
Presented as a workshop paper at ICLR 2019

IMPROVED SELF-SUPERVISED DEEP IMAGE DENOISING

Samuli Laine
NVIDIA
slaine@nvidia.com

Jaakko Lehtinen
NVIDIA, Aalto University
jlehtinen@nvidia.com

Timo Aila
NVIDIA
taila@nvidia.com

ABSTRACT

We describe techniques for training high-quality image denoising models that re-
quire only single instances of corrupted images as training data. Inspired by a
recent technique that removes the need for supervision through image pairs by
employing networks with a “blind spot” in the receptive field, we address two of
its shortcomings: inefficient training and poor final denoising performance. This
is achieved through a novel blind-spot convolutional network architecture that al-
lows efficient self-supervised training, as well as application of Bayesian distribu-
tion prediction on output colors. Together, they bring the self-supervised model
on par with fully supervised deep learning techniques in terms of both quality and
training speed in the case of i.i.d. Gaussian noise.

1 INTRODUCTION

Denoising, the removal of noise from images, is a major application of deep learning. Several archi-
tectures have been proposed for general-purpose image restoration tasks, e.g., U-Nets (Ronneberger
et al., 2015), hierarchical residual networks (Mao et al., 2016), and residual dense networks (Zhang
et al., 2018). Traditionally, the models are trained in a supervised fashion with corrupted images as
inputs and clean images as targets, so that the network learns to remove the corruption.

Lehtinen et al. (2018) introduced NOISE2NOISE training, where pairs of corrupted images are used
as training data. They observe that when certain statistical conditions are met, a network faced with
the impossible task of mapping corrupted images to corrupted images learns, loosely speaking, to
output the “average” image. For a large class of image corruptions, the clean image is a simple
per-pixel statistic — such as mean, median, or mode — over the stochastic corruption process, and
hence the restoration model can be supervised using corrupted data by choosing the appropriate loss
function to recover the statistic of interest.

While removing the need for clean training images, NOISE2NOISE training still requires at least two
independent realizations of the corruption for each training image. While this eases data collection
significantly compared to noisy-clean pairs, large collections of (single) poor images are still much
more widespread. This motivates investigation of self-supervised training: how much can we learn
from just looking at bad data? While foregoing supervision would lead to the expectation of some
regression in performance, can we make up for it by making stronger assumptions about the corrup-
tion process? In this paper, we show that under the assumption of additive Gaussian noise that is
i.i.d. between pixels, no concessions in denoising performance are necessary.

We draw inspiration from the recent NOISE2VOID (N2V) training technique of Krull et al. (2018).
The algorithm needs no image pairs, and uses just individual noisy images as training data, assuming
that the corruption is zero-mean and independent between pixels. The method is based on blind-spot
networks where the receptive field of the network does not include the center pixel. This allows using
the same noisy image as both training input and training target — because the network cannot see
the correct answer, using the same image as target is equivalent to using a different noisy realization.
This approach is self-supervised in the sense that the surrounding context is used to predict the value
of the output pixel without a separate reference image (Doersch et al., 2015).

The networks used by Krull et al. (2018) do not have a blind spot by design, but are trained to ignore
the center pixel using a masking scheme where only a few output pixels can contribute to the loss
function, reducing training efficiency considerably. We remedy this with a novel architecture that
allows efficient training without masking. Furthermore, the existence of the blind spot leads to poor
denoising quality. We derive a scheme for combining the network output with data in the blind spot,
bringing the denoising quality on par with conventionally trained networks.

1

Presented as a workshop paper at ICLR 2019

C C C C C C C 1 1 1ofs

Figure 1: In our blind-spot network architecture, we effectively construct four denoiser network branches, each
having its receptive field restricted to a different direction. A single-pixel offset at the end of each branch
separates the receptive field from the center pixel. The results are then combined by 1×1 convolutions. In
practice, we run four rotated versions of each input image through a single receptive field -restricted branch,
yielding a simpler architecture that performs the same function. This also implicitly shares the convolution
kernels between the branches and thus avoids the four-fold increase in the number of trainable weights.

2 CONVOLUTIONAL BLIND-SPOT NETWORK ARCHITECTURES

Our convolutional blind-spot networks are designed by combining multiple branches that each have
their receptive field restricted to a half-plane (Figure 1) that does not contain the center pixel. The
principle of limiting the receptive field has been used in PixelCNN (van den Oord et al., 2016a)
image synthesis networks, where only pixels synthesized before the current pixel are allowed in the
receptive field. We combine the four branches with a series of 1×1 convolutions to obtain a receptive
field that can extend arbitrarily far in every direction but does not contain the center pixel.

In order to transform a restoration network into one with a restricted receptive field, we modify
each individual layer so that its receptive field is fully contained within one half-plane, including
the center row/column. The receptive field of the resulting network includes the center pixel, so we
offset the feature maps by one pixel before combining them. Layers that do not extend the receptive
field, e.g., concatenation, summation, 1×1 convolution, etc., can be used without modifications.

Convolution layers. To restrict the receptive field of a zero-padding convolution layer to extend
only, say, upwards, the easiest solution is to offset the feature maps downwards when performing
the convolution operation. For an h × w kernel size, a downwards offset of k = bh/2c pixels is
equivalent to using a kernel that is shifted upwards so that all weights below the center line are zero.
Specifically, we first append k rows of zeros to the top of input tensor, then perform the convolution,
and finally crop out the k bottom rows of the output.

Downsampling and upsampling layers. Many image restoration networks involve downsampling
and upsampling layers, and by default, these extend the receptive field in all directions. Consider,
e.g., a bilinear 2× 2 downsampling step followed immediately by a nearest-neighbor 2× 2 upsam-
pling step. The contents of every 2 × 2 pixel block in the output now correspond to the average of
this block in the input, i.e., information has been transferred in every direction within the block. We
fix this problem by again applying an offset to the data. It is sufficient to restrict the receptive field
for the pair of downsampling and upsampling layers, which means that only one of the layers needs
to be modified, and we have chosen to attach the offsets to the downsampling layers. For a 2 × 2
bilinear downsampling layer, we can restrict the receptive field to extend upwards only by padding
the input tensor with one row of zeros at top and cropping out the bottom row before performing the
actual downsampling operation.

3 BAYESIAN TRAINING AND MAP DENOISING

In their basic form, blind-spot networks suffer from the inability to utilize the data at the center pixel
at test time; yet, clearly, the observed value carries information about the underlying clean signal.
For training it is mandatory to disconnect the information flow from pixel position to itself, but there
is no such restriction when using the network to restore novel images after it has been trained. We
capitalize on this by training the network to predict, based on the context, a distribution of values
instead of a single mean prediction, and applying maximum a posteriori estimation at test time.

In Bayesian training (Nix & Weigend, 1994; Le et al., 2005; Kendall & Gal, 2017), the network
predicts output distributions using a negative log-likelihood loss function. We model the data using
multivariate Gaussian distributions: For images with c color components, we have the denoising
network output a vector of means µy and a covariance matrix Σy for each pixel. For convenience,

2

Presented as a workshop paper at ICLR 2019

we parameterize the c × c inverse per-pixel covariance matrix as Σ−1
y = Ay

TAy , where Ay is an
upper triangular matrix. This choice ensures that Σy is positive semidefinite with non-negative
diagonal entries, as required for a covariance matrix. For RGB images, the network thus outputs a
total of nine values per pixel: the three-component mean µy and the six nonzero elements of Ay .

Let f(y; µy,Σy) denote the probability density of a multivariate Gaussian distributionN (µy,Σy)
at target pixel color y, i.e., exp[− 1

2 (y − µy)TΣ−1
y (y − µy)]/

√
(2π)c|Σy|. Under our parameteri-

zation, the corresponding negative log-likelihood loss to optimize during training is

loss(y,µy,Ay) = − log f(y; µy, (Ay
TAy)−1) = 1

2
||Ay(y − µy)||2 − log |Ay|+ C, (1)

where C is a constant term that can be discarded. Because Ay is a triangular matrix, its determinant
|Ay| is the product of its diagonal elements. To avoid numerical issues, we clamp this determinant
to a small positive epsilon (ε = 10−8) so that the logarithm is always well-defined.

We assume that all of our images are corrupted by additive uniform Gaussian noise N (0, σ2I) with
a known standard deviation σ. Using noisy targets means that there is a “baseline” level of noise in
the network output distributions that we must discount. Thanks to the blind spot, the network output
is independent of the noise in the center pixel, so their (co-)variances are additive. We can therefore
calculate Σp = Σy − σ2I to determine the actual uncertainty Σp of the network. To avoid negative
variances due to approximation errors, the diagonal elements of Σp can be clamped to zero.

Let us now derive our maximum a posteriori (MAP) denoising procedure. For each pixel, our goal
is to find the most likely clean value x̂ given our knowledge of the noisy value x̃ and the output
distribution predicted by the network based on the blind-spot neighborhood Ω. It follows that

x̂ = argmax
x

P (x|x̃,Ω) = argmax
x

P (x̃|x)P (x|Ω) = argmax
x

f(x; x̃, σ2I) f(x; µy,Σp), (2)

where we have first applied Bayes’ theorem to obtain the MAP objective P (x̃|x)P (x|Ω), and then
expressed the associated probabilities as pdfs of Gaussian distributions. In the first term we have
exploited the symmetry of the Gaussian distribution, and as the prior term P (x|Ω) we use the
prediction of the network with the baseline uncertainty removed. Following Bromiley (2003), the
mean, and consequently the argmax, of this product of two Gaussian distributions is

x̂ = (Σ−1
p + σ−2I)−1(Σ−1

p µy + σ−2x̃). (3)

4 RESULTS AND CONCLUSIONS

For the baseline experiments, as well as for the backbone of our blind-spot networks, we use the
same U-Net (Ronneberger et al., 2015) architecture as Lehtinen et al. (2018), see their appendix
for details. The only differences are that we have layers DEC CONV1A and DEC CONV1B output
96 feature maps like the other convolution layers at the decoder stage, and layer DEC CONV1C is
removed. After combining the four receptive field restricted branches, we thus have 384 feature
maps. These are fed into three successive 1×1 convolutions with 384, 96, and n output channels,
respectively, where n is the number of output components for the network. All convolution layers
except the last 1×1 convolution use leaky ReLU with α = 0.1 (Maas et al., 2013). All networks
were trained using Adam with default parameters (Kingma & Ba, 2015), learning rate λ = 0.0003,
and minibatch size of 4. As training data, we used random 256×256 crops from the 50K images in
the ILSVRC2012 (Imagenet) validation set. The training continued until 1.2M images were shown
to the network. All training and test images were corrupted with Gaussian noise, σ = 25.

Table 1 shows the denoising quality in dB for the four test datasets used. From the BSD300 dataset
we use the 100 validation images only. Similar to Krull et al. (2018), we use the grayscale ver-
sion of the BSD68 dataset — for this case we train a single-channel (c = 1) denoiser using only
the luminance channel of the training images. All our blind-spot noise-to-noise networks use the
convolutional architecture (Section 2) and are trained without masking. In BSD68 our simplified L2
variant closely matches the original NOISE2VOID training, suggesting that our network with an ar-
chitecturally enforced blind spot is approximately as capable as the masking-based network trained
by Krull et al. (2018). We see that the denoising quality of our Full setup (Section 3) is on par
with baseline results of N2N and N2C, and clearly surpasses standard blind-spot denoising (L2) that
does not exploit the information in the blind spot. Doing the estimation separately for each color

3

Presented as a workshop paper at ICLR 2019

Test set Previous work Blind-spot noise-to-noise (our) Baseline
BM3D N2V Full Per-comp. L2 N2N N2C

KODAK 31.82 – 32.39 31.54 30.58 32.39 32.41
BSD300 30.34 – 30.99 29.87 28.61 31.03 31.04
BSD68 (grayscale) 28.59 27.71 29.27 29.27 27.76 29.30 29.31
SET14 30.50 – 31.20 30.54 29.51 31.17 31.17
Average 30.31 – 30.96 30.31 29.11 30.97 30.98

Table 1: PSNR for various methods and test sets. Numbers for BM3D and N2V are from (Lehtinen et al.,
2018) and (Krull et al., 2018). Full is our blind-spot training and denoising method as described in Section 3.
Per-comp. is an ablated setup where each color component is treated as an independent univariate Gaussian,
highlighting the importance of expressing color outputs as multivariate distributions. L2 refers to training using
the standard L2 loss function and ignoring the center pixel when denoising. Columns N2N and N2C refer to
NOISE2NOISE training of Lehtinen et al. (2018) and traditional supervised training with clean targets (i.e.,
noise-to-clean), respectively. Results within 0.05 dB of the best result for each dataset are shown in boldface.

Test image (KODAK-06) Noisy input BM3D N2N (baseline) Full (our) Per-comp. (our) L2 (our)
20.42 dB 30.60 dB 31.13 dB 31.14 dB 30.06 dB 29.03 dB

Figure 2: Image quality examples of the various denoising methods. PSNRs are for the single test image.

channel (Per-comp.) performs significantly worse, except in the grayscale BSD68 dataset where it
is equivalent to the Full method.

Figure 2 shows example denoising results. Our Full setup produces images that are virtually iden-
tical to the N2N baseline both visually and in terms of PSNR. The ablated Per-comp. setup tends
to produce color artifacts, demonstrating the shortcomings of the simpler per-component univari-
ate model. Finally, the L2 variant that ignores the center pixel during denoising produces visible
checkerboard patterns, some of which can also be seen in the result images of Krull et al. (2018).

Conclusions. We have shown that self-supervised training — looking at noisy images only, without
the benefit of seeing the same image under different noise realizations — is sufficient for learning
deep denoising models on par with those that make use of another realization as a training target,
be it clean or corrupted. Currently this comes at the cost of assuming pixel-wise independent noise
with a known analytic likelihood model.

5 RELATED WORK

PixelCNNs (van den Oord et al., 2016b;a; Salimans et al., 2017) generate novel images in a scanline
order, one pixel at a time, by conditioning the possible pixel colors using all previous, already
generated pixels. The training uses masked convolutions that prevent looking at pixels that would
not have been generated yet — one good implementation of masking (van den Oord et al., 2016a)
combines a vertical half-space (previous scanlines) with a horizontal line (current scanline). In our
application we use four half-spaces to exclude the center pixel only. Regrettably the term “blind
spot” has a slightly different meaning in PixelCNNs: van den Oord et al. (2016a) uses it to denote
valid input pixels that the network in question fails to see due to poor design, whereas we follow the
naming convention of Krull et al. (2018) so that a blind spot is always intentional.

Applying Bayesian statistics to denoising has a long history. Non-local means (Buades et al., 2005),
BM3D (Dabov et al., 2007), and WNNM (Gu et al., 2014) identify a group of similar pixel neighbor-
hoods and estimate the center pixel’s color from those. This is conceptually similar to our solution,
which uses a convolutional network to represent the mapping from neighborhoods to the distilled
outputs. Both approaches need only the noisy images, but while the explicit block-based methods
determine a small number of neighborhoods from the input image alone, our blind-spot training can
implicitly identify and regress an arbitrarily large number of neighborhoods from a collection of
noisy training data.

4

Presented as a workshop paper at ICLR 2019

REFERENCES

P. A. Bromiley. Products and convolutions of Gaussian distributions. Technical Report 2003-003,
www.tina-vision.net, 2003.

Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local algorithm for image denoising.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 60–65, 2005.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3-D transform-
domain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080–2095, 2007.

Carl Doersch, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by
context prediction. In Proc. International Conference on Computer Vision (ICCV) 2015, 2015.

Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu Feng. Weighted nuclear norm minimiza-
tion with application to image denoising. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2862–2869, 2014.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In Proc. Advances in Neural Information Processing Systems (NIPS), pp. 5574–5584,
2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. Interna-
tional Conference on Learning Representations (ICLR), 2015.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2Void – Learning denoising from
single noisy images. CoRR, abs/1811.10980, 2018.

Quoc V. Le, Alex J. Smola, and Stéphane Canu. Heteroscedastic Gaussian process regression. In
Proc. International Conference on Machine Learning (ICML), pp. 489–496, 2005.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika Aittala, and
Timo Aila. Noise2Noise: Learning image restoration without clean data. In Proc. International
Conference on Machine Learning (ICML), 2018.

Andrew L Maas, Awni Y Hannun, and Andrew Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. International Conference on Machine Learning (ICML), 2013.

Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using convolutional auto-
encoders with symmetric skip connections. In Proc. Advances in Neural Information Processing
Systems (NIPS), 2016.

David A. Nix and Andreas S. Weigend. Estimating the mean and variance of the target probability
distribution. IEEE International Conference on Neural Networks, pp. 55–60, 1994.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomed-
ical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), 9351:234–241, 2015.

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. PixelCNN++: improving the
pixelCNN with discretized logistic mixture likelihood and other modifications. In Proc. Interna-
tional Conference on Learning Representations (ICLR), 2017.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu, Oriol Vinyals, and
Alex Graves. Conditional image generation with PixelCNN decoders. In Proc. Advances in
Neural Information Processing Systems (NIPS), pp. 4790–4798, 2016a.

Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In Proc. International Conference on Machine Learning (ICML), pp. 1747–1756, 2016b.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image
restoration. CoRR, abs/1812.10477, 2018.

5

