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ABSTRACT

Learning disentangled representations from visual data, where different high-level
generative factors are independently encoded, is of importance for many computer
vision tasks. Solving this problem, however, typically requires to explicitly label
all the factors of interest in training images. To alleviate the annotation cost, we
introduce a learning setting which we refer to as reference-based disentangling.
Given a pool of unlabelled images, the goal is to learn a representation where a set
of target factors are disentangled from others. The only supervision comes from an
auxiliary reference set containing images where the factors of interest are constant.
To address this problem, we propose reference-based variational autoencoders, a
novel deep generative model designed to exploit the weak-supervision provided by
the reference set. By addressing tasks such as feature learning, conditional image
generation or attribute transfer, we validate the ability of the proposed model to
learn disentangled representations from this minimal form of supervision.

1 INTRODUCTION

Natural images are the result of a generative process involving a large number factors of variation.
For instance, the appearance of a face is determined by the interaction between many latent vari-
ables including the subject’s pose, illumination, identity, or expression. In this context, learning
disentangled representations, where different generative factors are independently encoded in fea-
ture vectors, can be considered one of the most relevant problems in computer vision (Bengio et al.,
2013). Recently, Variational auto-encoders (VAEs) (Kingma & Welling, 2014) have emerged as a
powerful deep latent variable model able to address this task (Higgins et al., 2017; Kumar et al.,
2018; Chen et al., 2018). However, VAEs are typically trained in an unsupervised manner and,
therefore, they lack a mechanism to impose specific high-level semantics on the latent space. In
order to address this limitation, different semi-supervised extensions have been proposed (Kingma
et al., 2014; Narayanaswamy et al., 2017). However, these approaches require latent factors to be
explicitly annotated in a training set in order to disentangle them.

In order to reduce the need of labelled generative factors, we introduce reference-based disentan-
gling, a weakly-supervised learning setting in which, given a training set of unlabelled images, the
goal is to learn a representation where a specific set of generative factors are disentangled from the
rest. For that purpose, the only supervision comes in the form of an auxiliary reference set con-
taining images where the factors of interest are constant (see Fig. 1a-b for illustrative examples).
Note that a collection of reference images is generally easier to obtain compared to explicit labels of
target factors. In order to address this problem, we present reference-based variational autoencoders
(Rb-VAEs), a deep probabilistic model able to impose high-level semantics into the latent variables
by only exploiting the weak-supervision provided by the reference set. An extended version of this
work can be found at: https://arxiv.org/abs/1901.08534.

2 REFERENCE-BASED VARIATIONAL AUTOENCODERS

Problem formalization: Consider a training set of unlabelled images (e.g. human faces) x ∈
RW×H×3 sampled from a given distribution pu(x). Our goal is to learn a latent variable model
defining a joint distribution over x and latent variables e ∈ RDe and z ∈ RDz . Whereas e is ex-
pected to encode information about a set of generative factors of interest, e.g. facial expressions, z
should model the remaining factors of variation underlying the images, e.g. pose, illumination, iden-
tity, etc. From now on, we will refer to e and z as the “target” and “common factors”, respectively. In
order to disentangle them, we are provided with an additional set of reference images sampled from
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Figure 1: (a) Disentangling factors underlying facial expression. The reference set contains faces
with neutral expression. (b) Disentangling style from digits. The reference set is composed by digits
with a fixed style.(c) Rb-VAE generative process where pθ(x|z, e) maps z (common factors) and e
(target factors) to images x. (d) Approximate posteriors q(z|x) and q(e|x, y) map images x to the
corresponding common and target factors z and e respectively.

pr(x), representing a distribution over x where target factors e are constant e.g. neutral faces. Given
pr(x) and pu(x), we define a binary variable y indicating whether an image x has been sampled
from the unlabelled or reference distributions, i.e. p(x|y = 0) = pu(x) and p(x|y = 1) = pr(x).

Model definition: Rb-VAEs is a deep latent variable model defining a joint distribution
pθ(x, z, e, y) = pθ(x|z, e)p(z)p(e|y)p(y), where conditional dependencies are designed to ad-
dress the reference-based disentangling problem (see Fig. 1c). In particular, we define pθ(x|z, e) =
L(x|Gθ(z, e), λ), where Gθ(z, e) is a generator network, mapping a pair of latent variables (z, e)
to an image defining the mean of a Laplace distribution L with fixed scale parameter λ. To re-
flect the assumption of constant target factors across reference images, we define the conditional
distribution over e given y = 1 as a delta peak centered on a learned vector er ∈ RDe , i.e.
p(e|y = 1) = δ(e − er). In contrast, for unlabelled images, p(e|y = 0) = N (e|0, I) as in
standard VAEs. In the following, we denote p(e|y = 0) = p(e). Contrary to the case of target fac-
tors e, the prior p(z) over common factors is equal for reference and unlabelled images, and taken
to be a unit Gaussian. Finally, we assume p(y = 0) = p(y = 1) = 1

2 .

Conventional Variational Learning: We define a variational distribution qψ(x, z, e, y) =
qψ(x, z|x)qψ(e|x, y)p(x, y), where the approximate posteriors qψ(e|x, y) and qψ(z|x) allow to in-
fer target and common factors e and z given an image x (see Fig. 1d). For reference images, i.e.
with y = 1, the target factors qψ(e|x, y = 1) are known to be equal to the reference value er. On
the other hand, given an unlabelled image, i.e. with y = 0, we define the approximate posterior
qψ(e|x, y = 0) = N (e|Eµ(x), Eσ(x)), where the mean and diagonal covariance matrices of a con-
ditional Gaussian distribution are given by the output of deep neural network E . Similarly, we use
an additional network Z to model qψ(z|x) = N (z|Zµ(x),Zσ(x)). Following the standard training
strategy employed in VAEs, we learn parameters θ and ψ by minimizing the KL divergence between
pθ and qψ , which, as shown in Appendix A.1, is equivalent to:

min
θ,ψ,er

Epu(x)
[
KL(qψ(z|x)qψ(e|x) ‖ p(z)p(e))− Eqψ(z|x)qψ(e|x) log(pθ(x|z, e))

]
+

Epr(x)
[
KL(qψ(z|x) ‖ p(z))− Eqψ(z|x) log(pθ(x|z, e

r))
]
, (1)

The second and fourth terms correspond to the reconstruction errors for unlabelled and reference
images respectively. Note that, for reference images, no inference over target factors e is needed.
Instead, the generator reconstructs them using the learned parameter er. The remaining terms consist
of KL divergences between approximate posteriors and priors over latent variables. The minimiza-
tion in Eq. (1) can be solved using SGD and the re-parametrization trick (Rezende et al., 2014), in
order to back-propagate the gradient when sampling from qψ(e|x) and qψ(z|x).
Symmetric Variational Learning: The main limitation of the conventional variational learning for
Rb-VAEs is that it does not guarantee that common and target factors will be effectively disentangled
in z and e respectively. In particular, the minimization of Eq. (1) does not prevent the degenerate
solution pθ(x|z, e) = pθ(x|z), where the inferred latent variables by qψ(e|x) are ignored and target
and common factors are jointly encoded into z. To address this limitation, we optimize an alterna-
tive variational expression inspired by Symmetric VAEs (Pu et al., 2018). Concretely, we add the
reversed KL divergence between pθ and qψ to the minimized objective. In order to understand why
this additional term allows to mitigate the degenerate solution pθ(x|z, e) = pθ(x|z), it is necessary
to observe that its minimization is equivalent to:
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AffectNet MNIST
Happ Sad Sur Fear Disg Ang Compt Avg. R G B Scale Width Avg.

VAE .554 .279 .383 .357 .256 .415 .439 .383 .099 .104 .101 [.034] .085 .085
DIP-VAE-I .561 .269 [.401] .367 .258 .397 .463 .388 [.055] .064 .063 .038 .100 .064
DIP-VAE-II .548 .245 [.401] [.389] .268 .391 .463 .386 .077 .069 .076 .035 .098 .071
β VAE .581 .283 .373 .323 .250 .415 .467 .384 .093 .099 .094 .039 .089 .083
sVAE .583 .251 .389 .349 .260 .391 .469 .384 .094 .092 .084 .036 .104 .082

β-TCVAE .563 .277 .393 .349 .256 [.427] .467 .390 .098 .100 .099 [.034] [.084] .083
[Mathieu et. al] .567 .388 .312 .330 .295 .353 [.512] .395 .116 .116 .114 .039 .104 .098

Rb-VAE .536 .393 .379 .311 .320 .383 .421 392 .065 .069 .062 .061 .095 .070
sRb-VAE [.587] [.405] .387 .327 [.344] .425 .483 [.422] .057 [.053] [.055] .038 .095 [.060]

Table 1: Prediction of target factors from learned representations. We report accuracy (AffectNet)
and mean-absolute-error (MNIST). Two best methods shown in bold, best result in brackets.

min
θ,ψ

Ep(z,e)
[
KL(pθ(x|z, e) ‖ pu(x))− Epθ(x|z,e)[log(qψ(z|x)) + log(qψ(e|x))]

]
+

Ep(z)pθ(x|z,er)
[
KL(pθ(x|z, er)||pr(x))− log(qψ(z|x))

]
, (2)

see Appendix A.1 for details. Note that the second and fourth terms correspond to reconstruction
errors over latent variables z, e inferred from generated images drawn from pθ. As a consequence,
the minimization of these errors is encouraging the generator pθ(x|z, e) to generate images x by
taking into account latent variables e, since the latter must be reconstructed via qψ(e|x). Therefore,
the minimization of the reversed KL avoids the degenerate solution ignoring e.

In order to jointly optimize Eqs. (1) and (2), we propose to use an adversarial learning procedure.
For this purpose, we express the minimization of the two KL divergences as:

min
θ,ψ

Eqψ(e,z|x)pu(x)Lxze − Epθ(x|e,z)p(z)p(e)Lxze + Eqψ(z|x)pr(x)Lxz − Epθ(x|er,z)p(z)Lxz,

where Lxze corresponds to the log-density ratio between distributions qψ(e, z|x)pu(x) and
pθ(x|e, z)p(z)p(e). Similarly, Lxz defines an analogous expression for qψ(z|x)pr(x) and
pθ(x|er, z)p(z) (see Appendix A.1 for details). The defined expression can be minimized by
evaluating (Lxze, Lxz) and back-propagating the gradients w.r.t. parameters ψ and θ using the
reparametrization-trick over samples (x, z, e). During this procedure, two auxiliary parametric func-
tions dξ(x, z, e) and dγ(x, z) are used to approximate Lxze and Lxz, respectively. These functions
are implemented as deep convolutional networks and are analogous to the discriminators used in ad-
versarial methods such as ALICE (Li et al., 2017), where the function dγ(·) is trained as a classifier
trying to distinguish whether pairs of reference images x and latent variables z have been generated
by qψ or pθ. However, in our case we have an additional discriminator dξ operating over unlabelled
images and its corresponding latent variables z and e. Similar to Symmetric VAEs (Pu et al., 2018),
we also add into the minimized objective the reconstruction terms in Eqs. (1) and (2) for images and
inferred latent variables. See Appendix A.2 for an illustration of the learning algorithm.

3 EXPERIMENTS

Datasets: In our experiments, we consider two different reference-based disentangling tasks. In the
first case, the goal is to model style variations (scale, width and color) from hand-written digits. We
use half of the original training images in the MNIST dataset (LeCun et al., 1998) as our reference
distribution (30k examples). The unlabelled set is synthetically generated by applying two different
transformations over the remaining half of images simulating random digit styles (60k images). In
the second problem, we address the disentangling of facial expressions by using a reference set of
neutral faces. As unlabelled images, we use a subset (150k samples) of the AffectNet dataset (Molla-
hosseini et al., 2017) . Some of these images are annotated according to different facial expressions:
happiness, sadness, surprise, fear, disgust, anger, and contempt. As our reference set, we collected
a set of neutral faces (10k samples). See more details in Appendix A.3.

Baselines: We evaluate the two different variants of our proposed method: Rb-VAE, trained using
the standard variational objective, and sRb-VAE, learned by minimizing the symmetric KL diver-
gence. We compare both methods with state-of-the-art unsupervised approaches based on the VAE
framework: β-VAE (Higgins et al., 2017), β-TCVAE (Chen et al., 2018), sVAE (Pu et al., 2018),
DIP-VAE (Kumar et al., 2018) and vanilla VAEs (Kingma & Welling, 2014). Finally, in order
to evaluate an alternative weakly-supervised baseline exploiting the reference-set, we have imple-
mented (Mathieu et al., 2016) adapting it to our context. For a fair comparison, we have developed
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Ref. Image Synthetic variations

(b)(a) (c)

Attribute Transfer

Figure 2: Conditional image synthesis using Rb-VAE (a) and sRb-VAE (b). Within each column
images are generated using the same random target factors e. (c) Transferring target factors e from
image A to an image B with sRb-VAE.

our own implementation for all the evaluated methods in order to use the same network architec-
tures and hyper-parameters. Concretely, for encoders, generators and discriminators we use standard
conv-deconv architectures employing the main building blocks used by Karras et al. (2018). See Ap-
pendix A.4 for more details about the specific architectures.

Feature Learning: Following a similar evaluation than Mathieu et al. (2016), we use the learned
representations as feature vectors to estimate the target factors involved in each problem. In MNIST
we employ a set of linear-regressors predicting the scale, width and color parameters for each digit.
To predict the different expression classes in the AffectNet dataset, we use a linear classifier. For
methods using the reference-set, we used only the inferred latent variables e as features given that
they are expected to encode the information regarding the target factors. For evaluation, we split
each dataset in three subsets. The first is used to learn each generative model. Then, the second is
used for training the regressors or classifier. Finally, the third is used to evaluate the predictions in
terms of the mean absolute error and per-class accuracy for the MNIST and AffectNet, respectively.
Table 1 shows the results obtained by the different evaluated methods. Note that the unsupervised
approach DIP-VAE-I achieves better average results than Rb-VAE for MNIST. Moreover, in Affect-
Net, β-TCVAE achieves comparable or better performance in several cases. This may seem counter-
intuitive because, unlike Rb-VAE, DIP-VAE-I is trained without the weak-supervision provided by
reference images. However, it confirms that the learning objective of Rb-VAE does not explicitly
encourage the disentanglement between target and common factors. In contrast, we can see that
in most cases sRb-VAE obtains comparable or better results than rest of the methods. Moreover,
it achieves the best average performance in both datasets. This demonstrates that the information
provided by the reference distribution is effectively exploited by the symmetric KL objective used to
train sRb-VAE. To conclude, note that sRb-VAE also obtains better performance than Mathieu et al.
(2016) in both data-sets. So even though this method also uses reference-images during training,
sRb-VAE is shown to better exploit the weak-supervision in reference-based disentangling.

Conditional image generation: In this task, the goal is to transform real images by modifying only
the target factors. For this purpose, we use the generator network to obtain a new image from two
vectors: z, inferred from the original image, and e, randomly sampled from N (0,1). Fig. 2a-b
shows images generated by sRb-VAE and Rb-VAE. As we can observe, sRb-VAE generates more
convincing results than its non-symmetric counterpart. In AffectNet, the amount of variability in
Rb-VAE samples is quite low. In contrast, sRb-VAE is able to generate more diverse expressions.
Similarly, Rb-VAE is not able to model scale variations in the MNIST database, while sRb-VAE
does. Again, this shows the benefits of using the proposed symmetric objective.

Attribute transfer: In this problem, we aim to swap the target factors e between a pair of images
A and B. Fig. 2c shows images generated by sRb-VAE in this case. Note that our model is able
to effectively transfer only the expression and the digit style in the AffectNet and MNIST datasets
respectively, while keeping the rest of generative factors unchanged. Again, this shows that our
method is able to disentangle common and target factors by using only the weak-supervision pro-
vided by the reference-set.
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APPENDIX A APPENDIX

A.1 MATHEMATICAL DERIVATIONS

Equivalence between KL(qψ(x, z, e, y) ‖ pθ(x, z, e, y)) and Eq. (1)

∑
y∈[0,1]

∫
x,e,z

qψ(e|x, y)qψ(z|x)p(x|y)p(y) log

(
qψ(z, e|x, y)p(x|y)p(y)
pθ(x|e, z)p(z)p(e|y)p(y)

)
dxdzde (3)

=
1

2

∫
x,e,z

qψ(e|x)qψ(z|x)pu(x) log

(
qψ(e|x)qψ(z|x)pu(x)
pθ(x|e, z)p(z)p(e)

)
dxdzde

+
1

2

∫
x,z

qψ(z|x)pr(x) log

(
qψ(z|x)pr(x)
pθ(x|er, z)p(z)

)
dxdz (4)

=
1

2
Epu(x)Eqψ(e|x)qψ(z|x)

[
log

(
qψ(e|x)qψ(z|x)

p(z)p(e)

)
− log(pθ(x|e, z))

]
−Hu(x)

+
1

2
Epr(x)Eqψ(z|x)

[
log

(
qψ(z|x)
p(z)

)
− log(pθ(x|er, z))

]
−Hr(x) (5)

=
1

2
Epu(x)

[
KL(qψ(z|x)qψ(e|x) ‖ p(z)p(e))− Eqψ(z|x)qψ(e|x) log(pθ(x|z, e))

]

+
1

2
Epr(x)

[
KL(qψ(z|x) ‖ p(z))− Eqψ(z|x) log(pθ(x|z, e

r))

]
−Hr(x)−Hu(x)

We useHr(X) andHu(X) to denote the entropy of the reference and unlabelled distributions pr(x)
and pu(x) respectively. Note that they can be ignored during the minimization since are constant
w.r.t. parameters θ and ψ. For the second equality, we have used the definitions p(x|y = 0) =
pu(x), p(x|y = 1) = pr(x) and assumed p(y = 0) = p(y = 1) = 1

2 . Moreover, we have
exploited the fact that qψ(e|x, y = 1) and p(e|y = 1) are defined as delta functions and, therefore,
Ep(e|y=1)log(

p(e|y=1)
qψ(e|y=1) ) = 0. We denote p(e|y = 0) = p(e) and qψ(e|x, y = 0) = qψ(e|x) for the

sake of brevity.

Equivalence between KL(pθ(x, z, e, y) ‖ qψ(x, z, e, y)) and the expression in Eq. (2)

∑
y∈[0,1]

∫
x,e,z

pθ(x|e, z)p(z)p(e|y)p(y) log

(
pθ(x|e, z)p(z)p(e|y)p(y)
qψ(z, e|x, y)p(x|y)p(y)

)
dxdzde (6)

=
1

2

∫
x,e,z

pθ(x|e, z)p(z)p(e) log

(
pθ(x|e, z)p(z)p(e)
qψ(e|x)qψ(z|x)pu(x)

)
dxdzde

+
1

2

∫
x,z

pθ(x|er, z)p(z) log

(
pθ(x|er, z)p(z)
qψ(z|x)pr(x)

)
dxdzde (7)

=
1

2
Ep(z)p(e)Epθ(x|e,z)

[
log

(
pθ(x|e, z)
p(x)u

)
− log(qψ(e|x)qψ(z|x))

]

+
1

2
Ep(z)Epθ(x|er,z)

[
log

(
pθ(x|er, z)
p(x)r

)
− log(qψ(z|x))

]
−H(z)− 1

2
H(e) (8)

=
1

2
Ep(z)p(e)

[
KL(pθ(x|z, e) ‖ pu(x))− Epθ(x|z,e)[log(qψ(z|x)) + log(qψ(e|x))]

]
+

1

2
Ep(z)

[
KL(pθ(x|z, er) ‖ pr(x))− Epθ(x|z,er) log(qψ(z|x))

]
−H(z)− 1

2
H(e) (9)

6
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We have used the same definitions and assumptions previously discussed. Moreover, we denote
H(z) and H(e) as the entropy of the priors p(z) and p(e). Again, we can ignore these terms when
we are optimizing w.r.t parameters ψ and θ.

Equivalence between the minimization of the symmetric KL divergence and the expression in
Eq. (3)

KL(qψ(z, e,x, y) ‖ pθ(x, z, e, y)) +KL(pθ(x, z, e, y) ‖ qψ(z, e,x, y)) = (10)

= Eqψ(e|x,y)qψ(z|x)p(x|y)p(y) log

(
qψ(e|x, y)qψ(z|x)p(x|y)p(y)
pθ(x|e, z)p(z)p(e|y)p(y)

)

+ Epθ(x|e,z)p(z)p(e|y)p(y) log

(
pθ(x|e, z)p(z)p(e|y)p(y)

qψ(e|x, y)qψ(z|x)p(x|y)p(y)

)
(11)

=
1

2

[
Eqψ(e,z|x)pu(x) log

(
qψ(e, z|x)pu(x)
pθ(x|e, z)p(z)p(e)

)
+ Eqψ(z|x)pr(x) log

(
qψ(z|x)p(x)r

pθ(x|er, z)p(z)

)

+ Epθ(x|e,z)p(z)p(e) log

(
pθ(x|e, z)p(z)p(e)
qψ(e, z|x)pu(x)

)
+ Epθ(x|er,z)p(z) log

(
pθ(x|er, z)p(z))
qψ(z|x)pr(x)

)]
(12)

=
1

2

[
Eqψ(e,z|x)pu(x)Lxze + Eqψ(z|x)pr(x)Lxz − Epθ(x|e,z)p(z)p(e)Lxze − Epθ(x|er,z)p(z)Lxz

]
(13)

A.2 LEARNING RB-VAES WITH THE SYMMETRIC KL DIVERGENCE
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Figure 3: Losses used by sRB-VAE. Discriminator dξ(x, z, e) measures the log-density ratio be-
tween the distributions qψ(z, e|x)pu(x) and pθ(x|e, z)p(z)p(e). (b) Similar loss for reference im-
ages using an additional discriminator dγ(x, z) (c,d) Reconstruction errors for unlabelled and refer-
ence images. (e,f) Reconstruction error over latent variables inferred from unlabelled and reference
images generated using p(z), p(e) and er

A.3 DATASETS

Examples of reference and unlabelled images for MNIST and AffectNet are shown in Fig. 4. In the
following, we provide more information about the used datasets.
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Figure 4: Examples of reference and unlabelled images used in our experiments. Extracted from
MNIST (top) and AffectNet (bottom) datasets.

A.3.1 MNIST

We use slightly modified version of the MNIST images: the size is increased to 64×64 pixels and an
edge detection procedure is applied to keep only the boundaries of the digit. We obtain the samples
in the unlabelled dataset by applying the following transformations over the MNIST images:

1. Width: Generate a random integer in the range {1, . . . , 10} using a uniform distribution.
Apply a dilation operation over the image using a squared kernel with pixel-size equal to
the generated number.

2. Color: Generate a random 3D vector c ∈ [0, 1]3 using a uniform distribution. Normalize
the resulting vector as ĉ = c/||c||1. Multiply the RGB components of all the pixels in the
image by ĉ.

3. Size: Generate a random number in the range [0.5, 1] using a uniform distribution. Down-
scale the image by a factor equal to the generated number. Apply zero-padding to the
resulting image in order to recover the original resolution.

A.3.2 AFFECTNET

In order to remove 2D affine transformations such as scaling or in-plane rotations, we apply an
alignment process to the face images. We localize facial landmarks using the approach of Xiong
& De la Torre (2013). Then, we apply Procrustes analysis in order to find an affine transformation
aligning the detected landmarks with a mean shape. Finally, we apply the transformation to the
image and crop it. The resulting image is then re-sized to a resolution of 96× 96 pixels.

A.4 NETWORK ARCHITECTURES

Fig. 5 illustrates the network architectures used in our experiments. CN refers to pixel-wise normal-
ization as described in (Karras et al., 2018). FC defines a fully-connected layer. For Leaky ReLU
non-linearities, we have used an slope of 0.2. Given that we normalize the images in the range
[−1, 1], we use an hyperbolic tangent function as the last layer of the generator. For the discriminator
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dγ(x, z), we use the same architecture showed for dξ(x, z, e) but removing the input corresponding
to e. For the Adam optimizer (Kingma & Ba, 2015) , we used α = 10−4, β1 = 0.5, β2 = 0.99 and
ε = 10−8. Note that the described architectures and hyper-parameters follow standard definitions
according to most of GAN/VAEs previous works.

Figure 5: Network architectures used in our experiments
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