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Abstract
We propose a new family of fairness definitions for classification problems that
combine some of the best properties of both statistical and individual notions of
fairness. We posit not only a distribution over individuals, but also a distribution
over (or collection of) classification tasks. We then ask that standard statistics
(such as error or false positive/negative rates) be (approximately) equalized across
individuals, where the rate is defined as an expectation over the classification tasks.
Because we are no longer averaging over coarse groups (such as race or gender),
this is a semantically meaningful individual-level constraint. Given a sample of
individuals and problems, we design an oracle-efficient algorithm (i.e. one that is
given access to any standard, fairness-free learning heuristic) for the fair empirical
risk minimization task. We also show that given sufficiently many samples, the
ERM solution generalizes in two directions: both to new individuals, and to new
classification tasks, drawn from their corresponding distributions. Finally we
implement our algorithm and empirically verify its effectiveness.

1 Introduction

The community studying fairness in machine learning has yet to settle on definitions. At a high level,
existing definitional proposals can be divided into two groups: statistical fairness definitions and
individual fairness definitions. Statistical fairness definitions partition individuals into “protected
groups” (often based on race, gender, or some other binary protected attribute) and ask that some
statistic of a classifier (error rate, false positive rate, positive classification rate, etc.) be approximately
equalized across those groups. In contrast, individual definitions of fairness have no notion of
“protected groups”, and instead ask for constraints that bind on pairs of individuals. These constraints
can have the semantics that “similar individuals should be treated similarly” (Dwork et al. (2012)), or
that “less qualified individuals should not be preferentially favored over more qualified individuals”
(Joseph et al. (2016)). Both families of definitions have serious problems, which we will elaborate on.
But in summary, statistical definitions of fairness provide only very weak promises to individuals,
and so do not have very strong semantics. Existing proposals for individual fairness guarantees, on
the other hand, have very strong semantics, but have major obstacles to deployment, requiring strong
assumptions on either the data generating process or on society’s ability to instantiate an agreed-upon
fairness metric.

Statistical definitions of fairness are the most popular in the literature, in large part because they can
be easily checked and enforced on arbitrary data distributions. For example, a popular definition
(Hardt et al. (2016); Kleinberg et al. (2017); Chouldechova (2017)) asks that a classifier’s false
positive rate should be equalized across the protected groups. This can sound attractive: in settings
in which a positive classification leads to a bad outcome (e.g. incarceration), it is the false positives
that are harmed by the errors of the classifier, and asking that the false positive rate be equalized
across groups is asking that the harm caused by the algorithm should be proportionately spread
across protected populations. But the meaning of this guarantee to an individual is limited, because
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the word rate refers to an average over the population. To see why this limits the meaning of the
guarantee, consider the example given in Kearns et al. (2018): imagine a society that is equally split
between gender (Male, Female) and race (Blue, Green). Under the constraint that false positive
rates be equalized across both race and gender, a classifier may incarcerate 100% of blue men and
green women, and 0% of green men and blue women. This equalizes the false positive rate across all
protected groups, but is cold comfort to any individual blue man and green woman. This effect isn’t
merely hypothetical — Kearns et al. (2018, 2019) showed similar effects when using off-the-shelf
fairness constrained learning techniques on real datasets.

Individual definitions of fairness, on the other hand, can have strong individual level semantics. For
example, the constraint imposed by Joseph et al. (2016, 2018) in online classification problems
implies that the false positive rate must be equalized across all pairs of individuals who (truly) have
negative labels. Here the word rate has been redefined to refer to an expectation over the randomness
of the classifier, and there is no notion of protected groups. This kind of constraint provides a strong
individual level promise that one’s risk of being harmed by the errors of the classifier are no higher
than they are for anyone else. Unfortunately, in order to non-trivially satisfy a constraint like this, it
is necessary to make strong realizability assumptions.

1.1 Our results

We propose an alternative definition of individual fairness that avoids the need to make assumptions
on the data generating process, while giving the learning algorithm more flexibility to satisfy it in
non-trivial ways. We consider that in many applications each individual will be subject to decisions
made by many classification tasks over a given period of time, not just one. For example, internet
users are shown a large number of targeted ads over the course of their usage of a platform, not
just one: the properties of the advertisers operating in the platform over a period of time are not
known up front, but have some statistical regularities. Public school admissions in cities like New
York are handled by a centralized match: students apply not just to one school, but to many, who
can each make their own admissions decisions (Abdulkadiroğlu et al. (2005)). We model this by
imagining that not only is there an unknown distribution P over individuals, but there is an unknown
distribution Q over classification problems (each of which is represented by an unknown mapping
from individual features to target labels). With this model in hand, we can now ask that the error rates
(or false positive or negative rates) be equalized across all individuals — where now rate is defined as
the average over classification tasks drawn from Q of the probability of a particular individual being
incorrectly classified.

We then derive a new oracle-efficient algorithm for satisfying this guarantee in-sample, and prove
novel generalization guarantees showing that the guarantees of our algorithm hold also out of sample.
Oracle efficiency is an attractive framework in which to circumvent the worst-case hardness of even
unconstrained learning problems, and focus on the additional computational difficulty imposed by
fairness constraints. It assumes the existence of “oracles” that can solve weighted classification
problems absent fairness constraints, and asks for efficient reductions from the fairness constrained
learning problems to unconstrained problems. This has become a popular technique in the fair
machine learning literature (see e.g. Agarwal et al. (2018); Kearns et al. (2018)) — and one that
often leads to practical algorithms. The generalization guarantees we prove require the development
of new techniques because they refer to generalization in two orthogonal directions — over both
individuals and classification problems. Our algorithm is run on a sample of n individuals sampled
from P and m problems sampled from Q. It is given access to an oracle (in practice, implemented
with a heuristic) for solving ordinary cost sensitive classification problems over some hypothesis
spaceH. The algorithm runs in polynomial time (it performs only elementary calculations except for
calls to the learning oracle, and makes only a polynomial number of calls to the oracle) and returns
a mapping from problems to hypotheses that have the following properties, so long as n and m are
sufficiently large (polynomial in the VC-dimension ofH and the desired error parameters): For any
α, with high probability over the draw of the n individuals from P and the m problems from Q

1. Accuracy: the error rate (computed in expectation over new individuals x ∼ P and new
problems f ∼ Q) is within O(α) of the optimal mapping from problems to classifiers inH,
subject to the constraint that for every pair of individuals x, x′ in the support of P , the error
rates (or false positive or negative rates) (computed in expectation over problems f ∼ Q) on
x and x′ differ by at most α.
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Table 1: Summary of notations for individuals vs. problems
space element distribution data set sample size empirical dist.

individual X x ∈ X P X = {xi}ni=1 n P̂ = U (X)

problem F f ∈ F Q F = {fj}mj=1 m Q̂ = U (F )

2. Fairness: with probability 1− β over the draw of new individuals x, x′ ∼ P , the error rate
(or false positive or negatives rates) of the output mapping (computed in expectation over
problems f ∼ Q) on x will be within O(α) of that of x′.

The mapping from new classification problems to hypotheses that we find is derived from the dual
variables of the linear program representing our empirical risk minimization task, and we crucially
rely on the structure of this mapping to prove our generalization guarantees for new problems f ∼ Q.

1.2 Additional related work

The literature on fairness in machine learning has become much too large to comprehensively
summarize, but see Mitchell et al. (2018) for a recent survey. Here we focus on the most conceptually
related work, which has aimed to bridge the gap between the immediate applicability of statistical
definitions of fairness with the strong individual level semantics of individual notions of fairness.
One strand of this literature focuses on the “metric fairness” definition first proposed by Dwork et al.
(2012), and aims to ease the assumption that the learning algorithm has access to a task specific
fairness metric. Kim et al. (2018a) imagine access to an oracle which can provide unbiased estimates
to the metric distance between any pair of individuals, and show how to use this to satisfy a statistical
notion of fairness representing “average metric fairness” over pre-defined groups. Gillen et al. (2018)
study a contextual bandit learning setting in which a human judge points out metric fairness violations
whenever they occur, and show that with this kind of feedback (under assumptions about consistency
with a family of metrics), it is possible to quickly converge to the optimal fair policy. Yona and
Rothblum (2018) consider a PAC-based relaxation of metric fair learning, and show that empirical
metric-fairness generalizes to out-of-sample metric fairness. Another strand of this literature has
focused on mitigating the problems that arise when statistical notions of fairness are imposed over
coarsely defined groups, by instead asking for statistical notions of fairness over exponentially many
or infinitely many groups with a well defined structure. This line includes Hébert-Johnson et al.
(2018) (focusing on calibration), Kearns et al. (2018) (focusing on false positive and negative rates),
and Kim et al. (2018b) (focusing on error rates).

2 Model and preliminaries

We model each individual in our framework by a vector of features x ∈ X , and we let each learning
problem 1 be represented by a binary function f ∈ F mapping X to {0, 1}. We assume probability
measures P andQ over X and F , respectively. In the training phase there is a fixed (across problems)
set X = {xi}ni=1 of n individuals sampled independently from P for which we have available labels
corresponding to m tasks represented by F = {fj}mj=1 drawn independently from Q 2. Therefore, a
training data set of n individualsX andm learning tasks F takes the form: S = {xi, (fj(xi))mj=1}

n
i=1.

We summarize the notations we use for individuals and problems in Table 1.

In general F will be unknown. We will aim to solve the (agnostic) learning problem over a hypothesis
classH, which need bear no relationship to F . We will allow for randomized classifiers, which we
model as learning over ∆(H), the probability simplex overH. We assume throughout thatH contains
the constant classifiers h0 and h1 where h0(x) = 0 and h1(x) = 1 for all x. Unlike usual learning
settings where the primary goal is to learn a single hypothesis p ∈ ∆(H), our objective is to learn a
mapping ψ ∈ ∆(H)F that maps learning tasks f ∈ F represented as new labellings of the training
data to hypotheses p ∈ ∆(H). We will therefore have to formally define the error rates incurred
by a mapping ψ and use them to formalize a learning task subject to our proposed fairness notion.
For a mapping ψ, we write ψf to denote the classifier corresponding to f under the mapping, i.e.,

1We will use the terms: problem, task, and labeling interchangeably.
2Throughout we will use subscript i to denote individuals and j to denote learning problems.
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ψf = ψ (f) ∈ ∆(H). Notice in the training phase, there are only m learning problems to be solved,
and therefore, the corresponding empirical problem reduces to learning m randomized classifiers.
In general, learning m specific classifiers for the training problems will not yield any generalizable
rule mapping new problems to classifiers — but the specific algorithm we propose for empirical risk
minimization will induce such a mapping, via a dual representation of the empirical risk minimizer.

Definition 2.1 (Individual and Overall Error Rates). For a mapping ψ ∈ ∆(H)F and distributions
P and Q: E (x, ψ;Q) = Ef∼Q

[
Ph∼ψf

[h(x) 6= f(x)]
]

is the individual error rate of x incurred by
ψ and err (ψ;P,Q) = E

x∼P
[E (x, ψ;Q)] is the overall error rate of ψ.

In the body of this paper, we will focus on a fairness constraint that asks that the individual error
rate should be approximately equalized across all individuals. In the supplement, we extend our
techniques to equalizing false positive and negative rates across individuals.

Definition 2.2 (Average Individual Fairness (AIF)). We say a mapping ψ ∈ ∆(H)F satisfies “(α, β)-
AIF” (reads (α, β)-approximate Average Individual Fairness) with respect to the distributions (P,Q)
if there exists γ ≥ 0 such that: Px∼P (|E (x, ψ;Q)− γ| > α) ≤ β.

We briefly fix some notation: 1 [A] represents the indicator function of event A. For n ∈ N,
[n] = {1, 2, . . . , n}. U (S) represents the uniform distribution over S. For a mapping ψ : A → B
and A′ ⊆ A, ψ|A′ represents ψ restricted to the domain A′. dH denotes the VC dimension of the
classH. CSC(H) denotes a cost sensitive classification oracle forH:

Definition 2.3 (Cost Sensitive Classification (CSC) in H). Let D = {xi, c1i , c0i }ni=1 denote a
data set of n individuals xi where c1i and c0i are the costs of classifying xi as positive (1) and
negative (0) respectively. Given D, the cost sensitive classification problem defined over H is
the optimization problem: arg minh∈H

∑n
i=1

{
c1ih(xi) + c0i (1− h(xi))

}
. An oracle CSC(H)

takes D = {xi, c1i , c0i }ni=1 as input and outputs the solution to the optimization problem. We use
CSC(H;D) to denote the classifier returned by CSC(H) on data set D. We say that an algorithm
is oracle efficient if it runs in polynomial time given the ability to make unit-time calls to CSC(H).

3 Learning subject to AIF

In this section we first cast the learning problem subject to the AIF fairness constraints as the
constrained optimization problem (1) and then develop an oracle efficient algorithm for solving its
corresponding empirical risk minimization (ERM) problem (in the spirit of Agarwal et al. (2018)).
In the coming sections we give a full analysis of the developed algorithm including its in-sample
accuracy/fairness guarantees and define the mapping it induces from new problems to hypotheses,
and finally establish out-of-sample bounds for this trained mapping.

Fair Learning Problem subject to (α, 0)-AIF

min
ψ ∈∆(H)F , γ ∈ [0,1]

err (ψ;P,Q)

s.t. ∀x ∈ X : |E (x, ψ;Q)− γ| ≤ α
(1)

Definition 3.1 (OPT). Consider the optimization problem (1). Given distributions P and Q, and
fairness approximation parameter α, we denote the optimal solutions of (1) by ψ? (α;P,Q) and
γ? (α;P,Q), and the value of the objective function at these optimal points by OPT (α;P,Q).

We will use OPT as the benchmark with respect to which we evaluate the accuracy of our trained
mapping. It is worth noticing that the optimization problem (1) has a nonempty set of feasible
solutions for every α and all distributions P and Q because the following point is always feasible:
γ = 0.5 and ψf = 0.5h0 + 0.5h1 (i.e. random classification) for all f ∈ F where h0 and h1 are
all-zero and all-one constant classifiers.

3.1 The empirical fair learning problem

We start to develop our algorithm by defining the empirical version of (1) for a given training data
set of n individuals X = {xi}ni=1 and m learning problems F = {fj}mj=1. We will formulate the

4



empirical problem as finding a restricted mapping ψ|F by which we mean the domain of the mapping
is restricted to the training set F ⊆ F . We will later see how the dynamics of our proposed algorithm
allows us to extend the restricted mapping to a mapping from the entire space F . We slightly change
notation and represent a restricted mapping ψ|F explicitly by a vector p = (p1, . . . , pm) ∈ ∆(H)m

of randomized classifiers where pj ∈ ∆(H) corresponds to fj ∈ F . Using the empirical versions of
the individual and the overall error rates incurred by the mapping p (see Definition 2.1), we cast the
empirical fair learning problem as the constrained optimization problem (2).

Empirical Fair Learning Problem

min
p∈∆(H)m, γ ∈ [0,1]

err
(
p; P̂, Q̂

)
s.t. ∀i ∈ {1, . . . , n}:

∣∣∣E (xi,p; Q̂
)
− γ
∣∣∣ ≤ 2α

(2)

We use the dual perspective of constrained optimization to reduce the fair learning task (2) to a
two-player game between a “Learner” (primal player) and an “Auditor” (dual player). Towards
deriving the Lagrangian of (2), we first rewrite its constraints in r (p, γ; Q̂) ≤ 0 form where

r
(
p, γ; Q̂

)
=

E (xi,p; Q̂
)
− γ − 2α

γ − E
(
xi,p; Q̂

)
− 2α

n
i=1

∈ R2n (3)

represents the “fairness violations” of the pair (p, γ) in one single vector. Let the corresponding dual
variables for r be represented by λ =

[
λ+
i ,λ

−
i

]
i
∈ Λ, where Λ = {λ ∈ R2n

+ | ||λ||1 ≤ B}. Note
we place an upper bound B on the `1-norm of λ in order to reason about the convergence of our
proposed algorithm. B will eventually factor into both the run-time and the approximation guarantees
of our solution. Using Equation (3) and the introduced dual variables, we have that the Lagrangian of
(2) is L (p, γ,λ) = err (p; P̂, Q̂) + λTr (p, γ; Q̂). We therefore consider solving:

min
p∈∆(H)m, γ ∈ [0,1]

max
λ∈Λ

L (p, γ,λ) = max
λ∈Λ

min
p∈∆(H)m, γ ∈ [0,1]

L (p, γ,λ) (4)

where strong duality holds because L is linear in its arguments and the domains of (p, γ) and λ are
convex and compact (Sion (1958)). From a game theoretic perspective, the solution to this minmax
problem can be seen as an equilibrium of a zero-sum game between two players. The primal player
(Learner) has strategy space ∆(H)m × [0, 1] while the dual player (Auditor) has strategy space Λ,
and given a pair of chosen strategies (p, γ,λ), the Lagrangian L (p, γ,λ) represents how much
the Learner has to pay to the Auditor — i.e. it defines the payoff function of a zero sum game in
which the Learner is the minimization player, and the Auditor is the maximization player. Using
no regret dynamics, an approximate equilibrium of this zero-sum game can be found in an iterative
framework. In each iteration, we let the dual player run the exponentiated gradient descent algorithm
and the primal player best respond. The best response problem of the Learner can be decoupled
into (m + 1) separate minimization problems and that in particular, the optimal classifiers p can
be viewed as the solutions to m weighted classification problems inH where all m problems share
the weights w = [λ+

i − λ
−
i ]i ∈ Rn over the training individuals. We write the best response of the

Learner in Subroutine 1 where we use the oracle CSC(H) (see Definition 2.3) to solve the weighted
classification problems. See the supplementary file for the detailed derivation.

Subroutine 1: BEST– best response of the Learner in the AIF setting

Input: dual weights w = [λ+
i − λ

−
i ]ni=1 ∈ Rn, training examples S =

{
xi, (fj(xi))

m
j=1

}n
i=1

for j = 1, . . . ,m do
c1i ← (wi + 1/n)(1− fj(xi)) and c0i ← (wi + 1/n)fj(xi) for i ∈ [n].
hj ← CSC (H;D) where D = {xi, c1i , c0i }ni=1.

end
Output:

(
h = (h1, h2, . . . , hm) , γ = 1 [

∑n
i=1 wi > 0]

)
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3.2 Algorithm implementation and in-sample guarantees

In Algorithm 2 (AIF-Learn), with a slight deviation from what we described in the previous sub-
section, we implement the proposed algorithm. The deviation arises when the Auditor updates the
dual variables λ in each round, and is introduced in the service of arguing for generalization. To
counteract the inherent adaptivity of the algorithm (which makes the quantities estimated at each
round data dependent), at each round t of the algorithm, we draw a fresh batch of m0 problems. From
another viewpoint – which is the way the algorithm is actually implemented – similar to usual batch
learning models we assume we have a training set F of m learning problems upfront. However, in
our proposed algorithm that runs for T iterations, we partition F into T equally-sized (m0) subsets
{Ft}Tt=1 uniformly at random and use only the batch Ft at round t to update λ. Without loss of
generality and to avoid technical complications, we assume |Ft| = m0 = m/T is a natural number.
This is represented in Algorithm 2 by writing Q̂t = U (Ft) for the uniform distribution over the batch
of problems Ft , and ht|Ft

for the associated classifiers for Ft.

Notice AIF-Learn takes as input an approximation parameter ν ∈ [0, 1] which will quantify how
close the output of the algorithm is to an equilibrium of the introduced game, and it will accordingly
propagate to the accuracy bounds. One important aspect of AIF-Learn is that it maintains a weight
vector wt ∈ Rn over the training individuals X and that each p̂j learned by our algorithm is in fact
an average over T classifiers where classifier t is the solution to a CSC problem on X weighted
by wt. As a consequence, we propose to extend the learned restricted mapping p̂ to a mapping
ψ̂ = ψ̂ (X, Ŵ ) that takes any problem f ∈ F as input (represented to ψ̂ by the labels it induces on
the training data), uses the individuals X along with the set of weights Ŵ to solve T CSC problems
in a similar fashion, and outputs the average of the learned classifiers denoted by ψ̂f ∈ ∆(H). This
extension is consistent with p̂ in the sense that ψ̂ restricted to F will be exactly the p̂ output by our
algorithm. The pseudocode for ψ̂ (output by AIF-Learn) is written in detail in Mapping 3.

Algorithm 2: AIF-Learn – learning subject to AIF
Input: fairness parameter α, approximation parameter ν, data X = {xi}ni=1 and F = {fj}mj=1

B ← 1+2ν
α , T ← 16B2(1+2α)2 log(2n+1)

ν2 , η ← ν
4(1+2α)2B

, m0 ← m
T , S ←

{
xi, (fj(xi))j

}
i

Partition F : {Ft}Tt=1 where |Ft| = m0.
θ1 ← 0
for t = 1, . . . , T do

λ•i,t ← B
exp(θ•i,t)

1+
∑

i′,•′ exp(θ•
′

i′,t)
for i ∈ [n] and • ∈ {+,−}

wt ← [λ+
i,t − λ

−
i,t]

n
i=1 ∈ Rn

(ht, γt)← BEST(wt;S)

θt+1 ← θt + η · r
(
ht|Ft , γt; Q̂t

)
end
γ̂ ← 1

T

∑T
t=1 γt , p̂← 1

T

∑T
t=1 ht , λ̂← 1

T

∑T
t=1 λt , Ŵ ← {wt}Tt=1

Output: average plays
(
p̂, γ̂, λ̂

)
, mapping ψ̂ = ψ̂

(
X, Ŵ

)
(see Mapping 3)

We defer a complete in-sample analysis of Algorithm 2 to the supplementary file. At a high level, we
start by establishing the regret bound of the Auditor and choosing T and η such that her regret ≤ ν.
There will be an extra Õ(

√
1/m0) term originating from a high probability (Chernoff) bound in the

regret of the Auditor because she is using a batch of only m0 randomly selected problems to update
the fairness violation vector r. We therefore have to assume m0 is sufficiently large to control the
regret. Once the regret bound is established, we can show that the average played strategies (p̂, γ̂, λ̂)
output by Algorithm 2 forms a ν-approximate equilibrium of the game by which we mean: neither
player would gain more than ν if they deviated from these proposed strategies. Finally we can take
this guarantee and turn it into accuracy and fairness guarantees of the pair (p̂, γ̂) with respect to the
empirical distributions (P̂, Q̂), which results in Theorem 3.1.
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Mapping 3: ψ̂ (X, Ŵ ) – pseudocode
Input: f ∈ F (represented as {f(xi)}ni=1)

for t = 1, . . . , T do
c1i ← (wi,t + 1/n)(1− f(xi)) for i ∈ [n].
c0i ← (wi,t + 1/n)f(xi) for i ∈ [n].
D ← {xi, c1i , c0i }ni=1.
hf,wt

← CSC (H;D)
end

Output: ψ̂f = 1
T

∑T
t=1 hf,wt

∈ ∆(H)

Figure 1: Illustration of generalization directions.

Theorem 3.1 (In-sample Accuracy and Fairness). Suppose m0 ≥ O (log (nT/δ)/α2ν2). Let (p̂, γ̂)
be the output of Algorithm 2 and let (p, γ) be any feasible pair of variables for (2). We have that with
probability 1− δ, err (p̂; P̂, Q̂) ≤ err (p; P̂, Q̂) + 2ν, and that p̂ satisfies (3α, 0)-AIF with respect
to the empirical distributions (P̂, Q̂). In other words, for all i ∈ [n], |E(xi, p̂; Q̂)− γ̂| ≤ 3α.

3.3 Generalization theorems

When it comes to out-of-sample performance in our framework, unlike in usual learning settings,
there are two distributions we need to reason about: the individual distribution P and the problem
distribution Q (see Figure 1 for a visual illustration of generalization directions in our framework).
We need to argue that ψ̂ induces a mapping that is accurate with respect to P and Q, and is fair for
almost every individual x ∼ P , where fairness is defined with respect to the true problem distribution
Q. Given these two directions for generalization, we state our generalization guarantees in three
steps visualized by arrows in Figure 1. First, in Theorem 3.2, we fix the empirical distribution of
the problems Q̂ and show that the output ψ̂ of Algorithm 2 is accurate and fair with respect to the
underlying individual distribution P as long as n is sufficiently large. Second, in Theorem 3.3, we fix
the empirical distribution of individuals P̂ and consider generalization along the underlying problem
generating distribution Q. It will follow from the dynamics of the algorithm that the mapping ψ̂
will remain accurate and fair with respect to Q. We will eventually put these pieces together in
Theorem 3.4 and argue that ψ̂ is accurate and fair with respect to the underlying distributions (P,Q)
simultaniously, given that both n and m are large enough. We will use OPT (see Definition 3.1) as a
benchmark for the accuracy of the mapping ψ̂. See the supplementary file for detailed proofs.

Theorem 3.2 (Generalization over P). Let 0 < δ < 1. Let ψ̂ and γ̂ be the outputs of Algorithm 2 and
suppose n ≥ Õ

(
(mdH+ log (1/ν2δ))/α2β2

)
. We have that with probability 1−5δ, the mapping ψ̂

satisfies (5α, β)-AIF with respect to the distributions (P, Q̂), i.e., Px∼P (|E(x, ψ̂; Q̂)−γ̂| > 5α) ≤ β
and that err (ψ̂;P, Q̂) ≤ OPT (α;P, Q̂) +O (ν) +O (αβ) .

Theorem 3.3 (Generalization overQ). Let 0 < δ < 1. Let ψ̂ and γ̂ be the outputs of Algorithm 2 and
suppose m ≥ Õ

(
log (n) log (n/δ) /ν4α4

)
. We have that with probability 1 − 6δ, the mapping ψ̂

satisfies (4α, 0)-AIF with respect to the distributions (P̂,Q), i.e., Px∼P̂ (|E(x, ψ̂;Q)−γ̂| > 4α) = 0

and that err (ψ̂; P̂,Q) ≤ OPT (α; P̂,Q) +O (ν).

Theorem 3.4 (Simultaneous Generalization over P and Q). Let 0 < δ < 1. Let ψ̂ and γ̂

be the outputs of Algorithm 2 and suppose n ≥ Õ
(
(mdH + log (1/ν2δ))/α2β2

)
and m ≥

Õ
(

log (n) log (n/δ) /ν4α4
)
. We have that with probability 1−12δ, the mapping ψ̂ satisfies (6α, 2β)-

AIF with respect to the distributions (P,Q), i.e., Px∼P (|E(x, ψ̂;Q) − γ̂| > 6α) ≤ 2β and that
err (ψ̂;P,Q) ≤ OPT (α;P,Q) +O (ν) +O (αβ).

Note that the bounds on n and m in Theorem 3.4 are mutually dependent: n must be linear in m, but
m need only be logarithmic in n, and so both bounds can be simultaneously satisfied with sample
complexity that is only polynomial in the parameters of the problem.
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4 Experimental evaluation

Figure 2: (a) Error-unfairness trajectory plots illustrating the convergence of algorithm AIF-Learn.
(b) In-sample error-unfairness tradeoffs and individual errors for AIF-Learn vs. the baseline model:
simple mixtures of the error-optimal model and random classification. Gray dots are shifted upwards
slightly to avoid occlusions.

We have implemented the AIF-Learn algorithm and conclude with a brief experimental demonstra-
tion of its practical efficacy using the Communities and Crime dataset3, which contains U.S. census
records with demographic information at the neighborhood level. To obtain a challenging instance of
our multi-problem framework, we treated each of the first n = 200 neighborhoods as the “individuals”
in our sample, and binarized versions of the first m = 50 variables as distinct prediction problems.
Another d = 20 of the variables were used as features for learning. For the base learning oracle
assumed by AIF-Learn, we used a linear threshold learning heuristic that has worked well in other
oracle-efficient reductions (Kearns et al. (2018)).

Despite the absence of worst-case guarantees for the linear threshold heuristic, AIF-Learn seems
to empirically enjoy the strong convergence properties suggested by the theory. In Figure 2(a) we
show trajectory plots of the learned model’s error (x axis) versus its fairness violation (variation in
cross-problem individual error rates, y axis) over 1000 iterations of the algorithm for varying values
of the allowed fairness violation 2α (dashed horizontal lines). In each case we see the trajectory
eventually converge to a point which saturates the fairness constraint with the optimal error.

In Figure 2(b) we provide a more detailed view of the behavior and performance of AIF-Learn.
The x axis measures error rates, while the y axis measures the allowed fairness violation. For each
value of the allowed fairness violation 2α (which is the allowed gap between the smallest and largest
individual errors on input α), there is a horizontal row of 200 blue dots showing the error rates for
each individual, and a single red dot representing the overall average of those individual error rates.
As expected, for large α (weak or no fairness constraint), the overall error rate is lowest, but the
spread of individual error rates (unfairness) is greatest. As α is decreased, the spread of individual
error rates is greatly narrowed, at a cost of greater overall error.

A trivial way of achieving zero variability in individual error rates is to make all predictions randomly.
So as a baseline comparison for AIF-Learn, the gray dots in Figure 2(b) show the individual
error rates achieved by different mixtures of the unconstrained error-optimal model with random
classifications, with a black dot representing the overall average of these rates. When the weight on
random classification is low (weak or no fairness, top row of gray dots), the overall error is lowest and
the individual variation (unfairness) is highest. As we increase the weight on random classification,
variation or unfairness decreases and the overall error gets worse. It is clear from the figure that
AIF-Learn is considerably outperforming this baseline, both in terms of the average errors (red vs.
black lines) and the individual errors (blue vs. gray dots).

3Described in detail and available for download at http://archive.ics.uci.edu/ml/datasets/
communities+and+crime
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Figure 3: Pareto frontier of error and fairness violation rates on training and test data sets.

Finally we present out-of-sample performance of AIF-Learn in Figure 3. To be consistent with
in-sample results reported in Figure 2(b), for each value of α, we trained a mapping on exactly the
same subset of the Communities and Crime data set (n = 200 individuals, m = 50 problems) that
we used before. Thus the red curve labelled “training” in Figure 3 is the same as the red curve
appearing in Figure 2(b). We used a completely fresh holdout consisting of n = 200 individuals and
m = 25 problems (binarized features from the dataset that weren’t previously used) to evaluate our
generalization performance over both individuals and problems, in terms of both accuracy and fairness
violation. Similar to the presentation of generalization theorems in Section 3.3, we demonstrate
experimental evaluation of generalization in three steps. The blue and green curves in Figure 3
represent generalization results over individuals (test data: test individuals and training problems) and
problems (test data: training individuals and test problems) respectively. The black curve represent
generalization across both individuals and problems where test individuals and test problems were
used to evaluate the performance of the trained models.

Two things stand out from Figure 3:

1. As predicted by the theory, our test curves track our training curves, but with higher error
and unfairness. In particular, the ordering of the models (each corresponds to one α) on
the Pareto frontier is the same in testing as in training, meaning that the training curve can
indeed be used to manage the trade-off out-of-sample as well.

2. The gap in error is substantially smaller than would be predicted by our theory: since our
training data set is so small, our theoretical guarantees are vacuous, but all points plotted in
our test Pareto curves are non-trivial in terms of both accuracy and fairness. Presumably the
gap in error would narrow on larger training data sets.

We have additional experimental results on a synthetic data set in the supplement.
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