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Abstract

Recent works have shown that learning from easier instances first can help deep
neural networks (DNNs) generalize better. However, knowing which data to present
during different stages of training is a challenging problem. In this work, we address
this problem by introducing data parameters. More specifically, we equip each
sample and class in a dataset with a learnable parameter (data parameters), which
governs their importance in the learning process. During training, at each iteration,
as we update the model parameters, we also update the data parameters. These
updates are done by gradient descent and do not require hand-crafted rules or design.
When applied to image classification task on CIFAR10, CIFAR100, WebVision and
ImageNet datasets, and object detection task on KITTI dataset, learning a dynamic
curriculum via data parameters leads to consistent gains, without any increase in
model complexity or training time. When applied to a noisy dataset, the proposed
method learns to learn from clean images and improves over the state-of-the-art
methods by 14%. To the best of our knowledge, our work is the first curriculum
learning method to show gains on large scale image classification and detection
tasks.

1 Introduction

Curriculum learning [1, 7, 12, 17, 35] has garnered lot of attention in the field of machine learning.
It draws inspiration from the learning principles underlying cognitive process of humans and animals,
which starts by learning easier concepts and then gradually transitions to learning more complex
concepts. Existing work has shown that with the help of this paradigm, DNNs can achieve better
generalization [1, 2, 15].

The key to applying curriculum learning to different problems is to come up with a ranking function
that assigns learning priorities to the training samples. A sample with a higher priority is supposed to
be learned earlier than a sample with a lower priority. For the majority of early work in curriculum
learning, the curriculum is provided by a pre-determined heuristic. For instance, for the task of
classifying shapes [1], shapes which had less variation were assigned a higher priority. In [29], authors
approached grammar induction, where short sentences were assigned higher priority. The main issues
which limit the application of this approach are: (1) for many complex problems, it is not trivial to
define what are the easy examples or subtasks, (2) in cases where humans can design a curriculum,
it is assumed that the difficulty of learning a sample for humans correlates with the difficulty of
learning the sample for a learning algorithm, and (3) even if one could define the curriculum, the
pre-determined curriculum might not be appropriate at all learning stages of the dynamically learned
model.

Learning a curriculum in an automatic manner is a hard task, since the ease or difficulty of an example
is relative to the current state of the model. In order to overcome these issues, in this work, we
introduce a new family of parameters for DNNs termed data parameters. More specifically, each
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class and data point have their own data parameter, governing their importance in the learning
process. During learning, at every iteration, as we update the standard model parameters, we also
update the data parameters using stochastic gradient descent. Learning data parameters for class and
instances leads to a dynamic and differentiable curriculum, without any need of human-intervention.

The main contributions of our work are:

1. We introduce a new class of parameters termed data parameters for every class and data
point in the dataset. We show that data parameters can be learned using gradient descent, and
doing so amounts to learning a dynamic and differentiable curriculum. In our formulation,
data parameters are involved only during training, and hence do not affect model complexity
at inference.

2. We show that for image classification and object detection tasks, learning a curriculum for
CNNs improves over baseline by prioritizing classes and their instances. To the best of our
knowledge, our paper is the first curriculum learning method to show gains on large scale
image classification tasks (ImageNet [5]) and on an object detection task (KITTI [9]).

3. We show that in presence of noisy labels, the learnt curriculum prioritizes learning from
clean labels. Doing so, our method outperforms the state-of-art by a significant margin.

4. We show that when presented with random labels, in comparison to a baseline DNN which
memorizes the data, the learned curriculum resists memorizing corrupt data.

2 Learning a Dynamic Curriculum via Data Parameters

As suggested earlier, the main intuition behind our idea is simple: each class and data point in the
training set has a parameter associated to it, which weighs the contribution of that class or data
point in the gradient update of model parameters. In contrast to existing works which set these
parameters with a heuristic, in our work these parameters are learnable and are learnt along with
the model parameters. Unlike model parameters which are involved during training and inference,
data parameters are only involved during training. Therefore, using data parameters during training
does not affect the model complexity and run-time at inference. In the next section we formalize this
intuition for class-level curriculum, followed by instance-level curriculum.

2.1 Learning curriculum over classes

We first describe learning a dynamic curriculum over classes where the contribution of each sample
to the model learning is determined by its class. This curriculum favors learning from easier classes
at the earlier stages of training. The curriculum over classes is dynamic and is controlled by the
class-level data parameters, which are also updated via the training process. In what follows, we will
refer to class-level data parameters as class-parameters.

Let
{(

xi, yi
)}N
i=1

denote the data, where xi ∈ Rd denotes a single data point and yi ∈ {1, ..., k}
denotes its target label. Let σclass ∈ Rk denote the class parameters for the classes in the dataset. We
denote the neural network function mapping the input data xi to logits zi ∈ Rk as zi = fθ(x

i) where
θ are the model parameters. During training, we pass the input sample xi through the DNN, and
compute its corresponding logits zi, but instead of computing the softmax directly on the logits, we
scale the logits of the instance with parameter corresponding to the target class, σclassyi . Note, scaling
of logits with the parameter of target class can be interpreted as a temperature scaling of logits. The
cross-entropy loss for a data point xi can then be written as

Li = − log(piyi)

piyi =
exp(ziyi/σ

class
yi )∑

j exp(z
i
j/σ

class
yi )

(1)

where piyi , z
i
yi and σclassyi denote probability, logit and parameter of the target class yi for data point

xi respectively. If we set all class parameters to one, i.e. σclassj = 1, j = 1 . . . k, we recover the
gradient for the standard cross-entropy loss.
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During training we solve

min
θ,σclass

1

N

N∑
i=1

Li (2)

where in addition to the model parameters, θ, we also optimize the class-level parametres, σclass.

The gradient of the loss with respect to logits is given by:

∂Li

∂zij
=
pij − 1(j = yi)

σclassyi
(3)

where 1(j = yi) means value 1 when j = yi and value 0 otherwise. The gradient of the loss with
respect to the parameter of target class is given by:

∂Li

∂σclassyi
=

(1− piyi)
(σclassyi )2

(
ziyi −

∑
j 6=yi

qijz
i
j

)
(4)

where qij =
pij

1−pi
yi

is the probability distribution over non-target classes (indexed by j, with j 6= yi).

Effect of class parameters on learning: The class parameters are updated with the negative of
the gradient given in equation (4), where the parameter corresponding to target class σclassyi will
increase if the logit of the target class is less than the expected value of logits on non-target classes
(i. e. ziyi <

∑
j 6=yi q

i
jz
i
j) and vice-versa. Therefore, during the course of learning, if data-points of

a certain class are being misclassified, the gradient update on class parameters gradually increases
the parameter associated with this class. Increasing the class parameter, flattens the curvature of the
loss function for instances of that class, thereby decaying the gradients w.r.t. logits (see equation (3)).
Decreasing the class parameter has an inverse effect, and accelerates the learning.

2.2 Learning curriculum over instances

In the previous section, we have detailed how we can learn a dynamic curriculum over classes of a
dataset. A natural extension of this framework is to have a dynamic curriculum over the instances
in the dataset. In this case, in equation (1), rather than having class parameters for each class
σclassj , j ∈ {1, . . . , k}, we can have a instance parameters for each sample present in the dataset,
σinsti , i ∈ {1, . . . , N}.
This parameterization helps us to learn a curriculum over instances of a class, which is useful when
instances within a class have different levels of difficulty. For instance, consider the task of classifying
images of an object. In some instances, the object could be fully visible (easy), while in others,
it could be occluded by other objects (hard). Another task is learning with noisy/corrupt labels.
In this setting, labels of some instances would be consistent with the input (easy), while labels of
some instances would not be consistent (hard). In our experiments, we show that the learning of a
curriculum over instances learns to ignore the noisy samples.

We can also learn a joint curriculum over classes and instances to have the benefits of both. In this
case, during training, the parameter for a data point xi is set as the sum of its target’s class paramter
σyi and its own instance parameter σinsti i.e. σ∗i = σclassyi + σinsti . In this setting, the gradient of the

loss with respect to the logits (as in equation 3) can be expressed as ∂Li

∂zij
=

pij−1(j=y
i)

σ∗
i

. Since the
effective parameter of an instance is formed by the addition of class and instance level parameters,
the gradient for these parameters for a data point xi is the same and is denoted by:

∂Li

∂σ∗i
=

(1− piyi)
(σ∗i )

2

(
ziyi −

∑
j 6=yi

qijz
i
j

)
(5)

However note, during training, instance parameters collect their gradient from individual samples
(when sampled in a mini-batch), while class parameters average the gradient from all samples of the
class present in a mini-batch.
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Inference with data parameters: As explained earlier, during training, we modify the logits of
a sample with data parameters (class or instance parameters). During inference, we do not have
parameters on the test set, and hence do not scale the logits with a data parameter. Not scaling the
logits, has no affect on the argmax of softmax, but the classification probability is uncalibrated. If
one is interested in calibrated output, calibration can be done on a held-out validation set [11]. Note
this modus operandi, of not scaling logits at inference, maintains our claim: use of data parameters
does not affect the model’s capacity and run-time at infernece.

3 Experimental evaluation

In this section we first describe the implementation details of our method. Next we will show results
of our method when applied for the task of image classification and detection. After that, we evaluate
our dynamic curriculum framework in presence of noisy labels. Finally, we show that our framework,
when applied to all random labels, acts as a strong regularizer and resists memorization. Note, since
our method modifies the logits at the very end of forward pass, the gains reported below come without
any additional computational overhead during training.

3.1 Implementation details

Optimizing data parameters σ with gradient descent requires constraint optimization with constraint
σ ≥ 0. Instead, we choose to optimize in log parameterization log(σ), which can be mapped back
using exponential mapping. Using an exponential mapping resolves log parameterization to positive
domain, and allows us to perform unconstrained optimization.

In our loss function, in addition to standard `2 regularizer on model paramters, ||θ||2, we also have `2
regularization on data parameters, || log(σclass)||2 and || log(σinst)||2, with their contribution being
controlled by weight decay parameter. This regularizer favors original softmax formulation with
σ = 1, and prevents data parameters from obtaining very high values.

Unless stated otherwise, the following implementation details holds true for our experiments. For all
numbers reported in this paper, we report the mean and standard deviation over 3 runs. We learn the
class and instance parameters using stochastic gradient descent (SGD). Class and instance parameters
are initialized with σ = 1 and optimized using gradient descent with momentum 0.9. When learning a
joint curriculum over class and instances, class parameters are initialized as 1 and instance parameters
are initialized as 0.001. This ensures that the sum of both parameters results in σ = 1, thereby
recovering the original softmax formulation. For both sets of parameters we use separate optimizers
with their respective learning rates and weight decay. The learning rate and weight decay for class
parameters is set to 0.1 and 5e−4 (same as model parameters of DNN). The learning rate and weight
decay for instance parameters varies depending upon the task, and is set by using the validation set.
When a class or instance is not present in a mini-batch, we do not update the momentum buffer
associated with the data parameter of the class or the instance respectively.

3.2 Learning a curriculum for image classification

In this section we demonstrate the efficacy of our method when applied to the task of image classifi-
cation. We evaluate our dynamic curriculum learning framework on CIFAR100 [18] and ImageNet
2012 classification [5] dataset.

CIFAR100 dataset contains 100 classes, 50,000 images in the training set and 10,000 images in the
test set. We evaluate our framework on CIFAR100 with WideResNet (depth:28, widening factor:10,
dropout:0) [38]. We first reproduce the results for WideResNet1 by setting the minibatch size,
optimizer and learning rate schedule identical to the original paper [38] and report the numbers in
Table 1.

ImageNet dataset contains 1000 classes, with 1.28 million training samples. We report top-1 accuracy
on the validation set which consists of 50,000 images. We evaluate our framework with ResNet18
[14], we use the implementation from PyTorch’s website 2. As per the standard settings, we train the

1Authors report results as median run of 5 runs. We reimplement their method and report mean and standard
deviation over three runs.

2https://github.com/pytorch/examples/tree/master/imagenet
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Figure 1: Left: Class level dynamic curriculum on CIFAR100. Curriculum learnt over classes is
dynamic in nature and adapts itself for different classes. Right: Instance level dynamic curriculum
on ImageNet. Two instances of the same class, as per their difficulty, are learnt at different points
during training.

models for a total of 100 epochs, with learning rate decay of 0.1 every 30 epochs i.e. at 30, 60, and
90 epochs. Weight decay for class and instance level data parameters is set as 1e− 4 (same as model
parameters) respectively. The learning rate for class and instance level data parameters is set as 0.1
and 0.8 respectively.

We report results for ImageNet and CIFAR100 in Table 1. As seen from the table, on CIFAR100
dataset, learning a curriculum over classes and instances lead to a statistically significant gain of
0.7% over the baseline for WideResNet. On ImageNet dataset, using a dynamic curriculum translates
to a gain of 0.7% over the baseline. In the table, we show that learning a dynamic curriculum over
classes alone performs better than baseline, but has a degradation of 0.2% in accuracy when compared
with class and instance level curriculum. This highlights the importance of using a curriculum over
instances, and validates our hypothesis: instances within a class have varying levels of difficulty, and
learning the order within a class is important. In Figure 1 (right), we plot data parameter for two
instances of the same class as it evolves during training. The two instances are learnt at different
points during training, as per their difficulty. For description of experiments on WebVision dataset,
see section 3.4.

Comparison with the state-of-the art: To the best of our knowledge, we are the first work to
report gains on ImageNet dataset due to curriculum learning3. There are existing works which report
results of curriculum learning on CIFAR100 dataset, but a direct comparison is not possible, since
these works report results in different settings. Nevertheless, below, we report key results from the
existing state-of-the-art:

[2] proposes a curriculum learning framework, where the sampling of data (curriculum) for SGD is
based on lightweight estimate of sample uncertainty. With ResNet27 they obtain an improvement
of 0.4% in accuracy. Inspired from the recent work of ’Learning to Teach’ [7], [36] proposes an
extension, where the teacher dynamically alters the loss function for the student model. Training
of a teacher model requires a separate held-out validation set and hence is not directly comparable.
On CIFAR100 dataset, they obtain an improvement of 1.1% over a slightly weaker ResNet-32
architecture which has 69.62% baseline accuracy. [13] proposes a dynamic non-uniform sampling
method for curriculum learning. They employ transfer learning to sort the training data by difficulty,
and evaluate various heuristics to guide the sampling for SGD. On CIFAR100, using VGG16 without
data augmentation (with a baseline accuracy of 68.1%), they obtain 0.6% improvement in accuracy.

Learnt curriculum is repeatable: To perform a qualitative evaluation, we visualize the dynamic
curriculum learnt over classes in Figure 1 (left). We pick four random classes, and plot class
parameters over the course of training (mean and standard-deviation over three runs). From the figure
we can see that the curriculum is dynamic, and adapts to different classes. More importantly, low
standard-deviation implies that the order in which classes are learnt is repeatable and intrinsic to the
dataset and model. Random runs on the same dataset with different architectures lead to different
curriculum.

3[17] reports numbers on ImageNet, but they train on a dataset twice the size of ImageNet containing noisy
labels. In section 3.4, we make an explicit comparison with [17] for the task of learning with noisy labels.
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Dataset Model Baseline DCL Class Instance

CIFAR100 WRN-28-10 80.1± 0.2 80.8± 0.1 3 3

ImageNet ResNet18 70.3± 0.1
71.0± 0.1 3 3
70.8± 0.1 3 7

WebVision ResNet18 66.3± 0.1
67.5± 0.1 3 3
67.1± 0.1 7 3

Table 1: Results on image classification dataset. Across different datasets and CNN architectures,
using our dynamic curriculum learning (DCL) framework leads to consistent gains.

Figure 3: Dynamic curriculum over the course of training (left to right) for object detection task.
Thickness of a bounding box instance is proportional to the value of parameter associated with it.
The curriculum learns easier unoccluded instances first, followed by followed by partial occlusion,
and in the end learns heavy occlusion.

3.3 Learning a curriculum for object detection

In this section we show that when applied for an object detection task, our framework is able to
recover a curriculum which first learns from the unoccluded instances (easy), followed by partially
occluded instances (medium) and finally learns the severely occluded instances (hard).

We apply our framework challenging KITTI dataset [9] for the task of 2D detection. The object
detection benchmark from KITTI has three classes: cyclist, pedestrian and car. The training set
contains 7,481 images with 2D bounding box annotations. The evaluation of 2D detectors is done in
three regimes: easy, medium and hard defined as per the truncation and occlusion levels of objects.
We use the train/ validation split provided by [3] to evaluate our performance for detecting car
instances.

Setting Baseline DCL

Easy 92.1± 0.16 92.8
Medium 87.3± 0.26 87.9

Hard 78.0± 0.6 79.3

Figure 2: Detection mAP on KITTI.

As a baseline, we implement 2D detection using Single Shot
Detector (SSDNet) [24] architecture. In SSDNet architecture,
the network consists of standard convolutional layers, followed
by anchors at multiple feature maps. Each anchor is assigned
to either a background or to a bounding box annotation. An-
chors assigned to a bounding box, predict the bounding box
offset and class label. To learn a curriculum over instances,
we associate a learnable parameter to each bounding box an-
notation. Anchors assigned to a bounding box annotation, use

the value of parameter associated to that instance to rescale their logits before predicting the target
class label. Therefore, if anchors assigned to a certain bounding box annotation are not able to
predict the target label, the parameter associated to the bounding box instance will attain a high value.
Anchors assigned to background do not have a bounding box associated to them. To mitigate this
issue, for each mini-batch, we compute the mean value of instance parameter over target bounding
box instances, and use that for negative anchors. This ensures that positive and negative anchors learn
at the same pace, while allowing the positive anchors to learn a curriculum over different instances.
We have not tuned hyperparameters on this dataset, but set learning rate for instance level parameters
as 0.1, and did not use weight decay or momentum.

In Figure 2 we obtain an improvement of 0.7, 0.6 and 1.3 mAP in easy, medium and hard settings
compared to the baseline algorithm. In Figure 3 we show how the learnt curriculum attends samples
of different difficulty over the course of training.

Comparison with the state-of-the art: To the best of our knowledge, we are the first work to
report improvements on object detection task with curriculum learning. Following works are the
closest relevant state-of-the-art: [21, 33, 6] have explored the use of curriculum learning for weakly
supervised object detection. To avoid getting stuck in a local minima in multiple instance learning
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Figure 4: Visualization of dynamic instance level curriculum on noisy CIFAR100 dataset under 40%
label noise. Left: Plot of mean and standard-deviation over instance parameters of clean and noisy
data instances over the course of training. Right: Percentage of corrupt samples in the top 40% data
points sorted by their instance parameter value. See text for details.

framework, [21] uses segmentation maps along with current bounding box proposals to define a
curriculum. [33] trains an object detector using small set of training data. This detector is evaluated
on large set of weakly labeled images, and is used to measure mAP per image [41]. mAP per image
is used as a proxy for intrinsic difficulty of an image, and is used to define a curriculum.

3.4 Learning a curriculum for noisy labels

An ideal framework for learning the curriculum can be useful when some of the labels in the dataset
are noisy, where the framework should prioritize learning from clean labels. In this section, we first
validate our dynamic curriculum learning framework in a controlled corrupted label setting, followed
by results on a real world noisy dataset.

Results in controlled corrupted label setting To compare with the relevant state-of-the-art, we
follow the common setting in ([17, 26]) to train deep CNNs, where the label of each image is
independently changed to a uniform random class with probability p, where p is noise fraction and is
set to 0.2, 0.4 and 0.8. The labels of validation data remain clean for evaluation. We compare our
approach with two state-of-the-art approaches [17, 26] in this setting. Both of these methods assign a
weight to each sample in the training set, which is used to scale the gradients of these samples during
training. [17] trains an auxiliary network (MentorNet) to assign weights to data points. [26] employs
meta-learning framework to learn the optimal weight of a sample.

We implement WideResNet-28-10 under settings identical to ones reported in [26]. For all of our
experiments with noisy labels, the learning rate for instance parameters is set to 0.2, and accuracy
is reported at 84 epochs (set by cross-validation). As seen from the results in Table 2, our method
outperforms the state-of-the-art MentorNet PD[17] by 14.5% on CIFAR10 and 14% on CIFAR100.
In supplementary material, we perform the same analysis for 20% and 80% noise on CIFAR100, and
show that DCL outperforms MentorNet PD[17] by 3% and 6% respectively. We also compare our
results with methods (MentorNet DD [17] and robust weighting [26]) which use additional clean
data to learn the curriculum. Despite the fact that our method does not use additional clean data, we
outperform these methods by 2% on CIFAR10 and 3% on CIFAR100.

Next, we measure the gap between our method and an oracle which learns only from the clean data.
We establish the performance of the oracle by training our baseline DNN only on the clean data in
each setting, i.e. in setting with 40% noise, we train only on 60% clean data. As it can be seen from
the table, under 40% noise level, the gap between our method and the oracle is only 3%, both for
CIFAR10 and CIFAR100.

In Figure 4 (left) we plot the mean instance parameter for noisy and clean data during the course of
training. As seen from the figures, over the course of training, the learnt curriculum is able to filter
the clean data from noisy data, by assigning high instance parameter value to noisy instances. In
Figure 4 (right) we plot the percentage of corrupt samples in top 40% of training data sorted by their
instance parameter value. As seen from the plot, within 20 epochs, 95% of the noisy instances attain
instance parameter values greater than all clean samples. For results under 20% and 80% noise level,
see supplementary material.
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Additional Clean Data CIFAR-10 CIFAR-100

MentorNet DD [17] Yes 88.7 67.5
Robust Weighting [26] Yes 86.92± 0.19 61.34± 2.06

Baseline [26] No 67.97± 0.62 50.66± 0.24
Reed Hard [26] No 69.66± 1.21 51.34± 0.17
S Model [26] No 70.64± 3.09 49.10± 0.58
MentorNet PD [17] No 76.6 56.9
DCL (ours) No 91.10± 0.70 70.93± 0.15

Baseline on clean data (oracle) No 94.24± 0.15 74.18± 0.19

Table 2: Performance of our method under uniform 40% label noise on train set. Dynamic curriculum
learning (DCL) outperforms the state-of-the-art methods including methods (top 2 rows) which use
additional clean data. Bottom row indicates performance of baseline DNN trained on clean labels.

Results on noisy dataset from web In this section we will show results on the challenging WebVi-
sion 2017 dataset [22], a large scale dataset, which has corrupted labels and is extremely imbalanced.
WebVision 2017 dataset is constructed by crawling Google image search and Flickr using 1000
classes from ImageNet as queries. It contains 1000 classes, with 2.4 million training images, without
any human annotation. The dataset provides 50,000 manually-labeled images for evaluation.

We conducted experiments using ResNet18 with the same hyper-parameters as we have used for
ImageNet experiments in the paper and report results in Table 1. Our baseline, the standard DNN
training of ResNet18 obtained 66.3± 0.1% as top-1 accuracy. Since the noise present in dataset is at
instance level, first we evaluate the use of instance level curriculum. Using an instance curriculum
leads to an improvement of 0.8%. Next, we evaluate the use of joint class and instance level
curriculum. Interestingly, even though noise present in this dataset is at instance level, learning a joint
curriculum improves over instance level curriculum, and leads to an overall gain of 1.2% over the
baseline.

3.5 Curriculum learning with all random labels
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Baseline
Dynamic CurriculumRecent work [39] has shown that when presented with a dataset

containing all random labels, standard DNNs are able to mem-
orize the entire training dataset. They evaluated the standard
regularization methods such as weight-decay, dropout, data-
augmentation, and found them to be ineffective to prevent
memorization. We replicate their experimental setup and find-
ings using VGG16 [28] (baseline) on CIFAR100 dataset. In
the figure on the right, we plot the training accuracy curves for baseline and baseline with our
dynamic curriculum. As seen from the plot, using our dynamic curriculum learning formulation
resists memorizing the corrupt training data. As explained in Section 2.1, when data-points of a
certain class are misclassified, the gradient update will increase the corresponding class parameter. In
this setting, where labels of images are random, over the course of training, the class parameter for
all the classes keeps increasing, effectively decaying the magnitude of gradient update on the training
set (see equation 4).

4 Related work

Curriculum learning has been an active topic of research in the machine learning community and has
been used in various problems [4, 10, 15, 21, 27, 31, 32]. In this section, we give a brief overview of
related work most relevant to the material we present in the paper. For a brief overview of curriculum
learning and a theoretical treatment, we refer the reader to [34].

In the early works of curriculum learning [1, 29], the curriculum was pre-determined and fixed during
the course of optimization. To address this limitation, [19] proposed Self Paced Learning (SPL)
framework, where the curriculum is optimized jointly with the model parameters. In SPL [19], the
data points are assigned a weight variable, which are updated along with the model parameters using
alternate minimization. More specifically at each iteration, weights of samples with a loss higher
than a pre-defined threshold λ are set to 0. Over the course of training, while gradually increasing
λ, more samples are included in training from easy to hard in a self-paced manner. SPL has been
widely adopted and applied to various problems [20, 23, 25, 30]. Similar to SPL, our method learns a
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dynamic curriculum and mitigates the issue of a using a pre-determined curriculum. Earlier works in
curriculum learning and SPL perform discrete sampling of data, which could lead to local minima.
In comparison, our method performs soft-differentiable sampling of data. Recently, several works
have been proposed to obtain better weighting strategies [7, 16, 17, 40] for SPL framework. Learning
weight for each sample amounts to learning the scale for the gradient update of each sample. In
contrast, in our method, learning the data parameters amounts to learning the loss function specific to
each data point and class. Another major difference between our method and SPL is that, the majority
of SPL methods use the loss of a data-point as a proxy for establishing its hardness with respect to the
current model. This heuristic when applied to deep neural networks (DNNs) might be problematic,
since DNNs can easily memorize hard examples (e.g random labels[39]), making the loss of a sample
decorrelated with the intrinsic hardness of the sample.

Recent works have explored meta-learning for modifying the loss function dynamically [36], to
re-weight instances to enable learning with noisy labels [17, 26, 36] and to accelerate training of
DNNs [7]. These methods involve training a teacher on a task, and then using the teacher to train
the student on the target task. In contrast, in our method, the parameters for instances and classes
(viewed as teacher) and the parameters of the model (viewed as student) are trained jointly. Doing
so ensures that the learnt curriculum is consistent with the current state of the model, and does not
require a held out dataset.

Curriculum learning has also been explored in the context of learning with noisy labels [12, 17, 37].
MentorNet[17] trains an additional network for weighing samples in a noisy train set. Guo et al. [12]
propose a novel curriculum learning framework by measuring the data complexity using clustering
density. They apply their method on large-scale weakly-supervised web images and obtain state-of-
the-art results. For a comprehensive overview on label noise and noise robust algorithms we refer the
reader to [8].

5 Conclusion

In this work, we have introduced a new family of parameters termed "data parameters". We have
shown that data parameters can be learnt using gradient descent, and doing so amounts to learning
a dynamic curriculum. Specifically, we equip each class and training data point with a learnable
parameter (data parameters), which governs their importance during different stages of training.
Along with the model parameters, the data parameters are also learnt with gradient descent, thereby
yielding a curriculum which evolves during the course of training. More importantly, post training,
during inference, data parameters are not used, and hence do not alter the model’s complexity or
run-time at inference. We apply this dynamic curriculum learning framework to image classification
and object detection tasks, and show that our approach leads to consistent gains over the baseline
DNNs. When applied to a noisy dataset, the dynamic curriculum priortizes learning from clean data,
while effectively ignoring noisy data. Finally, when presented with dataset containing random labels,
our framework resists memorizing the training data unlike standard DNNs.
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