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Abstract

Academic homepages are important channels
for learning researchers’ profiles. Knowing the
person names in academic homepages is es-
sential to the extraction of other entities such
as contacts, publications, and biography. Tra-
ditional NER models are trained on newswire
corpora such as CoNLL-2003, which contain
well-formed names in consistent and complete
syntax. However, academic homepages of-
ten contain text with incomplete syntax and
names of various forms. Few studies address
person name recognition in this context. To
fill this gap, we start with proposing a fine-
grained name annotation scheme. This scheme
further labels detailed name forms including
first, middle, or last names, and name words
in full or name initials. We then propose a
Co-guided Neural Network (CogNN) model
to learn from homepages labelled with our
fine-grained annotations. CogNN uses co-
attention mechanisms to co-guide two jointly
trained neural networks, each focusing on dif-
ferent dimensions of the name forms. It thus
takes full advantage of our annotation scheme
and can accurately recognise person names
in academic homepages. Experimental re-
sults on real datasets show that CogNN signifi-
cantly outperforms state-of-the-art NER mod-
els in extracting person names from academic
homepages, while achieving comparable per-
formance on a traditional NER dataset.

1 Introduction

Academic homepages are an important source for
learning researchers’ profiles, including names,
contact details, bibliography, working experience,
and publications. Among these, person names
are basic and yet important. Knowing the person
names is essential to extracting other entities in
academic homepages and also provides valuable
insights on researcher collaboration networks.

We focus on extracting person names from aca-
demic homepages using detailed name form infor-
mation, such as whether a token is a first, mid-
dle, or last name, and whether the token is a full
name word or a name initial. Figure 1 shows an
example of person name recognition in academic
homepages. Given the text content of an academic
homepage, we aim to recognise all person names
as highlighted in the example.

The challenges of recognising person names in
academic homepages lie in the diversity of text
and name forms. The text in academic homepages
is free-form and may have incomplete syntax. For
example, in Figure 1, the biography section con-
sists of complete sentences while the students sec-
tion is simply a table. The person names may
be in different forms as well. Figure 1 contains
well-formed full name of the researcher ‘John
Doe’ in the page header and abbreviated names in
the publications section. Further, the abbreviated
names may have different abbreviation forms, e.g.,
‘B.B. Doe’ vs. ‘Doe, J.’.

Recent NER models (Huang et al., 2015; Chiu
and Nichols, 2016; Ma and Hovy, 2016) are
trained on well-formed texts such as news articles.
These models do not solve our problem since news
articles and academic homepages have substan-
tially different underlying text distributions. Fig-
ure 2 shows an example, where Stanford Named
Entity Tagger is applied to recognise the person
names from a publication string in an academic
homepage. The tokens in italics are name tokens,
while the tokens in bold are those recognised as
name tokens. We can see that not all the names
have been recognised.

To address person name recognition in aca-
demic homepages, we propose a fine-grained
name annotation scheme that annotates detailed
name forms including first, middle, or last name,
and a full name word or a name initial (cf. Fig-



Figure 1: An example of person name recognition in academic homepages (best view in color).
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Figure 2: An example of applying Stanford Named En-
tity Tagger on the text from an academic homepage.
The bold tokens are recognised as names.

ure 1). Such detailed annotations offer richer train-
ing signals to NER models to learn the patterns of
person names in free-form text. However, detailed
annotations also bring challenges because more la-
bel classes need to be learned.

To take advantage of the detailed name annota-
tions and to address their challenges, we propose
a Co-guided Neural Network (CogNN) model
for person name recognition. CogNN consists
of two sub-neural networks (Bi-LSTM-CRF vari-
ants). One of the sub-network focuses on predict-
ing whether a token is a name token, while the
other focuses on predicting the name form class of
the token. We add a co-attention layer to connect
the two Bi-LSTM-CRF based sub-networks. This
way, the two sub-networks can share the learn-
ing signals to reinforce their label prediction con-
fidence. The two sub-networks are trained simul-
taneously by minimising their total loss.

This paper makes the following contributions:
• New angle: We study person name recogni-

tion in academic homepages, for which we pro-
pose a fine-grained annotation scheme that pro-
vides information on various forms of names.
• New dataset: We create a dataset of diverse

academic homepages where the person names are
fully annotated with detailed name forms. This
dataset will be released upon paper publication.
• New model: We propose a Co-guided Neu-

ral Network (CogNN) model to recognise per-

son names using the fine-grained annotations. It
learns the different name form classes with two
neural networks while fusing the learned signals
through co-attention mechanism. Experimental
results show that CogNN outperforms state-of-
the-art NER models in the accuracy of extracting
person names from academic homepages.

The rest of this paper is organised as fol-
lows. Section 2 summarises related studies. Sec-
tion 3 describes our name annotation scheme and
dataset. Section 4 detials the proposed model.
Section 5 presents experimental results. Section
6 concludes the paper.

2 Related Work

Named entity recognition (NER) aims to iden-
tify proper names in text and classify them into
different types, such as person, organisation, and
location (Nadeau and Sekine, 2007). Neural NER
models have shown excellent performance on long
texts which follow strict syntactic rules, such as
newswire and Wikipedia articles (Huang et al.,
2015; Chiu and Nichols, 2016; Ma and Hovy,
2016). However, these NER models are less at-
tractive when applied to short texts which may
not have consistent and complete syntax (Li et al.,
2015; Dugas and Nichols, 2016). Recent studies
also consider user-generated short texts from so-
cial media platforms such as Twitter and Snapchat.
Since social media texts are usually posted with
images, researchers propose to make use of both
textual and visual context to recognise the named
entities (Lu et al., 2018; Moon et al., 2018). Such
models are less relevant because academic home-
pages do not contain images consistently except
for a photo of the page owner.

NER studies on academic homepages usually



treat the text content of a webpage as a docu-
ment, upon which traditional NER techniques are
applied. For example, Zhang et al. (2018) use
a Bi-LSTM-CRF based hierarchical model to ex-
tract all the publication strings from a given aca-
demic homepage. Tang et al. (2010) assume that
the page owner’s full name is given and use a Tree-
structured CRF model to extract multiple types of
entities from a given academic homepage. This
technique does not apply to our problem as we as-
sume no pre-knowledge about the page owners.

Person names are often recognised together
with other named entities, such as locations and
organisations (Huang et al., 2015; Ma and Hovy,
2016; Chiu and Nichols, 2016). There are a few
studies focusing only on person names. Dozier
and Haschart (2000) extract the attorney and judge
names in legal texts using a semantic parser.
Packer et al.(2010) focus on extracting name from
noisy OCR data, which may include spelling er-
rors and incomplete texts. They combine rule
based methods, the Maximum Entropy Markov
Model, and the CRF model using a simple voting-
based ensemble. Minkov et al. (2005) extract
person names from emails using the CRF model.
They design email specific structural features and
exploit in-document repetition to improve the ex-
traction accuracy. Shaalan and Raza (2007), Else-
bai et al. (2009), Bidhend et al. (2012), and
Aboaoga and Ab Aziz (2013) study person name
recognition in Arabic. They use rule-based meth-
ods based on gazetteer name lists and regular ex-
pressions. To the best of our knowledge, no ex-
isting work has used detailed name forms for ex-
tracting person names.

3 Proposed Name Annotation Scheme
We first present our name annotation scheme with
detailed name forms and our HomeName dataset
that is annotated under this scheme.

Detailed name form annotations are done to
better capture the person name form features in
free-form texts. Both well-formed names writ-
ten in full and various forms of abbreviated names
may appear in academic homepages. Annotating
the name tokens with detailed forms offers more
direct training signals to NER models to learn the
patterns of person names. This also allows an
NER model to be trained with fewer data.

Thus, unlike traditional NER datasets, which
only label a name token with a PER (person) label,
we further provide detailed name form informa-

tion for each name token. We label each name to-
ken using a three-dimensional annotation scheme:

• BIE: Begin, Inside, or End of name, indicat-
ing the position of a token in a person name,
• FML: First, Middle, or Last name, indicat-

ing whether a name token is used as the first,
middle, or last name, and
• FI: Full or Initial, indicating whether a name

token is a full name word or an initial.

Using the three-dimensional annotation scheme
above, we can describe the detailed name form
of a name token. For example, in Figure 1,
‘John Doe’ can be labelled as Begin First Full
End Last Full, while ‘Johnny van der
Doe’ can be labelled as Begin First Full In-
side Last Full Inside Last Full End Last Full.

HomeName is a collection of academic home-
pages with person names fully annotated us-
ing the proposed annotation scheme. We con-
struct our dataset based on the HomePub dataset1.
The HomePub dataset contains 2,500 web pages
from different universities and research institutes,
among which 2,087 are academic homepages and
413 are non-academic homepages (such as staff
directory pages). We keep only the academic
homepages, which are from 286 institutes.

We annotate all the person names in the aca-
demic homepages using our proposed name anno-
tation scheme. Each academic homepage is an-
notated by two annotators, with inter-annotator
agreement measured at Cohens κ = 0.63 for
names and κ = 0.41 for detailed name forms. Dis-
agreement is resolved by a third annotator. We
provide an annotation scheme, a semi-automatic
annotation tool and a one-hour training to each an-
notator. More details on the annotation are given
in the supplementary material.

The fine-grained annotations offer more direct
training signals to NER models but also bring
challenges because more label classes need to be
learned. Next, we present our CogNN model that
takes advantages of the detailed name form anno-
tations to recognise person names.

4 Proposed Model
Given a sequence of input tokens X , where X =
[x1,x2, ...,xn] and n is the length of the se-
quence, our aim is to predict for each token xi

1http://www.ruizhang.info/data/
homepub.html

http://www.ruizhang.info/data/homepub.html
http://www.ruizhang.info/data/homepub.html


Figure 3: CogNN network structure.

whether it is a name token.2

Our proposed model CogNN achieves this aim
with the help of two Bi-LSTM-CRF based sub-
networks: the name token network and the name
form network, as illustrated in Figure 3. The name
token network focuses on predicting whether a to-
ken is part of a name (the BIE dimension), while
the name form network focuses on predicting the
detailed name form of the token (FML or FI di-
mensions). Co-attention layers are added to the
Bi-LSTM-CRF based sub-networks, so that they
can share the learning signals and reinforce the
prediction confidence. The intuition here is that
knowing whether a token is part of a name helps
recognise the detailed name form class of the to-
ken, and vice versa. For example, if a token is not
considered as part of a name, then even if it is a
word initial, it should not be labelled as a name
initial.

In particular, we start with concatenating the
word embedding and a letter case vector for an in-
put token to produce its representation. We feed
the input under this representation into Bi-LSTM
to learn its hidden representation matrix (Section
4.1). Then, we use co-attention mechanism to co-
guide the two jointly trained sub-networks. Our
co-attention mechanism is designed to share the
training signals between the two sub-networks. It
updates the importance of each token learned from
the two sub-networks and records their correla-
tions (Section 4.2). The two sub-networks are
trained simultaneously by minimising their total
loss (Section 4.4). Next, we detail each layer of
our CogNN model.

2We use xi to denote both a token and its embedding vec-
tor as long as the context is clear.

4.1 Capture: Hidden Feature Extraction

Both the name token network (denoted asNY ) and
the name form network (denoted asNY ′) share the
same layer structure. They only differ in the target
labels Y and Y ′. Here, Y denotes the label se-
quence that records whether an input token is part
of name, and Y ′ denotes the label sequence that
records the form class of each input token. For
simplicity, we focus on the name token network
NY in the following discussion.

We start with concatenating the word embed-
ding ei and letter case vector si for an input token
xi ∈ X to produce its vector representation. We
use GloVe (Pennington et al., 2014) computed on
our HomeName corpus for the word embeddings
ei. The letter case vector si records the letter case
information of xi, which is an important hint for
recognising names. For example, the first letter of
a name token is often in uppercase, and a name
initial is often formed by an uppercase letter plus
a dot. Our letter case vector is a three-dimensional
binary vector where each dimension represents: (i)
the first character in the token is in uppercase, (ii)
all characters in the token are in uppercase, and
(iii) any character in the token is in uppercase.

We then use Bi-LSTM (Dyer et al., 2015) to
capture the hidden features from the input se-
quence. The output hidden representation, de-
noted as hi, summarises the context information
of xi in X . Our hidden representation matrix H
in NY can be written as [h1,h2, ...,hn], where
hi ∈ Rd and d is the number of dimensions of the
hidden representation. Similarly, H ′ in NY ′ can
be written as [h′

1,h
′
2, ...,h

′
n].



4.2 Share: Co-attention Mechanism
Next, we share the learning signals in the hid-
den representation matrices H and H ′, and obtain
new hidden representation matrices H̃ and H̃ ′ for
the two sub-networks, respectively.

Note that training the two sub-networks sepa-
rately is suboptimal, since the underlying correla-
tion among the name label dimensions is lost. For
example, a token recognised as Inside in NY is
more possible to be Middle in NY ′ . To address
this issue, we use co-attention to take the learn-
ing signals from two hidden representations into
account by:

P = tanh(WhH ⊕ (Wh′H ′ + bh′))

where Wh and Wh′ ∈ Rk×d are trainable param-
eters, k is dimensionality of the parameters, ⊕ is
the concatenating operation, and P ∈ R2k×n.

A related technique is used by Yang et al.
(2016). However, they only consider the token
importance in a single hidden representation se-
quence of a document, while we consider the to-
ken importance in two hidden representation se-
quences simultaneously.

The co-attention distribution that records the
importance of each token after examining two hid-
den representation sequences can be obtained as:

A = softmax(WpP + bp)

where Wp ∈ R1×2k are trainable parameters and
A ∈ Rn is an importance weight matrix.

The new hidden representation h̃i can be com-
puted by:

h̃i =
∑

aihi,ai ∈ A,hi ∈H

We thus obtain the new hidden representation
sequences H̃ = [h̃1, h̃2, ..., h̃n] and H̃ ′ =

[h̃′
1, h̃

′
2, ..., h̃

′
n] for the two sub-networks.

4.3 Output Layer
The new hidden representation sequences H̃ =
[h̃1, h̃2, ..., h̃n] is trained to produce a label se-
quence Y . To enforce the structural correlations
between labels, Y is passed to a CRF layer to learn
the correlations of the labels in neighborhood. Let
Y denotes the set of all possible label sequences
for H̃ . Then, the the probability of the label se-
quence Y for a given representation sequence H̃
can be written as :

p(Y |H̃,WY ) =

∏
t ψt(yt−1, yt; H̃)∑

Y ′∈Y
∏

t ψt(y′t−1, y
′
t; H̃)

Algorithm 1: CogNN Forward Computation
Input : xi: the i-th input token, N : the

number of input tokens
Output: yi: the BIE label of xi, y′

i: the FML
or FI label of xi

1 for i← 1 to N do
2 // Capture
3 ei = GloVe(xi)
4 si = computeCaseVector(xi)
5 hi = Bi-LSTM(ei ⊕ si)
6 h′

i = Bi-LSTM(ei ⊕ si)

7 // Share
8 ai = getCoAttention(hi, h′

i)
9 h̃i = getGuided(hi, ai)

10 a′
i = getCoAttention(h′

i, hi)
11 h̃′

i = getGuided(h′
i, a

′
i)

12 for i← 1 to N do
13 // Predict
14 yi = CRF(h̃i)
15 y′

i = CRF(h̃′
i)

16 return yi, y′
i

where ψt(y
′, y; H̃) is a potential function, WY is

a set of parameters that defines the weight vector
and bias corresponding to label pair (y′, y).

Similarly, we can also compute
p(Y ′|H̃ ′,WY ′).

4.4 Joint Training

The remaining question is how to train two net-
works simultaneously to produce label sequences
Y and Y ′. We achieve this by joint optimisation.
Specifically, we train the CogNN model end-to-
end by minimising loss L, which is the sum of the
loss of the two sub-networks:

L = L(WY ) + L(WY ′)

where L(WY ) and L(WY ) are the negative log-
likelihood of the ground truth label sequences Ŷ
and Ŷ ′ for the input sequences respectively, which
are computed by:

L(WY ) = −
∑
i

∑
Yi

δ(Yi = Ŷ ) log p(Yi|H̃)

L(WY ′) = −
∑
j

∑
Y ′
j

δ(Y ′
j = Ŷ ′) log p(Y ′

j |H̃′)

5 Experimental Study
We evaluate our proposed CogNN model on
our HomeName dataset and the CoNLL-2003



Figure 4: Early, late, and in-network fusion.

NER shared task dataset (Tjong Kim Sang and
De Meulder, 2003). Recall (R), Precision (P)
and F1-scores (F) are used to measure the perfor-
mance. The experiments are run with an NVIDIA
GeForce GTX 1080 GPU. We verify the following
two aspects of our approach:
1) Effectiveness. We compare the CogNN model
with baseline NER models and variants of the
CogNN model on extracting person names from
academic homepages (Section 5.1).
2) Applicability. We further explore whether our
model and labelling scheme can improve person
name recognition on news articles (Section 5.2).

5.1 Effectiveness on Academic Homepages

We first study the performance of CogNN on aca-
demic homepages.
Dataset and annotations We use the HomeName
dataset with the proposed detailed name form an-
notation scheme (Section 3). We use 1,677 home-
pages for training and developing, and 410 home-
pages for testing.
Models and hyperparameters Four models are
tested:
• CRF : The Stanford NER system (Finkel

et al., 2005) with parameter tuned.
• Bi-LSTM-CRF: The Bi-LSTM-CRF

model (Huang et al., 2015) with a 100-
dimensional hidden layer, a dropout layer
with probability 0.5, a batch size of 32, and
an initial learning rate of 0.01 with a decay
rate of 0.05. The model is optimised with
stochastic gradient descent and we stop if the
accuracy does not improve in 10 epochs.
• CogNN: Our proposed model.

We use GloVe trained on HomeName to get a 100-
dimensional word embedding. For CogNN, we
use the same hyperparameters and training param-
eters as those in Bi-LSTM-CRF. The optimal hy-
perparameters are obtained with a standard grid
search on the developing dataset. More Details
of the preprocessing, word embedding training,
model implementation, and example output are
given in the supplemental material.

Fusion strategies We also study the impact of us-
ing the detailed name form annotation scheme in
different ways (cf. Figure 4):

• No fusion: Training an independent model
that learns to label the input sequence with
the BIE, FML, or FI label types but not a
combination of any two types of the labels.
• Early fusion: Training an independent

model that learns to label the input sequence
with a cartesian product of the BIE, FML,
and FI label types, e.g., to label ‘John Doe’
with Begin First Full End Last Full.
• Late fusion: Training sub-models each fo-

cusing on one label type and merging all the
predicted labels afterwards to yield the final
prediction by using every span of tokens with
name label as a name (so we do not report the
token level performance).
• In-network fusion: Training two sub-

models each focusing on one label type and
sharing the learning signals in the interme-
diate levels of the sub-models. Our CogNN
model use this strategy.

Results We report the token level performance,
which reflects the model capability to recognise
each person name token. We also report the name
level performance, which reflects the model capa-
bility to recognise a whole person name without
missing any token.

As Table 1 shows, overall, the neural models
perform much better than the non-neural models,
especially on the name level. When examining the
performance of Bi-LSTM-CRF, we find that early
fusion is much worse than no fusion. This is ex-
pected as early fusion of different name form types
leads to too many classes to be predicted. Even for
a two-token name, it may have (3×3×2)2 = 324
possible name form combinations. Late fusion of-
fers better performance, which indicates that the
separately trained networks on different annota-
tions have their own focuses. However, it does not
take advantage of the correlations between name
form types and is not as good as our in-network
fusion strategy.

Our proposed model CogNN outperform the
baseline models. CogNN outperforms the best
baseline results by up to 5.64% and 5.35% in terms
of F1-score in token level and name level, respec-
tively. The reason is that our model can capture
the underlying relationships among different name
forms when training and gain higher prediction



Fusion Methods Models Annotations Token Level Name Level
R P F F

No fusion

CRF
BIE 64.94 94.68 77.04 41.15
FML 60.93 94.48 74.08 54.98

FI 61.31 95.13 74.57 50.32

Bi-LSTM-CRF
BIE 87.97 89.64 88.79 80.89
FML 84.96 87.12 86.03 82.11

FI 86.69 88.79 87.72 81.71
Early fusion Bi-LSTM-CRF BIE × FML × FI 67.37 79.28 72.84 62.65

Late fusion Bi-LSTM-CRF

BIE ∪ FML – – – 83.12
BIE ∪ FI – – – 83.08
FML ∪ FI – – – 83.29

BIE ∪ FML ∪ FI – – – 83.45

In-network fusion CogNN (proposed)

[BIE, FML] 89.23 90.54 89.88 84.26
85.99 87.20 86.75 84.30

[BIE, FI] 93.06 92.85 92.95 85.85
86.70 89.33 88.00 85.92

[FML, FI] 85.79 87.50 86.64 83.50
86.90 88.01 87.45 83.47

Table 1: Model performance on HomeName. The difference between the bold and the non-bold numbers is
statistically significant with p < 0.05 as calculated using McNemar’s test.

confidence. Also, CogNN yields best results when
the models are jointly trained with input annota-
tions BIE and FI. This is consistent with the ob-
servation on the no-fusion models where a model
trained with either BIE or FI annotations outper-
forms a model trained with FML annotations.

5.2 Applicability on Newswire Articles

We further show the applicability of our CogNN
model and detailed name form annotation scheme
on traditional newswire texts.
Dataset We use the CoNLL-2003 dataset which
contains 1,393 annotated English newswire ar-
ticles that focus on four types of named enti-
ties: person (PER), location (LOC), organisation
(ORG) and miscellaneous entity (MISC). This
dataset does not come with detailed name form
annotations. We add annotations using the same
method described in Section 3.
Annotations We compare the following combi-
nations of annotations:
• PER: Using only PER labels.
• FI: Using only FI labels.
• FML: Using only FML labels.
• CoNLL: Using all original labels in CoNLL-

2003.
• FI + CoNLL: Replacing PER by FI labels in

CoNLL-2003.
• FML + CoNLL: Replacing PER by FML la-

bels in CoNLL-2003.
Since the detailed name form labels are neces-
sary for training CogNN, we use the following
four pairs of input annotations for CogNN: [PER,
FI], [PER, FML], [CoNLL, FI + CoNLL], and

Models Annotations R P F

CRF

PER 85.29 94.75 89.77
FI 85.00 94.73 89.60

FML 83.66 93.36 88.25
CoNLL 92.43 89.96 91.18

FI+CoNLL 92.40 89.93 91.14
FML+CoNLL 90.19 89.04 89.61

Bi-
LSTM-
CRF

PER 96.25 96.98 96.62
FI 96.32 96.71 96.51

FML 94.74 95.15 94.94
CoNLL 96.43 96.74 96.59

FI+CoNLL 96.54 96.12 96.33
FML+CoNLL 95.17 94.49 94.83

CogNN [PER, FI] 94.93 98.37 96.62
[PER, FML] 94.84 97.57 96.18

[CoNLL, FI+CoNLL] 94.99 98.43 96.68
[CoNLL, FML+CoNLL] 94.93 97.78 96.33

Table 2: Token level performance of person name
recognition on CoNLL-2003. The difference between
the bold and the non-bold numbers is statistically sig-
nificant with p<0.05 as calculated using McNemar test.

[CoNLL, FML + CoNLL].
Models and Hyperparameters We compare
CRF, Bi-LSTM-CRF, and CogNN. We use the
same model hyperparameters and training param-
eters as described in Section 5.1. We initialise
word embeddings with GloVe pretrained 100-
dimensional embeddings. Unknown words are
randomly initialised. All the above models are
trained, developed, and tested on the training, de-
veloping, and testing datasets in CoNLL-2003.
Results From Table2, we see that neural models
perform better than the non-neural model, which
is consistent with the results in Section 5.1. When
providing extra ORG, LOC, and MISC annota-
tions apart from PER to CRF and Bi-LSTM-
CRF, the recall increases while the precision de-
creases. This indicates that the extra annotations



help recognise more named entity tokens but may
also misguide the model. In comparison, CogNN
is less impacted.

When providing extra FI or FML annotations
apart from PER to CRF and Bi-LSTM-CRF, the
performance of both models does not improve
while that of CogNN improves. Our improve-
ments mainly lie in the precision, which indicates
that CogNN can well distinguish person name to-
kens from others. These results also indicate that
only applying the detailed name form annotations
on newswire data for the existing models is not
enough. Our CogNN model is essential to make
use of the extra detailed name form information.

Although, the advantage of CogNN on formal
English newswire articles is smaller than that on
the HomePub dataset (Section 5.1). The main
reason is that the name forms in newswire arti-
cles are less flexible compared with those in aca-
demic homepages, which impinges the importance
of adding extra name form information.

6 Conclusion
We studied the person name recognition problem
in academic homepages. We propose a new name
annotation scheme which provides more detailed
information for various forms of names. We con-
structed a new dataset HomeName. To take advan-
tages of the detailed name form information, we
proposed the CogNN model that makes use of two
sub-networks to learn whether a token is part of
a name and its forms, respectively. Through co-
attention, the two sub-networks help each other
to boost the overall name recognition accuracy.
We performed an experimental study to evaluate
model effectiveness and applicability. The results
showed that CogNN outperforms state-of-the-art
NER models by up to 5.64% and 5.35% in terms
of F1-score in token and name levels on academic
homepages, while achieving comparable perfor-
mance on a traditional NER benchmark dataset
CoNLL-2013.

We will release HomeName and the annotation
tools for public use upon paper publication. For
future work, we plan to investigate the CogNN
model on other tasks that exhibit dependencies be-
tween each other, such as POS tagging and Chunk-
ing. We also plan to investigate using three sub-
networks in CogNN, one for each of the BIE,
FML, and FI dimensions, with a dual decompo-
sition in the fusion steps. Late fusion would be
another interesting direction to explore.
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A Supplemental Material

In this supplementary section, we provide addi-
tional details for the Dataset (Section 3) and the
Experiments (Section 5).

A.1 HomeName Dataset

File Structure Our dataset is constructed based
on the HomePub dataset3, which contains aca-
demic homepages with publication strings manu-
ally labelled. It contains 2,500 subfolders and each
subfolder contains three files for a webpage:
• An HTML file containing the page source.
• A TXT file containing the visible text of the

webpage, which is rendered by python’s Se-
lenium4 package.
• A JSON file containing publication annota-

tions.
We edit the JSON files to add name annotations
using the following format:

Figure 5: Screenshot of an example JSON file

Annotation Tool Annotation of homepages is
time-consuming, especially when a homepage
contains many names in complex forms. We de-
veloped a semi-automatic tool5 to assist the anno-
tation, which has five main functionalities:

3http://www.ruizhang.info/data/
homepub.html

4https://selenium-python.readthedocs.
io/

5The tool will be released with the HomeName dataset
upon paper publication.

http://www.ruizhang.info/data/homepub.html
http://www.ruizhang.info/data/homepub.html
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/


• Group label: This functionality helps anno-
tate a group of names of the same form. For
example, ‘Doe J’ and ‘Joon-gi L’ have the
same forms and can be annotated at once.
• Index: This functionality helps find all posi-

tions of a given name string in the TXT file.
• Mask: This functionality helps annotators to

proofread the text and find unlabelled names.
It replaces all the names already annotated
with a special token ‘ANNOTATED’.
• Validate: This functionality runs a simple au-

tomated quality check of the annotations. It
checks: (1) whether the position indices of
the names annotated in the JSON file are con-
sistent with the names appeared in the TXT
file; and (2) whether each annotated name
comes with the name form under the three-
dimensional annotation schemes.
• Compare: This functionality locates dis-

agreement between two annotators’ labels on
the same homepage. It identifies the list of
names with inter-annotator disagreement.

Annotators There are 6 annotators to annotate
the dataset. The annotators are postgraduate stu-
dents who have taken machine learning subjects.
We provide a one-hour training to each annotator.

We provide the annotators with an annotation
scheme and two example pages that are already
annotated. We ask each annotator to annotate six
pages. We examine the results and provide guid-
ance on how to improve the annotation quality.

We highlighted the following at training:
• Any named entities such as places, buildings,

organizations, prizes, honored titles or books,
which are named after a person, should not be
annotated as a person’s name.
• Words connected with a hyphen or an apos-

trophe should not be split into multiple to-
kens. For example, both ‘Joon-gi’ and
‘O’Keeffe’ both have only one token.
• Nobiliary particles6, e.g., ‘van’, ‘zu’ and ‘de’,

should be annotated as last names.
Each academic homepage is annotated by two

annotators. We ask all the annotators to annotate
using our annotation tool and also note down any
pages with uncertain name labels in the comment
field. After their annotations, we summarise the
disagreement between annotators. We make a de-
cision on the disagreement and also check the un-

6https://en.wikipedia.org/wiki/
Nobiliary_particle

certain pages and names. We send feedback when
they annotate every 230 homepages.
Annotation Analysis
• Confidence: Only 3.64% of all the home-

pages contain annotations that are uncertain
as flagged by the annotators, while 78.08%
of these pages are actually correctly labelled.
This indicates that the annotators have high
confidence in their annotations.
• Inter-annotator Agreement: We compute the

inter-annotator agreement on name strings
and name forms using Cohens Kappa mea-
surement. The annotators have higher agree-
ment on name strings (κ = 0.63) and lower
agreement on detailed name forms (κ =
0.41). The disagreement is mainly in home-
pages with a long string of consecutive name
tokens such that different annotators may dis-
agree on which tokens to form a name. The
annotators may also disagree on whether a
name token is a first name, middle name, or
last name. This is difficult especially when
the context is unclear.
• Time: On average, it takes 16 minutes to an-

notate an academic homepage with our tool.
Dataset Analysis In total, the HomeName dataset
contains 2,087 academic homepages from 286 in-
stitutes, i.e., 7.29 pages per institute (standard
deviation 7.27). A total of 34,880 names are
annotated and 70,864 name position indices are
recorded. On average, a name appears twice in
an academic homepage. Most names begin with
last names (64.73%) while the rest mostly be-
gin with first names. Only 13 names start with
middle names. Most names contain at least one
initial (66.57%). The two most frequent name
forms are Begin Last Full End First Initial and
Begin First Full End Last Full. Table 3 sum-
marises the annotation results and the dataset.

A.2 Experiment Details
Preprocessing We focus on English webpages
and first convert any text in Unicode to ASCII us-
ing Unidecode 7. We then split the text into sen-
tences using the sentence tokenizer in NLTK. The
sentences are further tokenized on whitespace and
punctuations except for hyphens and apostrophes.
Every punctuation is considered as a single token
to retain the structural information.
Word Embedding We train 100 dimensional

7https://pypi.org/project/Unidecode/

https://en.wikipedia.org/wiki/Nobiliary_particle
https://en.wikipedia.org/wiki/Nobiliary_particle
https://pypi.org/project/Unidecode/


Summary of Annotation

Confidence
Uncertain pages 3.64%

Acc. on uncert. names 78.08%
Inter-annotator
agreement (κ)

Names 0.63
Names forms 0.41

Time 16 min
Summary of Dataset

Total Homepages 2,087
Total Institutes 286

Average Institutes 7.29
STD. Institutes 7.27

Total Names Indexes 70,864
Total Names 34,880

Contain Initial 23,221
Begin with Last Name 22,581

Begin with Middle Name 13
Begin with First Name 12,286

Table 3: Summary of annotation and dataset: Acc. is
accuracy, and κ is the Cohens Kappa measurement.

word embeddings using GloVe8 on HomeName,
with a window size of 15, minimun vocabulary
count of 5, full passes through cooccurrence ma-
trix of 15, and an initial learning rate of 0.05.
Implementation
• CRF: We use the Java implementation pro-

vided by the Stanford NLP group9 with de-
fault parameter settings. The software pro-
vides a generic implementation of linear
chain CRF model.
• Bi-LSTM-CRF: We implemente Bi-LSTM-

CRF using Theano10 and Lasagne11. The
word embeddings are fed into a Bi-LSTM
layer as input. Dropout is applied to the out-
put of Bi-LSTM layer to avoid overfitting.
The output is further fed into a linear chain
CRF layer to predict the tokens labels.
• CogNN: Our Co-guided Neural Network is

also implemented on Theano and Lasagne
following the description in Section 4.
Dropout is applied on the Bi-LSTM layers.
We use a standard grid search to find the
best hyperparameter values. We choose the
initial learning rate among [0.001, 0.01, 0.1],
the decay rate among [0.05, 0.1], the dimen-

8https://nlp.stanford.edu/projects/
glove/

9https://nlp.stanford.edu/software/
CRF-NER.html

10http://deeplearning.net/software/
theano/

11https://lasagne.readthedocs.io

sion of hidden layer among [50, 100, 200],
the dropout rate among [0.2, 0.5]

A.3 Example Output
Figure 6 shows a sample output of different mod-
els. In the figure, tokens in italics are the ground
truth, while tokens in bold are those predicted as
names. We see that all the baseline models con-
tain wrong predictions while the proposed CogNN
model successfully recognise all the names.

Proceedings of the National Academy of Sciences
of the United States of America
Kime C , Sakaki-Yumoto M , Goodrich L ,
Hayashi Y , Sami S , Derynck R , Asahi M , Pan-
ning B , Yamanaka S , Tomoda K
Activators and repressors : A balancing act for X-
inactivation .

CogNN ([BIE, FI])

Proceedings of the National Academy of Sciences
of the United States of America
Kime C , Sakaki-Yumoto M , Goodrich L ,
Hayashi Y , Sami S , Derynck R , Asahi M , Pan-
ning B, Yamanaka S , Tomoda K
Activators and repressors : A balancing act for X-
inactivation .

Bi-LSTM-CRF (BIE)

Proceedings of the National Academy of Sciences
of the United States of America
Kime C , Sakaki-Yumoto M , Goodrich L ,
Hayashi Y , Sami S , Derynck R , Asahi M , Pan-
ning B , Yamanaka S , Tomoda K
Activators and repressors : A balancing act for X-
inactivation .

CRF (BIE)

Proceedings of the National Academy of Sciences
of the United States of America
Kime C , Sakaki-Yumoto M , Goodrich L ,
Hayashi Y , Sami S , Derynck R , Asahi M , Pan-
ning B , Yamanaka S , Tomoda K
Activators and repressors : A balancing act for X-
inactivation .

Stanford NER (Newswire)

Figure 6: An example of applying different models on
the text from an academic homepage. All the italic to-
kens except commas should be recognised as names
while the bold tokens are actually recognised.
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