
Under review as a conference paper at ICLR 2020

SEQUENCE-LEVEL INTRINSIC EXPLORATION MODEL
FOR PARTIALLY OBSERVABLE DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training reinforcement learning policies in partially observable domains with
sparse reward signal is an important and open problem for the research community.
In this paper, we introduce a new sequence-level intrinsic novelty model to tackle
the challenge of training reinforcement learning policies in sparse rewarded par-
tially observable domains. First, we propose a new reasoning paradigm to infer the
novelty for the partially observable states, which is built upon forward dynamics
prediction. Different from conventional approaches that perform self-prediction or
one-step forward prediction, our proposed approach engages open-loop multi-step
prediction, which enables the difficulty of novelty prediction to flexibly scale and
thus results in high-quality novelty scores. Second, we propose a novel dual-LSTM
architecture to facilitate the sequence-level reasoning over the partially observable
state space. Our proposed architecture efficiently synthesizes information from
an observation sequence and an action sequence to derive meaningful latent rep-
resentations for inferring the novelty for states. To evaluate the efficiency of our
proposed approach, we conduct extensive experiments on several challenging 3D
navigation tasks from ViZDoom and DeepMind Lab. We also present results on two
hard-exploration domains from Atari 2600 series in Appendix to demonstrate our
proposed approach could generalize beyond partially observable navigation tasks.
Overall, the experiment results reveal that our proposed intrinsic novelty model
could outperform several state-of-the-art curiosity baselines with considerable
significance in the testified domains.

1 INTRODUCTION

Under the reinforcement learning formalism, the learning behavior of an agent is driven by the reward
that the agent collects from the environment (Sutton and Barto, 1998). However, many real-world
problems have sparse rewards and most existing algorithms struggle with such sparsity. One inherent
reason that leads to the inferior performance of the conventional approaches in sparse reward domains
is that initially, the agent trained with those approaches could hardly stumble into a reward/goal state
by chance due to their simple exploration strategies (Pathak et al., 2017).

To tackle the sparse reward problems, it is crucial to incentivize the agent’s exploration behavior.
One prominent line of solutions for encouraging agent’s exploration is via reward shaping (Singh,
1992; Dorigo and Colombetti, 1994), where the agent develops internal reward models to assign
additional reward signals apart from the environment reward to encourage exploration. To model the
internal reward signal, often, the agent’s curiosity-driven behaviors are formalized as intrinsic novelty
models (Schmidhuber, 1991; Singh et al., 2004; Oudeyer et al., 2007), which characterize agent’s
experience to compute the novelty scores.

Our work belongs to the broad category of methods that solve the sparse reward problems with
novelty models and reward shaping. Specifically, we consider the line of sparse reward problems
that employ partially observable inputs, with the inputs scaling to high-dimensional state spaces,
such as images. Such problems cover a range of important applications among AI research, e.g.,
navigation, robotics control and video game playing. Even though the recently emerged intrinsic
novelty models have demonstrate considerable efficiency in solving sparse reward problems with
partial observability, we still face the following two major challenges. First, inferring the novelty
for the true state given only the partial observations still remains an open problem. Most of today’s

1

Under review as a conference paper at ICLR 2020

.

Observation sequence

Action sequence with lengthObservation sequence with length

with length

Action sequence with length

Figure 1: A high-level depict for the proposed reasoning paradigm of inferring novelty from multi-step forward
dynamics prediction. A {L+H}-step transition graph is shown. The prediction of ot depends on a sequence of
observations with length H followed by a sequence of actions with length L. Generally, the longer L, the more
difficult to predict ot.

state-of-the-art novelty models (e.g., (Savinov et al., 2019; Pathak et al., 2017)) only derive the
novelty from local information, e.g., concatenation of few recent frames. Second, though prediction
error has been widely adopted as an effective metric to infer novelty, most of the existing approaches
develop novelty model upon short-term prediction error such as 1-step look-ahead. Such short-term
prediction task might be an inadequate proxy for representing the novelty over state space, i.e., it
might be too simple and thus result in inferior novelty scores.

Our key motivations are as follows. First, sequence-level novelty models are desired to reason over
the partially observable states with greater efficiency. Second, the novelty model should consider
longer-term prediction than self-prediction or 1-step look-ahead, to infer more meaningful novelty
scores. Based on the above intuitions, this work proposes a new sequence-level novelty model
for partially observable domains with the following two distinct properties. First, we introduce a
dual-LSTM architecture to reason over a sequence of past transitions to construct the novelty model.
Second, we infer the novelty of a state from the prediction error of open-loop multi-step forward
dynamics prediction, which is crucial to derive high quality novelty scores.

2 METHODOLOGY

Partially Observable Markov Decision Process (POMDP) generalizes MDPs by learning under
partial observability. Formally, a POMDP is defined as a tuple 〈S,A,O, T ,Z,R〉, where S, A
and O are the spaces for the state, action and observation, respectively. The transition function
T (s, a, s′) = p(s′|s, a) specifies the probability for transiting to state s′ after taking action a at state
s. The observation function Z(s, a, o) = p(o|s, a) defines the probability of receiving observation
o after taking action a at state s. The reward functionR(s, a) defines the real-valued environment
reward issued to the agent after taking action a at state s. Under partial observability, the state
space S is not accessible by the agent. Thus, the agent performs decision making by forming a
belief state bt from its observation space O, which integrates the information from the entire past
history, i.e., (o0, a0, o1, a1, ..., ot, at). The goal of reinforcement learning is to optimize a policy
π(bt) that outputs an action distribution given each belief state bt, with the objective of maximizing
the discounted cumulative rewards collected from each episode, i.e.,

∑∞
t=0 γ

trt, where γ ∈ (0, 1] is
a real-valued discount factor.

2.1 INTRINSIC EXPLORATION FRAMEWORK

We now describe our proposed sequence-level intrinsic novelty model for partially observable domains
with high-dimensional inputs (i.e., images). Our primary focuses are the tasks where the external
rewards rt are sparse, i.e., zero for most of the times. This motivates us to engage a novelty function
to infer the novelty over the state space and assign reward bonus to encourage exploration.

The novelty function is derived from a forward-inverse dynamics model. Figure 1 depicts a high-level
overview of our proposed sequence-level novelty computation. To infer the novelty of a state at
time t, we perform reasoning over a sequence of transitions with length L+H . Intuitively, we use
a sequence of H consequent observation frames together with a sequence of actions with length
L which are taken following the observation sequence, to predict the forward dynamics. As such,
the novelty model performs open-loop multi-step forward prediction. By setting the length of the

2

Under review as a conference paper at ICLR 2020

Target	function

Forward	model

��−�

LSTM

��−�−�+2 ��−���−�−1

(, . . . ,)�̂ �−�−�+1 �̂ �−�−1LSTM LSTM. . . ℎ
�

�

⊙

⊖

�+�

. . .

ℎ�

LSTM

LSTM
� � �

LSTM
�� �

Inverse	model

��−�+1 ��−1

ℎ
�

�
. . .

. . . � ∗ ���

����

LSTM

��−�−�+1

�

Figure 2: Dual-LSTM architecture for the proposed sequence-level intrinsic model. Overall, the forward
model employs an observation sequence and an action sequence as input to predict the forward dynamics. The
prediction target for forward model is computed from a target function f∗(·). An inverse dynamics model is
employed to let the latent features ht encode more transition information.

action sequence, i.e., L, our proposed paradigm could lead to forward dynamics prediction tasks with
varying difficulty.

To process the input sequences, we propose a dual-LSTM architecture as shown in Figure 2. Overall,
each raw observation and action data are first projected by their corresponding embedding modules.
Then LSTM modules are adopted over the sequences of observation/action embeddings to derive the
sequential observation/action features. Then the sequential observation/action features are synthesized
in a specific form of ht, which serves as the latent representation for the past transitions at time t and
is employed as input to predict forward dynamics f(ht). The error of the forward dynamics prediction
is used to estimate the novelty r+t of the state at time t. Furthermore, to make the latent features
over the past transitions more informative, we also incorporate an inverse dynamics prediction model
finv to predict the action distributions. Overall, the proposed dual-LSTM architecture enables us to
perform sequence-level reasoning and inferring novelty from the multi-step forward prediction.

2.2 SEQUENCE ENCODING WITH DUAL-LSTM ARCHITECTURE

The sequence encoding module accepts a sequence of observations with length H and a sequence of
actions with length L as input. Formally, we denote the observation sequence and action sequence
by Ot = ot−L−H−1:t−L−1 and At = at−L−1:t−1, respectively. Specifically, each observation ot is
represented as a 3D image frame with width m, height n and channel c, i.e., ot ∈Rm×n×c. Each
action is modeled as a 1-hot encoding vector at∈R|A|, where |A| denotes the size of the action space.

Given the sequences Ot and At, the sequence encoding module first adopts an embedding module
fe(·) parameterized by θE = {θEo , θEa} to process the observation sequence and the action sequence
as follows,

φO
t = fe(Ot; θEo) and φA

t = fe(At; θEa), (1)

where θEo and θEa denote the parameters for the observation embedding function and the action
embedding function, respectively. Next, LSTM encoders are applied to the output of the observa-
tion/action embedding modules as follows,

[hot , c
o
t] = LSTMo

(
φO
t , h

o
t−1, c

o
t−1

)
and [hat , c

a
t] = LSTMa

(
φA
t , h

a
t−1, c

a
t−1

)
, (2)

where hot ∈ Rl and hat ∈ Rl represent the latent features encoded from the observation sequence
and action sequence. For simplicity, we assume hot and hat have the same dimensionality. cot and cat
denote the cell output for the two LSTM modules.

Next, the sequence features for the observation/action hot and hat are synthesized to derive latent
features ht which describe the past transitions. Intuitively, the form of ht is proposed as follows:

hitrt = hot � hat and ht = [hot , h
a
t , h

itr
t]. (3)

To compute ht, an multiplicative interaction is first performed over hot and hat , which results in hitrt
and � denotes element-wise multiplication. Then ht is derived by concatenating the multiplicative

3

Under review as a conference paper at ICLR 2020

interaction feature hitrt with the latent representations for the observation and action sequences,
i.e., hot and hat . The reason for generating ht in this way is that the prediction task over the partial
observation ot is related to both the local information conveyed in the two sequences themselves
(i.e., hot and hat), as well as the collaborative information derived via interacting the two sequence
features in a form. The reason for performing multiplicative interaction is that the advancement of
such operation in synthesizing different types of features has been validated in prior works (Oh et
al., 2015; Ma et al., 2019). We demonstrate that generating ht in the proposed form is effective and
crucial to derive a desirable policy learning performance in the ablation study (Figure 7c) of the
experiment section.

2.3 COMPUTING NOVELTY

To compute the novelty, the latent features ht are first employed as input by a feedforward prediction
function to predict the forward dynamics:

ψ̂t = f(ht; θF) and ψ∗t = f∗(ot), (4)

where f(·) is the forward prediction function parameterized by θF , and ψ̂t denotes the prediction
output. We use ψ∗t to denote the prediction target, which is computed from some target function f∗(·).
Within the proposed novelty framework, the target function f∗(·) could be derived in various forms,
where the common choices include the representation of ot at its original feature space, i.g., image
pixels, and the learned embedding of ot, i.e., fe(·; θEo). Apart from the conventional choices, in this
work, we employ a target function computed from a random network distillation model (Burda et
al., 2019). Thus, f∗(·) is represented by a fixed and randomly initialized target network. Intuitively,
it forms a random mapping from each input observation to a point in a k-dimensional space, i.e.,
f∗ : Rm×n×c → Rk. Hence the forward dynamics model is trained to distill the randomly drawn
function from the prior. The prediction error inferred from such a model is related to the uncertainty
quantification in predicting some constant zero function (Osband et al., 2018).

The novelty of a state is inferred from the uncertainty evaluated as the MSE loss for the forward
model. Formally, at step t, a novelty score or reward bonus is computed in the following form:

r+(Ot,At) =
β

2
||ψ∗t − ψ̂t||

2

2, (5)

where β ≥ 0 is a hyperparameter to scale the reward bonus. The reward bonus is issued to the agent
in a step-wise manner. During the policy learning process, the agent maximizes the sum over the
external rewards and the intrinsic rewards derived from the novelty model. Therefore, the overall
reward term to be maximized as will be shown in (8) is computed as rt = ret + r+t , where ret denotes
the external rewards from the environment.

2.4 LOSS FUNCTIONS FOR TRAINING

The training of the forward dynamics model is formulated as a regression problem. The loss for
optimizing the forward dynamics model is defined as follows:

LF (ψ∗t , ψ̂t) =
1

2
||ψ∗t − ψ̂t||

2

2. (6)

We additionally incorporate an inverse dynamics model finv over the latent features ht to make them
encode more abundant transition information. Given the observation sequence Ot with length H ,
the inverse model is trained to predict the H − 1 actions taken between the observations. Thus, the
inverse model is defined as:

finv
(
ht; θI

)
=

H−1∏
i=1

p(ât−L−i), (7)

where finv(·) denotes the inverse function parameterized by θI , and p(ât−L−i) denotes the action
distribution output for time step t− L− i. The inverse model is trained by minimizing a standard
cross-entropy loss.

Overall, the forward loss and inverse loss are jointly optimized with the reinforcement learning
objective. Moreover, the parameters for the observation embedding module θEo could be shared

4

Under review as a conference paper at ICLR 2020

Spawn location
Goal

Sparse

Very sparse

Figure 3: The 3D navigation task domains adopted for empirical evaluation: (1) an example of partial
observation frame from ViZDoom task; (2) the spawn/goal location settings for ViZDoom tasks; (3/4) an
example of partial observation frame from the apple-distractions/goal-exploration task in DeepMind Lab.

with the policy model. In summary, the compound objective function for deriving the intrinsically
motivated reinforcement learning policy becomes:

min
θE ,θF ,θI ,θπ

λLF (ψ∗t , ψ̂t) +
(1− λ)
H − 1

H−1∑
i=1

LI(ât−L−i, at−L−i)− ηEπ(φot ;θπ)

[∑
t

rt

]
, (8)

where θE , θF and θI are the parameters for the novelty model, θπ are the parameters for the policy
model, LI(·) is the cross-entropy loss for the inverse model, 0 ≤ λ ≤ 1 is a weight to balance the loss
for the forward and inverse models, and η ≥ 0 is the weight for maximizing the cumulative reward.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Task Domains For empirical evaluation, we adopt three 3D navigation tasks with first-person
view: 1) ‘DoomMyWayHome-v0’ from ViZDoom (Kempka et al., 2016); 2) ‘Stairway to Melon’
from DeepMind Lab (Beattie et al., 2016); 3) ‘Explore Goal Locations’ from DeepMind Lab. The
experiments in ‘DoomMyWayHome-v0’ allow us to test the algorithms in scenarios with varying
degrees of reward sparsity. The experiments in ‘Stairway to Melon’ allow us to test the algorithms in
scenarios with reward distractions. The experiments in ‘Explore Goal Locations’ allow us to test the
algorithms in scenarios with procedurally generated maze layout and random goal locations.

Baseline Methods For fare comparison, we adopt ‘LSTM-A3C’ as the RL algorithm for all the
methods. In the experiments, we compare with the vanilla ‘LSTM-A3C’ as well as the following
intrinsic exploration baselines: 1) the Intrinsic Curiosity Module (Pathak et al., 2017), denoted as
‘ICM’; 2) Episodic Curiosity through reachability (Savinov et al., 2019), denoted as ‘EC’; 3) the
Random Network Distillation model, denoted as ‘RND’. Our proposed Sequence-level Intrinsic
exploration Module is denoted as ‘SIM’. Our method adopt observation length 10 and action length
3 consistently for all domains. All the intrinsic exploration baselines adopt non-sequential inputs.
The baseline ‘EC’ is a memory-based algorithm. We shift the corresponding learning curves by
the budgets of pretraining frames (i.e., 0.6M) in the results to be presented, following the original
paper (Savinov et al., 2019). We present the implementation details for all the compared methods in
Appendix A.

3.2 EVALUATION WITH VARYING REWARD SPARSITY

Our first empirical domain is a navigation task in the ‘DoomMyWayHome-v0’ scenario from ViZDoom.
The task consists of a static maze layout and a fixed goal location. At the start of each episode, the
agent spawns from one of the 17 spawning locations, as shown in Figure 3. In this domain, we adopt
three different setups with varying degree of reward sparsity, i.e., dense, sparse, and very sparse.
Under the dense setting, the agent spawns at one randomly selected location from the 17 locations
and it is relatively easy to succeed in navigation. Under the sparse and very sparse settings, the agent
spawns at a fixed location far away from the goal. The environment issues a positive reward of +1 to
the agent when reaching the goal. Otherwise, the rewards are 0. The episode terminates when the
agent reaches the goal location or the episode length exceeds the time limit of 525 4-repeated steps.

We show the training curves measured in terms of navigation success ratio in Figure 4. The results
from Figure 4 depicts that as the rewards go sparser, the navigation would become more challenging.

5

Under review as a conference paper at ICLR 2020

Figure 4: Learning curves measured in terms of the navigation success ratio in ViZDoom. The figures
are ordered as: 1) dense; 2) sparse; 3) very sparse. We run each method for 6 times.

The vanilla ‘LSTM-A3C’ algorithm could not progress at all under the sparse and very sparse settings.
‘ICM’ could not reach 100% success ratio under the sparse and very sparse settings, and so does ‘EC’
under the very sparse setting. Our proposed method consistently achieves 100% success ratio across
all the tasks with varying reward sparsity. The detailed convergence scores are shown in Table 1. We
also present the results measured in terms of average episode length in Appendix B.3.

Our proposed solution also demonstrates significant advantage in terms of convergence speed. Though
the reward sparsity varies, our method could quickly reach 100% success ratio in all the scenarios.
However, the convergence speeds of ‘ICM’, ‘EC’ and ‘RND’ apparently degrade with sparser
rewards. Also, we notice that the memory-based method (i.e., ‘EC’) takes much longer time to
converge compared to the prediction-error based baselines ‘RND’ and ‘SIM’. That is, the learning
curves for those prediction-error based methods go up with a much steeper ratio compared to the
memory-based method. The reason might come from the memory that ‘EC’ keeps and updates at
run-time to infer the novelty. The novelty score assigned for each state might be unstable due to the
run-time update to memory. Moreover, ‘EC’ requires to pre-train the comparator module in some
task domains such as ViZDoom, whereas our method, as well as ‘ICM’ and ‘RND’, does not require
pre-training. Overall, our proposed method could converge to 100% success ratio on average 3.1x
as fast as ‘ICM’ and 2.0x compared to ‘RND’. We present some detailed convergence statistics in
Appendix B.4.

3.3 EVALUATION WITH VARYING MAZE LAYOUT AND GOAL LOCATION

Our second empirical evaluation engages a more dynamic navigation task with procedurally generated
maze layout and randomly chosen goal locations. We adopt the ‘Explore Goal Locations’ level script
from DeepMind Lab. At the start of each episode, the agent spawns at a random location and searches
for a randomly defined goal location within the time limit of 1350 4-repeated steps. Each time the
agent reaches the goal, it receives a reward of +10 and is spawned into another random location
to search for the next random goal. The maze layout is procedurally generated at the start of each
episode. This domain challenges the algorithms to derive general navigation behavior instead of
relying on remembering the past trajectories.

We show the results with an environment interaction budget of 2M 4-repeated steps in Figure 5. We
exempt the baseline ‘EC’ in this task, because the pretraining of ‘EC’ consumes 0.6M interaction
budgets, which makes it less feasible for the current task. As a result, the method without intrinsic
novelty model could only converge to an inferior performance around 10. Our proposed method
could score > 20 with less than 1M training steps, whereas ‘ICM’ and ‘RND’ take almost 2M steps

Figure 5: Learning curves for the procedu-
rally generated goal searching task in Deep-
Mind Lab. We run each method for 5 times.

dense sparse very sparse
LSTM-A3C 100% 0.0% 0.0%
ICM 100% 66.7% 68.6%
EC 100% 100% 75.5%
RND 100% 100% 100%
SIM 100% 100% 100%

Table 1: Performance scores for the three task settings in
ViZDoom evaluated over 6 independent runs. Overall, only
our approach and ‘RND’ could converge to 100% under all
the settings. Our method on average converges 2.0x as fast as
‘RND’ and 3.1x as fast as ‘ICM’ in ViZDoom domains.

6

Under review as a conference paper at ICLR 2020

Figure 6: Learning curves for ‘Stairway to Melon’ task in DeepMind Lab. Left: cumulative episode
reward; Right: navigation success ratio. We run each method for 5 times.

to score above 20. This demonstrates that our proposed algorithm could progress at a much faster
speed compared to all the baselines under the procedurally generated maze setting.

3.4 EVALUATION WITH REWARD DISTRACTIONS

Our third empirical evaluation engages a cognitively complex task with reward distraction. We adopt
the ‘Stairway to Melon’ level script from DeepMind Lab. In this task, the agent can follow either
two corridors: one of them leads to a dead end, but has multiple apples along the way, collecting
which the agent would receive a small positive reward of +1; the other corridor consists of one lemon
which gives the agent a negative reward of −1, but after passing the lemon, there are stairs that lead
to the navigation goal location upstairs indicated by a melon. Collecting the melon makes the agent
succeed in navigation and receive a reward of +20. The episode terminates when the agent reaches
the goal location or the episode length exceeds the time limit of 525 4-repeated steps.

The results are shown in Figure 6. We show both the cumulative episode reward and the success ratio
for navigation. Due to the reward distractions, the learning curves for each approach demonstrate
instability with ubiquitous glitches. The vanilla ‘LSTM-A3C’ could only converge to an inferior
navigation success ratio of < 50%, and all the other baselines progress slowly. Notably, our proposed
method could fast grasp the navigation behavior under the reward distraction scenario, i.e., surpassing
the standard of > 80% with less than 0.2M environment interactions, which is at least 3x as fast as
the compared baselines.

3.5 ABLATION STUDY

In this section, we present the results for an ablation study under the very sparse task in ViZDoom.

Impact of multi-step prediction: We demonstrate that performing multi-step prediction could
be beneficial for policy training. In Figure 4 (c), we have shown the comparison results with self-
prediction baseline ‘RND’ and one-step prediction baseline ‘ICM’, both of which are feed-forward
models. In this section, we show the results by comparing with sequence-level one-step prediction
baselines adapted from our proposed model. From the results shown in Figure 7a, we notice that
performing 3-step forward prediction would result in apparently better convergence than the ‘L1’
variants. Expanding the scale of prediction difficulty by incorporating longer-term forward prediction
would be beneficial to derive high-quality novelty scores than one-step models.

(a) Multi-step prediction (b) Inv. dynamics loss (c) Different form of ht. (d) Seq./RND module.

Figure 7: Results of ablation study in the very sparse task of ViZDoom.

7

Under review as a conference paper at ICLR 2020

Impact of inverse dynamics loss: We also investigate the impact of shaping the latent represen-
tation ht by incorporating the inverse dynamics loss. To this end, we show the performance of our
proposed model when the inverse dynamics is turned off in Figure 7b. When performing short-term
prediction, such as one-step look-ahead, the effect of inverse dynamics might not be very signif-
icant. However, when considering longer term prediction, utilizing inverse dynamics loss could
efficiently stabilize the training and help to shape the latent representation to be more meaningful
(i.e., performance of H10-L3 (inv-off) is much worse than H10-L1 (inv-off)).

Impact of ht: We demonstrate that modeling ht in the proposed form of (3) is efficient by com-
paring our method with the following two baseline models of ht: 1) only using the interactive
features hitrt , denoted by ‘SIM-itr’, and 2) only using the concatenation of hot and hat , denoted by
‘SIM-concat’. From the results shown in Figure 7c, we find that both baseline methods converge
to inferior performance standard, i.e., the algorithm fail occasionally so that the averaged curve
could not converge to 100% success ratio. When using ht in the proposed form, the algorithm could
consistently converge to 100% success ratio. This demonstrates that modeling ht in our proposed
form is crucial for deriving a desired policy learning performance.

Impact of the sequence/RND module: Lastly, we testify the efficiency of the two critical parts for
our solution: 1) the sequence embedding module with dual-LSTM; 2) the RND module to compute
the prediction target. To this end, we create the following two baselines: 1) using a feedforward
model together with RND, denoted by ‘SIM-no-Seq’, and 2) training the sequence embedding model
with the target computed from the embedding function fe(·; θEo) instead of RND, denoted by ‘SIM-
no-RND’. The results are shown in Figure 7d. ‘SIM-no-Seq’ could outperform the ‘ICM’ baseline,
which indicates that using random network distillation to form the target could be more efficient in
representing the novelty of state than using the learned embedding function. Also, ‘SIM-no-RND’
could converge much faster than ‘ICM’, which indicates that using the sequence-level modeling
of novelty is more efficient than using flat concatenation of frames. Overall, this study shows that
using the sequence embedding model together with the RND prediction target is critical for deriving
desirable performance.

4 RELATED WORK

Curiosity-driven exploration has been studied extensively in the reinforcement learning literature.
We refer the readers to (Oudeyer and Kaplan, 2009; Oudeyer et al., 2007) for an overview. In
recent years, research on intrinsic exploration for deep reinforcement learning develops the novelty
or curiosity model based on various factors, such as counts (Tang et al., 2017; Choi et al., 2019),
pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017), prediction-error (Achiam and Sastry,
2017; Stadie et al., 2015) and information gain (Houthooft et al., 2016; Nikolov et al., 2019).

A prominent line of approaches for intrinsic exploration under partially observable settings fall
under the prediction-error-based approaches. Pathak et al. (2017) propose a forward-backward
dynamics model trained with self-supervision, and use the prediction loss of the forward model to
infer the state novelty. Oh and Cavallaro (2019) incorporate a triplet ranking function to push the
prediction output of the forward model to be far from some alternative prediction output computed
with wrong action inputs. Apart from those prediction-error-based approaches, recently, Savinov
et al. (2019) propose a memory-based approach which forms a memory of novel states and trains
a comparator network to model the reachability between states to assign state novelty. While all
the above mentioned approaches adopt visual inputs modeled as flat concatenation of frames, we
model the sequence-level novelty from past transition sequence. Compared to the recent works that
adopt sequence-level modeling in policy training (Chiappa et al., 2017; Ke et al., 2019), they mainly
consider sequence-level policy, or construct dynamics models that are autoregressive. In our work,
we propose a dual-LSTM architecture that tackles open-loop multi-step dynamics prediction.

5 CONCLUSION

In this paper, we tackle the challenge of improving policy training in sparse rewarded partially
observable domains. We propose a sequence-level novelty model, and we demonstrate the benefit
of such a model through various experimental domains, including tasks with partially observability
as well as fully observable tasks. In the future, we want to explore the possibility of adapting our
proposed solution to derive modularized and transferable novelty model among related task domains.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. arXiv:1703.01732, 2017.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab.
arXiv:1612.03801, 2016.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In NIPS, pages 1471–1479, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In ICLR, 2019.

Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. ICLR, 2017.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In ICLR, 2019.

Marco Dorigo and Marco Colombetti. Robot shaping: Developing autonomous agents through
learning. Artificial intelligence, 71(2):321–370, 1994.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In NIPS, pages 1109–1117, 2016.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Learning dynamics model in reinforcement learning by incorporating the long
term future. ICLR, 2019.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. ViZ-
Doom: A Doom-based AI research platform for visual reinforcement learning. In CIG, pages
341–348, 2016.

Chao Ma, Sebastian Tschiatschek, Konstantina Palla, Jose Miguel Hernandez Lobato, Sebastian
Nowozin, and Cheng Zhang. Eddi: Efficient dynamic discovery of high-value information with
partial vae. ICML, 2019.

Nikolay Nikolov, Johannes Kirschner, Felix Berkenkamp, and Andreas Krause. Information-directed
exploration for deep reinforcement learning. In ICLR, 2019.

Changjae Oh and Andreas Cavallaro. Learning action representations for self-supervised visual
exploration. to appear in ICRA, 2019.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In NIPS, pages 2845–2853. 2015.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. In NeurIPS, pages 8617–8629, 2018.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. In ICML, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computational
approaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

9

Under review as a conference paper at ICLR 2020

Nikolay Savinov, Anton Raichuk, Damien Vincent, Raphael Marinier, Marc Pollefeys, Timothy
Lillicrap, and Sylvain Gelly. Episodic curiosity through reachability. In ICLR, 2019.

Jürgen Schmidhuber. Curious model-building control systems. In IEEE International Joint Confer-
ence on Neural Networks, pages 1458–1463. IEEE, 1991.

Satinder Pal Singh, Andrew G Barto, and Nuttapong Chentanez. Intrinsically motivated reinforcement
learning. In NIPS, volume 17, pages 1281–1288, 2004.

Satinder Pal Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8(3-4):323–339, 1992.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. NIPS Workshop on Deep Reinforcement Learning, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based exploration for deep
reinforcement learning. In NIPS, 2017.

10

Under review as a conference paper at ICLR 2020

APPENDICES

This supplementary material is organized as follows. First, we describe the implementation details
for our proposed model and the baseline models. Then we demonstrate the additional experiment
results for the ViZDoom domains. Besides, we show the task settings and hyperparameter settings to
replicate the results shown for the ‘Stairway to Melon’ and ‘Explore Go Locations Small’ tasks in
DeepMind Lab. Finally, we present the results on Atari experiments.

A IMPLEMENTATION DETAILS

A.1 SIM

The novelty model employs a sequence of observation frames with length H and a sequence of
actions with length L as its input. Specifically, each observation is modeled as RGB images of size
42× 42× 3. Each action is modeled as one-hot vector with size |A|, where A is the discrete action
space used for each domain. The observation embedding module fe(·; θEo) consists of two conv
layers with 16 and 32 filters respectively. Both layers use kernel size of 3× 3 and stride of 2. The
convolution layers are followed by a fc layer of size 256. The action embedding layer is a fc layer of
size 128. Then the state and action embedding outputs are fed to two LSTMs with latent size 256.
The synthesized latent feature ht has a size of 256× 3. ht is fed to a fc layer of size 64 to construct
the forward model (to predict RND target) and another fc layer of size (H − 1) ∗ |A| followed by a
softmax layer to construct the inverse model. The inverse model predicts the previously taken actions
with length H − 1. The target function f∗(·) is modeled by random network distillation function, for
which we employ the same setting as introduced in Section A.3.

A.2 ICM

The ICM model takes an observation and an action as its input to predict the embedding computed
for the observation of the next state. The observation is modeled as 4 consequent gray-scale frames
with size 42× 42× 4. The action input is modeled as an one-hot vector with size A. We adopt the
identical ICM implementation as the open-source code released for the original paper. Specifically,
the observation embedding model consists of 4 consequent conv layers, with filter size of 32, kernel
size of 3× 3 and stride of 2 for each. The output of the observation embedding is a vector of size 288.
The observation embedding is concatenated with the one-hot action to form a synthesized feature,
which is fed to a fc layer of size 256 followed by another fc of size 288 to form the forward dynamics
model.

A.3 RND

The RND mdoel takes an RGB image of size 42×42×3 as its input to predict the randomly projected
target for that RGB image. Specifically, the target function consists of 3 conv layers with 32 filters
for each, kernel sizes of 8, 4 and 3, and strides of 4, 2 and 1, respectively. The outputs of the last
conv layer is followed by a fc layer of size 64 to compute the prediction target. For all the layers, the
weights are initialized by orthogonal initializer with scale of

√
2 and the biases for all the layers are

initialized by 0-initialization. The prediction model consists of 4 consequent conv layers, with filter
size of 32, kernel size of 3× 3 and stride of 2 for each. The output of last conv layer is followed by a
fc layer of size 64 to output the prediction.

A.4 EC

The comparitor network for ‘EC’ is implemented as Resnet-18 with 512 outputs. The concatenated
features for a pair of compared frames are fed to a fc layer of size 512, which is followed by a fc layer
of size 2 and a softmax function to compute the classification probability. We adopt the identical
implementation from the open-source code of the original paper.

11

Under review as a conference paper at ICLR 2020

A.5 LSTM-A3C

At each step, the ‘LSTM-A3C’ policy model takes an RGB image of size 42× 42× 3 as its input.
The image is first processed by an embedding module, which consists of two conv layers with 16
and 32 filters, kernel size of 3× 3, and stride of 2 for each. Then the output of the last conv layer is
fed to a fc layer of size 256 to form the input to the LSTM module. We adopt single LSTM layer
with a latent size of 256. The output of the LSTM module is fed to two brunches: one followed
by a fc layer of size 1 to predict the value, another followed by a fc layer of size |A| and a softmax
layer to predict the action probability. To train the ’LSTM-A3C’, we use ADAM optimizer with
learning rate of 1e − 4 for all the task domains. For ViZDoom tasks, we adopt 16 asynchronous
actors and for DeepMind Lab tasks, we adopt 8 actors. The value loss is weighted by 0.5 and the
entropy regularization weight is 0.01.

B VIZDOOM TASKS

B.1 TASK SETTINGS

We adopt the ‘DoomMyWayHome-v0’ scenario for the navigation tasks in ViZDoom. Specifically,
the tasks are static goal reaching tasks with a static maze layout. The three task settings differ in
terms of the agent’s spawn location. Each episode lasts for 525 4-repeated simulator steps. The
episode terminates when the agent reaches the static goal location. We adopt a discrete action space
with size of 4: {move-left,move-right, forward, no-op}.

B.2 HYPERPARAMETER SETTINGS

LSTM-A3C ICM RND EC SIM
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4
task reward scale 1.0 1.0 1.0 1.0 1.0
bonus reward scale - 0.01 0.01 0.01 0.001
ICM forward inverse ratio (λ) - 0.2 - - 0.2
RL loss coefficient (η) - 0.1 0.1 - 0.1

B.3 EVALUATION RESULT IN TERMS OF EPISODIC LENGTH

In this static goal reaching domain, the agent with better navigation policy would result in shorter
path to reach the goal. Therefore, we present the results evaluated in terms of average episodic length
for each algorithm under the three task settings. The results are shown in Figure 8.

Figure 8: average steps of episode: (1) Vizdoom dense (2) Vizdoom sparse (3): Vizdoom very sparse

We observe that the episodic lengths decrease at different ratios for the compared algorithms. Notably,
our algorithm decreases at a much faster ratio compared to all the baselines. Meanwhile, the episodic
length for both ‘SIM’ and ‘RND’ would converge to a better standard than the other methods.

12

Under review as a conference paper at ICLR 2020

B.4 EVALUATION RESULT IN TERMS OF CONVERGENCE TIME

To qualitatively evaluate the advantage of our algorithm in terms of accelerating the policy learning
convergence, we measure the average convergence time for each algorithm across the ViZDoom
tasks. The resuls are shown in Table 2. For each algorithm, we present the approximated environment
steps required for the algorithm to reach the convergence standard.

LSTM-A3C ICM RND EC SIM (ours)
dense 7.13m 3.50m 1.86m >10m 1.42m
sparse >10m 6.01m 4.51m 6.45m 1.82m
very sparse >10m 6.93m 4.55m >10m 1.97m

Table 2: The approximated environment steps taken by each algorithm to reach its convergence
standard under each task setting. Notably, our proposed algorithm could achieve an average speed up
of 3.1x compared to ‘ICM’, and 2.0x compared to ‘RND’.

B.5 A STUDY ON THE IMPACT OF SCALING FACTOR (β)

In response to the reviewer’s comments, we provide a study on the impact of scaling factor on the
tasks with both dense reward and sparse reward setting. To this end, we present the result on the
following two settings from ViZDoom: dense and verySparse. Specifically, we testify the effect of
policy training by investigating on the scaling factor from the following set: {0.01, 0.001, 0.0001},
where 0.001 is our recommended setting that works well across the ViZDoom domains and 0.01 and
0.0001 are the apparently large/small settings.

First, we present the policy training rewards under each scaling factor setting in Figure 9. In the
dense reward scenario, the policy could learn with both scaling factors of 0.001 and 0.0001. However,
when we set it to be 0.01, it would result in bias in behavior and lead to inferior task performance.
Thus, we could conclude that the dense reward tasks could still benefit from such reward shaping
with proper setting of the scaling factor. For the verySparse setting, we observe that when the scaling
factor is too small, its effect is very minimal and are not suffice to let the policy learning progress.
Also, when it is set to be very large, it causes biased behavior and let the policy fail to learn proper
behavior. But generally, the suggested value 0.001 works well on all the cases.

0 100 200 300 400 500
steps

0.0

0.2

0.4

0.6

0.8

1.0

re
wa

rd
s

SIM-0.01
SIM-0.001
SIM-0.0001

0 100 200 300 400 500
steps

0.0

0.2

0.4

0.6

0.8

1.0

re
wa

rd
s

SIM-0.01
SIM-0.001
SIM-0.0001

Figure 9: Comparing different scaling factor setting on the following two ViZDoom scenarios: dense
(left) and very sparse (right). Results are presented in terms of task rewards.

We also present the scale of the intrinsic reward in Figure 10. Each data point corresonds to the
cumulative episodic intrinsic reward evaluated at the given training time. Overall, the intrinsic reward
decreases as the training progresses, which means that our dynamics model is getting trained properly.
The result reveals that if we set the scaling factor to be too large, it would result in large intrinsic
rewards and lead to inferior policy training performance.

In Figure 10 (right), we observe that with the scaling factor 0.001, there is a peak between 1m-2m
steps, where the agent intensively explore novelty states to learn meaningful behavior policy. After

13

Under review as a conference paper at ICLR 2020

2m steps, the model has converged to optimal behavior and the agent no longer receive intrinsic
rewards at large scale any more.

0 100 200 300 400 500
steps

0

20

40

60

80
in

tri
ns

ic
re

wa
rd

s
SIM-0.01
SIM-0.001
SIM-0.0001

0 100 200 300 400 500
steps

0

20

40

60

80

100

in
tri

ns
ic

re
wa

rd
s

SIM-0.01
SIM-0.001
SIM-0.0001

Figure 10: Comparing different scaling factor setting on the following two ViZDoom scenarios:
dense (left) and very sparse (right). We present the episodic cumulative intrinsic rewards.

B.6 A STUDY ON THE IMPACT OF MULTI-STEP SIZE(L)

In response to the reviewer’s comments, we present a study on performing multi-step forward predic-
tion with the size of forward prediction step (i.e., L) selected from the following set {1, 2, 3, 4, 5}.
From the results shown in Figure 11 , we notice that performing multi-step prediction with our
suggested L = 3 would have apparent advantage over L = 1 and L = 2. There is no apparent
advantage for L = 4 and L = 5 over L = 3. Therefore, we suggest L = 3 as a recommended
hyperparameter setting.

The phenomena that overlength prediction would not further benefit policy learning could be explained
as follows. The open-loop forward prediction we introduce could efficiently scale up the prediction
difficulty, i.e., the larget L, the more difficult to predict. When the prediction is too difficult, the model
leads to less favorable intrinsic reward bonus, among which the difference between prediction errors
for novel states would be less distinguishable from those common states. Therefore, performing
multi-step forward prediction with moderate L would be ideal.

0 50 100 150 200 250 300
steps

0.0

0.2

0.4

0.6

0.8

1.0

re
wa

rd
s

SIM (L=1)
SIM (L=2)
SIM (L=3)
SIM (L=4)
SIM (L=5)

Figure 11: Experiment result on performing multi-step forward prediction evaluated on verySparse
ViZDoom task.

14

Under review as a conference paper at ICLR 2020

C ‘STAIRWAY TO LEMON’ TASK

C.1 TASK SETTINGS

We adopt the ‘Stairway to Lemon’ level script from DeepMind Lab to testify the algorithms under
static goal reaching task with reward distraction. This task engages a static maze and a static
navigation target location. Each episode terminates when the agent reaches the navigation location or
the episodie length exceeds a predefined time out of 2100 4-repeated simulator steps. We adopt a
discrete action space with size of 3: {move-left,move-right, forward}.

C.2 HYPERPARAMETER SETTINGS

LSTM-A3C ICM RND EC SIM
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4
task reward scale 0.1 0.1 0.1 0.2 0.1
bonus reward scale - 0.05 0.1 - 0.001
ICM forward inverse ratio (λ) - 0.2 - - 0.2
RL loss coefficient (η) - 0.1 0.1 - 0.9

C.3 EVALUATION IN TERMS OF EPISODIC LENGTH

In this task domain, we observe that the reward distractions would result in significant instability to
the learning process. We show the evaluation result measured in terms of average episodic length in
Figure 12. The result shows that our method leads to significantly faster decrease in average episodic
length compared to the baseline methods.

Figure 12: Average episodic length in the ‘Stairway to melon’ task from DeepMind Lab.

D ‘EXPLORE GOAL LOCATIONS SMALL’ TASK

D.1 TASK SETTINGS

We adopt the ‘Explore Goal Locations Small’ level script from DeepMind Lab to testify the algorithms
under dynamic goal reaching settings. Specifically, this task engages an episodically generated maze
with a randomly specified goal location. It challenges the learning algorithms to derive generalizable
navigation behaviors that do not depend on remembering the static goal reaching paths. We terminate
each episode when the agent exceeds a predefined time out of 1350 4-repeated simulator steps. Same
to the previous task, we adopt a discrete action space with size of 3: {move-left,move-right, forward}.

15

Under review as a conference paper at ICLR 2020

LSTM-A3C ICM RND EC SIM
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4
task reward scale 0.1 0.1 0.1 0.2 0.1
bonus reward scale - 0.05 0.01 - 0.001
ICM forward inverse ratio (λ) - 0.2 - - 0.2
RL loss coefficient (η) - 0.1 0.1 - 0.1

D.2 HYPERPARAMETER SETTINGS

E ATARI 2600 TASKS

E.1 HARD EXPLORATION TASKS

Though our exploration model is not designated for Atari tasks, we still get some results on the hard
exploration Atari domains. By investigating on the performance of our model in Atari tasks, we could
evaluate the generality of our model on less partially observable domains. At the same time, we could
testify the scalability of our dynamics prediction model on tasks with relatively large action space.

In the experiment, we compare our method with the following two exploration baselines: ‘ICM’ and
‘RND’. The algorithms are testified in the following two hard exloration Atari tasks: ms-pacman,
which has 9 actions; solaris, which has 18 actions. We implement the exploration models on top of
the IMPALA framework. Each compared method is run with identical environment settings.

The results are presented in Figure 13. In ms-pacman, our proposed method could progress much
faster than the two baselines. Moreover, the model leads to much higher convergence performance
than ‘ICM’ and ‘RND’. In solaris, which is a challenging task in which each algorithm results in
noisy learning curve with glitches, our method could achieve highest best score. Overall, the results
in Atari domains reveal that our novelty model is promising to work in a variety of task domains with
different degree of observability.

Figure 13: Learning curves for two hard exploration tasks in Atari 2600 domain. Left: ms-pacman (9
actions); Right: solaris (18 actions).

E.2 DENSE-REWARDED TASK WITH LARGE ACTION SPACE

In response to the reviewer’s comments, we provide experiment result on another complex dense
reward task domain. We take Seaquest from Atari 2600 as an example. Besides dense reward, the
task consists of another appealing characteristic which is that it has a relatively large action space
that consists of 18 control actions. Evaluating the method at this task domain could also help us to
investigate whether our proposed forward dynamics-based reward shaping method could work on
tasks with large action space. The experiment result is shown in Figure 14. The policy trained with
our proposed method could progress significantly faster than RND and ICM. Moreover, our method
also leads to better convergence reward compared to the baselines. It demonstrates that our proposed

16

Under review as a conference paper at ICLR 2020

method could benefit the dense-rewarded tasks as well. Moreover, it also shows the generality of our
proposed solution to tackle a broad range of RL tasks, not being restricted to deal with only partially
observable navigation tasks.

Figure 14: Learning curves for a dense-rewarded Atari 2600 task Seaquest which has a large action
space that consists of 18 actions.

17

	Introduction
	Methodology
	Intrinsic Exploration Framework
	Sequence Encoding with Dual-LSTM Architecture
	Computing Novelty
	Loss Functions for Training

	Experiments
	Experimental Setup
	Evaluation with Varying Reward Sparsity
	Evaluation with Varying Maze Layout and Goal Location
	Evaluation with Reward Distractions
	Ablation Study

	Related Work
	Conclusion
	Implementation Details
	SIM
	ICM
	RND
	EC
	LSTM-A3C

	ViZDoom Tasks
	Task Settings
	Hyperparameter Settings
	Evaluation result in terms of episodic length
	Evaluation result in terms of Convergence Time
	A Study on the Impact of Scaling Factor ()
	A Study on the Impact of Multi-step Size(L)

	`Stairway to Lemon' Task
	Task Settings
	Hyperparameter Settings
	Evaluation in terms of episodic length

	`Explore Goal Locations Small' Task
	Task Settings
	Hyperparameter Settings

	Atari 2600 Tasks
	Hard Exploration Tasks
	Dense-rewarded Task with Large Action Space

