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Abstract
This paper proposes and demonstrates a surpris-
ing pattern in the training of neural networks:
there is a one to one relation between the val-
ues of any pair of losses (such as cross entropy,
mean squared error, 0/1 error etc.) evaluated for a
model arising at (any point of) a training run. This
pattern is universal in the sense that this one to
one relationship is identical across architectures
(such as VGG, Resnet, Densenet etc.), algorithms
(SGD and SGD with momentum) and training
loss functions (cross entropy and mean squared
error).

1. Introduction
Neural networks are state of the art models for various tasks
in machine learning, especially those in computer vision
and natural language processing. While there has been
significant progress in designing and applying neural net-
works for various tasks, our understanding of most aspects
of their behavior has not yet caught up with these advances.
One significant challenge in furthering our understanding is
the huge variation in deep learning models. In the context
of image classification (which will be the context of the
current paper), there are several well known models that
have been developed by the machine learning community:
VGG (Simonyan & Zisserman, 2014), Resnet (He et al.,
2016), Densenet (Huang et al., 2017) to name a few; all of
them having their own unique structure. Is it possible to
understand the behavior of all of these models through a
common lens?

The main contribution of the current paper is to propose and
demonstrate that, despite the diversity in the structure of
these different models, there are some striking resemblances
in the behavior of all of these models. More concretely,
the training curves across any two loss functions (such as
cross entropy vs 0/1 error or cross entropy vs mean squared
error) essentially overlap across all of the above models.
See Figure 1 for a pictorial description and Section 3 for a
rigorous description.

This observation suggests that training of most (if not all)
deep neural networks follows the same pattern. The ex-

istence of such universal patterns is quite exciting as it
points to the possibility of understanding the behavior (in
this instance training behavior) of different neural networks
through a single approach. We also note that, while this
similarity in behavior extends, to some extent, also to the
test data, there are limitations (see Section 4.2).

Paper organization: In Section 2, we will present the setup
and required definitions. Section 3 formally describes the
phenomenon identified in this paper. Section 4 presents the
main experimental results. We conclude in Section 5. More
experimental results are presented in the appendix.

Notation: Vectors are written in bold small case letters

(such as p and x). ‖x‖p :=
(∑d

i=1 x
p
i

)1/p

denotes the `p-

norm for vectors x ∈ Rd. The canonical basis for RK is
represented as {ei, . . . , eK} where eij = 1 if i = j else
eij = 0.

2. Preliminaries
For the task of learning a classifier, the goal is to learn a
mapping from the input space X ⊆ Rd to the set of class
labels [K] := {1, . . . ,K}, where K is the total number of
classes. Let ∆K :=

{
p ∈ RK

+ |
∑K

k=1 pk = 1
}

denote the

probability simplex on RK , then for a neural network Fθ :
X → ∆K parameterized by θ ∈ Θ ⊆ RD, the classifier
C can be obtained by choosing the class label for which
the prediction is the maximum. The classifier Cθ(x) :=
arg maxk∈[K] [Fθ(x)]k thus maps the input x ∈ X to a
class label contained in [K]. The training of the network
F on observed data D = {(xi, yi)}ni=1 is a minimization
problem over its parameters θ. One minimizes the empirical
loss L(θ;F, l) := 1

n

∑n
i=1 l(Fθ(xi), yi) where l : ∆K ×

[K]→ R+ is a loss function. In practice, l is usually chosen
to satisfy l(ey, y) = 0 ∀ y ∈ [K]. In this paper, we consider
the following commonly used training loss functions:

1. Cross Entropy: lCE(p, y) := − log py , and
2. Mean Squared Error: lMSE(p, y) := ‖p− ey‖22.

With the training performed on a fixed loss function, one
can also look at other surrogate losses to evaluate the per-
formance of the neural network. We consider the below few
more loss functions
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1. 0/1 Error: l0/1(p, y) := 1

[
arg maxk∈[K] pk 6= y

]
,

2. `p Error: l`p(p, y) := ‖p− ey‖p for p > 0.

It is to note that

1. l0/1 is not continuous in its first variable, therefore one
cannot use gradient based optimization algorithms to
directly minimize it, and

2. lMSE & lCE are fundamentally different loss functions.
lCE depends only on py, i.e., prediction on true class,
whereas lMSE depends on the full prediction vector p.

In the paper, we will denote l as the loss function and the
corresponding L(θ;F, l) as the loss of the network Fθ when
trained using the loss function l. We will also denote this
loss by L (l) when we are arguing about multiple networks.

3. Description of the Phenomenon
In this section, we will rigorously describe the phenomenon
that we demonstrate in this paper. Fix any two loss functions
l1 and l2 (e.g., each of these could be lCE or lMSE or l0/1 etc.).
As a training run progresses, the value of these losses on
the training data L (θt;F, l1) and L (θt;F, l2), in general,
decrease. We posit that

• Uniqueness: For any two loss functions l1 and l2,
there exists a unique function f(·) such that for
any (intermediate) model Fθt

in the training run,
its loss L (θt;F, l2) on the training data is given by
f(L (θt;F, l1)), where L (θt;F, li) is the loss evalu-
ated on the training data using loss function li. In
practice however, there are several sources of random-
ness (stochastic gradient descent, random initialization
etc.) which mean that we expect that L (θt;F, l2) ∼
f(L (θt;F, l1)) rather than exact equality.

• Universality: The function f(·) depends only on l1
and l2 and is identical for all network architectures
(such as Resnet, VGG, Densenet etc.), training loss
functions (such as lCE, lMSE etc.) and training algo-
rithms (such as SGD and SGDm etc.).

While the universality of f(·) is clearly surprising, we
note that the existence of a unique function f(·), as
well as our empirical observation that it is monotonic,
from a theory point of view, are quite surprising.

4. Experimental Results
Before describing the observations, we first describe all the
possible combinations of datasets, architectures, training
losses and training algorithms we have used.

• Architectures: We consider the below architectures
1. Multi Layer Perceptrons (MLP) - 1 and 2 hidden

layered with 1024 neurons in each (mlp1024x1

Table 1. Datasets used.

DATA SET TRAIN IMAGES CLASSES DIMENSION

CIFAR-10
(KRIZHEVSKY & HINTON, 2009) 50, 000 10 32× 32

CIFAR-10 RANDOM
(RANDOM LABELS) 50, 000 10 32× 32

RANDOM
(RANDOM PIXELS) 50, 000 10 32× 32

IMAGENET-20
(DENG ET AL., 2009)

(SUBSET OF 20 CLASSES)
26, 000 20 224× 224

and mlp1024x2 resp.) with batch normalization
and ReLU activation,

2. VGG (Simonyan & Zisserman, 2014)- VGG-11
and VGG-16 with and without batch normaliza-
tion layers (vgg## and vgg##wobn resp.),

3. Resnet (He et al., 2016) - Resnet-18 and Resnet-
50 (resnet18 and resnet50 resp.),

4. Densenet (Huang et al., 2017) - Densenet-121
(densenet) and,

5. Fully Connected (FC1) - No hidden layers. The
output is computed by softmax.

• Datasets: We consider 4 datasets tabulated in Table 1.

• Loss functions: We consider 2 training loss functions

1. lMSE and, 2. lCE

• Algorithms: We consider 2 training algorithms:
1. Stochastic Gradient Descent (SGD)
2. SGD with 0.9 momentum (SGDm)

Both the algorithms use a batch-size of 512 and a con-
stant learning rate from 2{−5,...,−10} such that there is
no divergence in training. The models are trained for
150− 250 epochs.

4.1. Universality in training surrogate loss and
classification error on train data

Fixing a dataset, one can learn the classifier by training the
network on a suitable training surrogate loss function (like
lMSE and lCE) using a variety of algorithms (like SGD and
SGDm) and hope to minimize the empirical classification
error L

(
l0/1
)
. Across the training profile, we can as well

see how their corresponding training surrogate losses behave
with respect to each other.

From Figure 1 we observe that the trends of training loss
(L (lMSE) or L (lMSE)) and training 0/1 error L

(
l0/1
)

over-
lap across all architectures for both the training algorithms
SGD and SGDm for CIFAR-10. The corresponding plot for
IMAGENET-20 (Figure 6) is presented in Appendix A.1.

For 1-hidden layered MLPs we show that this behavior also
holds if we the number of neurons in the hidden layer is
large. See Figure 7 in Appendix A.1 for the plots.
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(a) Trained L(lMSE) using SGD (b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using
SGDm (d) Trained L(lCE) using SGDm

Figure 1. Training CIFAR-10 on train loss functions lMSE and lCE

using SGD and SGDm for all architectures.

4.2. Observations on surrogate loss and classification
error on test data

Interestingly, the overlapping behavior observed between
training surrogate loss and training classification error does
not quite extend to the test data for CIFAR-10. We show
this in Figure 2 where we do not observe a significant over-
lap across all architectures for both the training algorithms
SGD and SGDm on CIFAR-10. On the other hand, similar
figure (Figure 8) for IMAGENET-20 exhibits a universal
behavior. The plot for IMAGENET-20 is presented in Ap-
pendix A.2. These results motivate further exploration of
possible universality patterns in the test data.

4.3. Universality over other surrogate losses

While a network Fθ may be trained using a particular train-
ing loss function (L (lMSE) or L (lCE)), one may still evalu-
ate other surrogate losses that have not been used in training.
For example, derived metrics like accuracy (1− L

(
l0/1
)
)

are used to evaluate a model as a classifier. Other loss
functions apart from the training loss are not involved in
the training phase of the network, so there is no reason
for picking only the 0/1 loss function l0/1. We also evalu-
ate the performance of the model on other surrogate losses{
lMSE, lCE, l0/1, l`p

}
\{ltraining}where ltraining ∈ {lMSE, lCE}.

Figures for several pairs of loss functions are presented in
the Appendix A.3. We observe the universality phenomenon
for all pairs of surrogate losses that we have considered.

(a) Trained L(lMSE) using SGD (b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using
SGDm (d) Trained L(lCE) using SGDm

Figure 2. Test losses for training CIFAR-10 on loss functions lMSE

and lCE using SGD and SGDm for all architectures.

4.4. Robustness to initializations

We also verify if the observed trends hold across different
random initialization of the parameters of the networks. Fig-
ure 11 and Figure 12 in Appendix A.4 show that indeed the
observations are robust to the randomness in initialization.

4.5. Universality across algorithms and training
surrogate loss functions

Similar trends are observed in Figure 3 for CIFAR-10 where
we keep the initialization and the training loss function fixed,
but look at different training algorithms SGD and SGDm
for all architectures jointly. A similar figure (Figure 13) for
IMAGENET-20 is presented in Appendix A.5. Coming to
universality across loss functions, we again observe similar
overlapping trends in Figure 4 for CIFAR-10 where we keep
the initialization and the training algorithm fixed, and vary
the training loss on the two loss functions (lMSE and lMSE)
for all architectures jointly. The corresponding figure (Fig-
ure 14) for IMAGENET-20 is presented in Appendix A.5.

4.6. Observations across datasets

As long as the datasets have same number of classes, we also
check if this phenomenon is also observed across different
datasets. We compare CIFAR-10 with CIFAR-10 Random
and Random datasets mentioned in Table 1. We do not
observe similar significant overlapping behavior when we
switch datasets as we present our observations in Figure 15
and Figure 16 in Appendix A.6.
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(a) Trained L(lMSE)

(b) Trained L(lCE)

Figure 3. Pairs of surrogate losses for training CIFAR-10 on loss
functions lMSE and lCE across SGD and SGDm for all architectures.

4.7. Comparison with shallow fully connected networks

The universality phenomenon seems to arise only for large
models but not for small models. For a shallow fully con-
nected network with no hidden layers, the curves do not
overlap in most of the cases as presented in Figure 5.

5. Discussion and future directions
We propose and demonstrate that there is a training dynam-
ics which is universal for various neural networks. While
similar behavior does not seem to hold for test data, pre-
liminary results call for further investigation. One possible
explanation is that distribution of predictions through the
training process follows a universal law. However, measur-
ing standard distances (e.g., Wasserstein) requires a large
number of samples. One potential solution is to measure
weaker distances such as neural net distances (Arora et al.,
2017). We believe that our observations could lead to a new
way of understanding neural networks in a unified manner.

(a) Trained using SGD

(b) Trained using SGDm

Figure 4. Pairs of surrogate losses for training CIFAR-10 using
SGD and SGDm across loss functions lMSE and lCE for all archi-
tectures.

(a) Trained L(lMSE) using SGD (b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using
SGDm (d) Trained L(lCE) using SGDm

Figure 5. Training CIFAR-10 on train loss functions lMSE and lCE

using SGD and SGDm across deep and shallow architectures.
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A. Appendix
A.1. Universality in training surrogate loss and

classification error for train data

This section is an extension to Section 4.1 where we describe
our observations on CIFAR-10 dataset. Here in Figure 6 we
show similar results on IMAGENET-20 where we see that
the overlapping trend of training loss and training 0/1 error
also holds on Imagenet-20.

(a) Trained L(lMSE) using SGD (b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using
SGDm (d) Trained L(lCE) using SGDm

Figure 6. Training Imagenet-20 on train loss functions lMSE and
lCE using SGD and SGDm for all architectures.

We observe similar behavior when we vary the number of
hidden neurons in a 1-hidden layer MLP. Figure 7 shows
that there is a significant overlap in the curves of training
loss and classification error for MLPs with varying number
of neurons in 2{4,...,13}.

(a) Trained L(lMSE) (b) Trained L(lCE)

Figure 7. Training CIFAR-10 on train loss functions lMSE and lCE

using SGD for MLPs with different number of neurons.

A.2. Observations on training surrogate loss and
classification error for test data

This section is an extension to Section 4.2 where we describe
our observations on CIFAR-10 dataset. Here in figure 8 we
show the results on IMAGENET-20 where we observe a
mild overlapping trend of training loss and 0/1 error on
the test data. This overlap observed is similar to that of
CIFAR-10 if the over-fitting stage (non-monotonic part of
the curves) is ignored.

(a) Trained L(lMSE) using SGD (b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using
SGDm (d) Trained L(lCE) using SGDm

Figure 8. Test losses for training IMAGENET-20 on loss functions
lMSE and lCE using SGD and SGDm for all architectures.

A.3. Universality across all pairs of surrogate losses

This section is an extension of Section 4.3 where we de-
scribe the universality phenomenon holding across all the
architectures and all the pairs of surrogate losses. We show
these observations in Figure 9 and Figure 10 for CIFAR-10
and IMAGENET-20 respectively.

A.4. Universality across multiple initializations

This section is an extension to Section 4.4 where we claim
that our observations are robust to initializations from Fig-
ure 11 and Figure 12.
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(a) Trained L(lMSE) using SGD

(b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using SGDm

(d) Trained L(lCE) using SGDm

Figure 9. All pairs of surrogate losses for training CIFAR-10 on
loss functions lMSE and lCE using SGD and SGDm across different
architectures.

(a) Trained L(lMSE) using SGD

(b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using SGDm

(d) Trained L(lCE) using SGDm

Figure 10. All pairs of surrogate losses across training
IMAGENET-20 on loss functions lMSE and lCE using SGD and
SGDm for different architectures.
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(a) Trained L(lMSE) using SGD

(b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using SGDm

(d) Trained L(lCE) using SGDm

Figure 11. All pairs of surrogate losses for training CIFAR-10 on
loss functions lMSE and lCE using SGD and SGDm across 2 random
initializations for all architectures.

(a) Trained L(lMSE) using SGD

(b) Trained L(lCE) using SGD

(c) Trained L(lMSE) using SGDm

(d) Trained L(lCE) using SGDm

Figure 12. All pairs of surrogate losses for training IMAGENET-
20 on loss functions lMSE and lCE using SGD and SGDm across 2
random initializations for all architectures.
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(a) Trained L(lMSE)

(b) Trained L(lCE)

Figure 13. All pairs of surrogate losses for IMAGENET-20 on loss
functions lMSE and lCE across SGD and SGDm for all architectures.

A.5. Universality across algorithms and training
surrogate loss functions

This section is in continuation to Section 4.5 where we de-
scribe our observations on CIFAR-10 dataset. Here in Fig-
ure 13 and Figure 14 we show similar results on Imagenet-
20 where we see that the overlapping trend across different
training algorithms and different surrogate loss functions
respectively also holds on IMAGENET-20.

A.6. Observations across datasets

This section is in continuation to Section 4.6 where we de-
scribe our observations on the phenomenon across different
datasets with same number of classes. As we see in Fig-
ure 15 and Figure 16, we do not observe the overlapping
phenomenon when we switch datasets.

(a) Trained using SGD

(b) Trained using SGDm

Figure 14. All pairs of loss functions for IMAGENET-20 using
SGD and SGDm across loss functions lMSE and lCE for all archi-
tectures.
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(a) Trained L(lMSE) using SGD

(b) Trained L(lMSE) using SGDm

(c) Trained L(lCE) using SGD

(d) Trained L(lCE) using SGDm

Figure 15. All pairs of surrogate losses for training using SGD
and SGDm, on loss functions lMSE and lCE across CIFAR-10 and
Random dataset, for all architectures.

(a) Trained L(lMSE) using SGD

(b) Trained L(lMSE) using SGDm

(c) Trained L(lCE) using SGD

(d) Trained L(lCE) using SGDm

Figure 16. All pairs of surrogate losses for training using SGD
and SGDm, on loss functions lMSE and lCE across CIFAR-10 and
CIFAR-10 Random, for all architectures.
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