capture the spatial structure of the generated digit and to focus
only on color. After the training our method with a modified ¢, the first network captures shape of
a digit, and the second one captures the color variations. This can also be observed in Figure
and [4[(d)] where we use t-SNE (van der Maaten & Hinton| 2008) to visualize embedding spaces for
shape and color, respectively.

C EXPERIMENTS ON ADDITIONAL GUIDANCES

In order to show the effect of the guided siamese networks, we perform three experiments on the
MS-Celeb dataset (Guo et al., 2016)) by using different guiding proxies. In the first experiment, only
one of the two networks is guided with an edge detector at the input. Results of this experiment are
shown in Table @ We can see that the first knob, which is connected to edges, captures the overall
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| =

(a) Unsupervised (b) Guided (c) Shape t-SNE (d) Color t-SNE

Figure 4: (a) Samples from the colored version of the MNIST dataset. (b) Images generated after an
unsupervised training with two knobs and (c) after a guided training (the knob values are interpolated
between two values and then concatenated to generate the final image). (d) The t-SNE representation
of the embedding vectors for shape and (e) color.

outline and roughly controls the identity of the generated face. On the other hand, the unguided
second knob modifies the image with minimal changes to image edges. This change, in this case,
corresponds to the lighting of the face.

We perform a second experiment with the edge detector, where in this case, the second knob is
guided with the average color of the generated image. In Table[6] we can observe the results of our
disentangled image manipulation. The first knob with the edge detector again captures the outline of
the face, and the second average color knob modifies a combination of the light and the skin color,
similar to the results in Figure Table[f]

In our third experiment, we employ the cropped guidance networks. The two knobs receive the
cropped top and bottom part of the image for training. Although these image crops are not inde-
pendent, we still get acceptable results that are shown in Table [§] Adjusting the first knob only
modifies the upper part of the face; the hair and the eyes. Similarly, the second knob is responsible
for determining the chin and mouth shape.

Table 6: The results of UD-GAN-G using differently guided siamese networks.

Unguided Average Color Cropped (bottom)

Cropped (top)
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D GUIDING FOR THE 2D SHAPES DATASET

In order to guide our siamese networks for the 2D shapes dataset, we estimate the center of mass of
the generated image, and the size of the generated object as follows:

N 1 N 1
M, = A Cz; e - X[cg, ¢y, M, = A Cz; ¢y - X[cz, ¢y
.1 . .
$=2 " (o = M) + (e, = ML,)?) - Xles )
CayCy
Z = x[cz, ¢y, ®
Ca,Cy

where, x is a generated image, x[c,,, ¢, | is the pixel intensity at image coordinates [c,, ¢, |, (M., M,))
are the coordinates of the center of mass of x, and S is the size estimate for the generated object. As

the 2D shapes dataset is relatively simple and contain only one object, these guidances are highly
correlated with the ground truth attributes as shown in Table[7]

Table 7: Correlation between ground truth attributes of the 2D shapes dataset and the calculated
proxies.

Ground Truth Attribute M, M, S

Shape 0.000 | -0.002 | -0.366
Scale -0.000 | -0.000 | 0.910
Orientation 0.027 | 0.000 | -0.001
X Position 0.998 | -0.000 | -0.000
Y Position -0.000 | 0.998 | 0.001

E ADDITIONAL SEMANTIC MANIPULATION

In Figure[5] we illustrate additional semantic properties that are captured by UD-GAN-G.

Age

Bangs

Make-up Gender

Skin tone

Figure 5: Semantic properties that are captured by our method.

13



Under review as a conference paper at ICLR 2019

F CELEBA ATTRIBUTE CLASSIFICATION

In Table [§] we compare the classification perfromance of our method to InfoGAN on all attributes
in the CelebA dataset.

Table 8: CelebA attribute classification accuracy.

= z = = z
3 o o 51
2 -g <) > o z = = g
S 2 | © j59) o | =] =) 2 = 3 = 2 g
~ i) ] = ~ =] = g E] 2 B g ]
2 3 E S5 £ & g =@ 3T E F : 52 & %3 2 8§ F ¢ S
o 2 < T A @ @ @ g g 4 © 5 £
° = & 5 T =
- = @ a =
InfoGAN 904 747 738 80.6 979 909 675 804 809 915 949 821 878 946 954 945 958 97.0 82.6 78.0
UD-GAN-G 904 75.0 755 813 979 902 68.1 80.7 823 921 951 819 88.6 94.6 955 954 955 97.0 84.2 81.2
=
3 o @ @
-9 5 2
O>, 5 i kel ) =) 2 é % %) ‘é =] 'éﬂ k| é é %
s £ 3 & § £ gz 2 £ 2 £ 2 = £ 2 5 5 3 2 g
S 2 2 & 8 5 o z 2 9 & F 5 2 w £ @ 5% » 2
»n = o = < £ ] 2 = 3 =) 3 £ =4 £ £ g >
= = 3 Z & A 3 3 3] 7} = = 5 o 5 =) =
=] Z A 9 & 2] k3] = 3 3 o
15} ~ =z z = =
=
InfoGAN 874 769 961 853 887 720 959 729 915 932 956 821 79.1 743 79.8 97.3 869 863 93.0 809
UD-GAN-G 89.9 822 96.1 852 877 724 964 73.6 920 939 953 864 792 756 804 967 873 863 93.0 811

G ATTRIBUTE CORRELATIONS.

In Table 0] we compare the correlation between different embedding (or latent) dimensions and
the correlation between embedding dimensions and the CelebA attributes. Although DIP-VAE en-
codes a more un-correlated representation, due to the correlated nature of CelebA attributes, it does
not necessarily transfer to a disentangled semantic representation, as illustrated by the quantitative
results in Table[Tland 2

Table 9: Correlation between embeddings (or latents) with each other (first row) and with CelebA
attributes(second row). Negative correlations are inverted for visibility purposes.

DIP-VAE InfoGAN UD-GAN UD-GAN-G

14



	Introduction
	Related Work
	Unlabeled Disentangling GAN
	Background: Generative Adversarial Networks
	A Novel GAN Architecture: UD-GAN
	Disentangling with Guidance Functions: UD-GAN-G
	Probabilistic Interpretation

	Experiments
	Setup
	Results
	Discussion

	Conclusion
	Neural Network Architectures
	Choosing Semantics with Guidance
	Experiments on Additional Guidances
	Guiding for the 2D Shapes Dataset
	Additional Semantic Manipulation
	CelebA Attribute Classification
	Attribute Correlations.

