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Pretraining for Conditional Generation with Pseudo Self Attention

Anonymous EMNLP-IJCNLP submission

Abstract
Large pretrained language representation
models have changed the way researchers
approach discriminative natural language un-
derstanding tasks, leading to the dominance of
approaches that finetune a pretrained model.
However, such transfer learning approaches
have not seen the same success for natural
language generation. In this work, we explore
transfer learning for conditional generation
with large pretrained language models. We
propose a simple modification to a pretrained
unconditional transformer model to inject
arbitrary conditioning into the self attention
layer, an approach we call pseudo self atten-
tion. Through experiments on four long-form
conditional text generation tasks, we show that
this technique outperforms strong baselines
and other transfer learning approaches, and
produces coherent generations.

1 Introduction

Large-scale language representation models have
recently been shown to dramatically improve the
performance of natural language understanding
systems on a broad range of tasks (Peters et al.,
2018; Devlin et al., 2018; Radford and Sali-
mans, 2018; McCann et al., 2017). These models
learn general-purpose contextual representations
by pretraining on large corpora of unlabeled text
and scaling model size. Optimizing the effective-
ness of this approach has been the focus of much
study (Houlsby et al., 2019; Wang et al., 2019;
Chronopoulou et al., 2019).

Despite this success, the same level of con-
sistent performance improvement has not been
demonstrated for conditional language generation
tasks. Conditional language generation tasks in-
clude both sequence-to-sequence tasks such as
translation or summarization, and more general x-
to-sequence tasks such as image captioning. Re-
gardless of the modality of the source, however,

transfer learning should be able to improve as-
pects of conditional language generation such as
grammaticality and coherence. This is critically
important for long-form generation in particular,
since for many problems there is adequate super-
vised data set to learn domain-specific source con-
ditioning, but not enough to learn to produce co-
herent long-form samples. In this work we there-
fore study transfer learning applied to the decoder.

Our main observation is that naive approaches
to finetune for generation require relearning key
parts of the network structure to inject contextual
conditioning. In contrast, Radford et al. (2019)
observe that simply prepending cleverly chosen
phrases can cause language models can give rea-
sonable zero-shot responses. Ideally, through the
models self attention, the right phrase could steer
it to the right conditional response. Unfortunately,
this approach is limited to settings with the same
modality and requires using discrete language as
the method of control.

We propose to instead learn the correct condi-
tioning to control the models output, in approach
we call pseudo self attention. The idea is to simply
learn an encoder that injects pseudo history into a
pretrained self-attention model. Because self at-
tention works with sets of any size, the model can
immediately utilize or ignore this history. Fine-
tuning adapts the model to this new input while
training an encoder. We compare this approach
to two standard variants: a representation learning
approach and a contextual attention approach.

Experiments utilize the GPT-2 (Radford et al.,
2019) transformer as a pretrained model to com-
pare these approaches. We consider four diverse
long-form x-to-sequence generation tasks: class-
conditional generation, document summarization,
story generation, and image paragraph captioning.
Across all tasks, we find that pseudo self attention
consistently outperforms other pretraining meth-
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ods. We further demonstrate that the approach
is data efficient and produces qualitatively more
coherent outputs. Code is available at https:
//removed.for.anonymity.

2 Related Work

Transfer Learning with Language Models
Extending upon the success of pretrained word
embeddings (Mikolov et al., 2013), contextual
word vectors based on LSTMs first demonstrated
strong results across discriminative NLU tasks
(McCann et al., 2017; Howard and Ruder, 2018;
Peters et al., 2018). Recent work has shown that
the transformer (Vaswani et al., 2017) could fur-
ther improve language representation. BERT (De-
vlin et al., 2018) trains a transformer via a cloze
task and next sentence prediction objectives, lead-
ing to state-of-the-art results on many NLU tasks.

GPT and GPT-2 (Radford and Salimans, 2018;
Radford et al., 2019) use a similar model in a uni-
directional language modeling setting, the latter
showing the additional ability to generate impres-
sively coherent unconditional text. As they take
the form of standard language models, the GPT
models are a natural starting point for pretraining
generation models.

Transfer learning for NLG NLG tasks have a
long history of incorporating unconditional lan-
guage models with conditional input, especially
for machine translation and speech recognition
(Bahl et al., 1983; Koehn et al., 2003). These
approaches traditionally use the noisy channel
model (i.e. Bayes’ rule), and n-gram models as
the language model. Recent adaptations of these
ideas include the Neural Noisy Channel (Yu et al.,
2017) as well as “fusion” methods (Koehn et al.,
2003; Gulcehre et al., 2015; Sriram et al., 2018;
Stahlberg et al., 2018) in which the output logits
of a language model and a conditional model are
combined to calculate the output probabilities. We
consider this class of transfer learning as a base-
line in a preliminary experiment (see Section 4.1),
but focus on alternative “deep” approaches that in-
corporate the language model weights as an inte-
gral part of the model instead of an add-on at the
end.

Along these lines, Ramachandran et al. (2017)
propose a finetuning-based method for machine
translation with LSTMs, in which some of the lay-
ers of the LSTM are initialized with pretrained
language model weights. As their method is spe-

cific to LSTMs, however, it is incompatible with
modern transformer architectures. Zhang et al.
(2019) use BERT in the encoder and decoder of
a summarization model via a unique cloze gener-
ative process. They demonstrate strong abstrac-
tive summarization performance, but the value of
the BERT pretraining relative to other model com-
ponents is not clear and the cloze process signifi-
cantly reduces the practicality of the model. Most
relevant, Edunov et al. (2019) experiment with a
representation-based approach for applying ELMo
(Peters et al., 2018) to the source and target sides
of a standard seq2seq model separately. Their ap-
proach consistently improves performance when
applied to the source, but actually hurts perfor-
mance when applied to the decoder. We consider
such a representation approach as a baseline in this
work.

3 Model

We assume that we have a large pretrained lan-
guage model, p(y) = p(y1, . . . , yT ; θ), that the
model is an auto-regressive neural network, and
that it is based on self attention to implement con-
ditioning on previous tokens, i.e.

SA(Y ) = softmax((YWq)(YWk)
>)(YWv)

where input Y ∈ T ×D for hidden dimension D,
Wk,Wv,Wq ∈ D×D′ are parameters, represent-
ing the key, value, and query projections respec-
tively, and the output is T ×D′. 1

We are interested in using this model to estimate
the conditional probability p(y | x) for an arbi-
trary input x for which we have a small amount
of supervised (x,y) pairs. The goal is to learn a
model on this new data that best makes use of the
pretrained model p(y).

One approach to this task is to estimate a ran-
domly initialized p(y | x) or p(x | y) model
and combine it with the fixed p(y). A recent in-
carnation of this class of model is simple fusion
(Stahlberg et al., 2018), in which the output log-
its of the two models are combined at training and
test time. The conditional model’s role is to adjust
the pretrained LM to fit new data.

A more radical approach is the ”zero-shot”
model proposed by Radford et al. (2019). Instead
of learning a representation for x they note that

1In practice many of these units (”heads”) are stacked to-
gether via concatenation across dimension followed by a final
linear projection Wf ∈ D ×D.

https://removed.for.anonymity
https://removed.for.anonymity
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(a) Repr-Transformer
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Feed Forward

xN

Linear/Softmax
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CNN - On Monday, 
lead anchor ...

01101

Y
Self Attention

The quick brown fox...

YX
Context Attention

(b) Context-Attn

Encoder

...

Feed Forward

xN

Linear/Softmax

Token+Position
Embedding

CNN - On Monday, 
lead anchor ...

01101

The quick brown fox...

YX
Pseudo-Self Attention

(c) Pseudo-Self

Figure 1: Pretraining approaches. All methods utilize a problem-specific source encoder, but vary in which parts
of the decoder are pretrained and which and randomly initialized. Repr-Transformer trains a new full transformer
decoder, Context-Attn trains a new context attention layer, Pseudo-Self attention only modifies part of the self-
attention layer. Residual connections and layernorm have been omitted for clarity. Green indicates that parameters
are initialized with pretrained weights, gray indicates random initialization. Red vectors indicate the target activa-
tions at each layer, Blue vectors indicate the source features at the output of the encoder. xN indicates the section
within the dotted lines is stacked N times.

an auto-regressive model, p(yt | y<t), is already a
conditional model. If x is the same modality as y
(e.g. both language), one can condition on x by
prepending the source to target: p(yt |x, y<t) =
p(yt | x�y<t).2 While this does not produce com-
petitive models and is limited in its applicability, it
is surprising that it works at all.

Taking inspiration from this approach, we pro-
pose learning this contextualization. Our ap-
proach, pseudo self attention (Pseudo-Self), sim-
ply injects learned encoder conditioning directly
into the pretrained self-attention of the model. As-
sume that we have a matrix X ∈ S × D repre-
senting a size S encoding of x, define pseudo self
attention as,

PSA(X,Y ) = softmax((YWq)

[
XUk

YWk

]>
)

[
XUv

YWv

]
whereUk, Uv ∈ D×D′ are new parameters tasked
with projecting encoder outputs into decoder self-
attention space. Because attention is inherently
variable length, these additional inputs can be in-
jected without changing the module and only act
additively on the attention output. The full model
is shown in Figure 1c.

2This method is most successful when hand-selected task-
dependent buffer words are inserted between x and y<t as
well such as ”tl;dr” for summarization.

Alternative Approaches Contextual represen-
tation approaches (Repr-Transformer, Fig 1a)
view the function of the pretrained LM as giv-
ing a general-purpose representation of the target
text before the source information is introduced.
For this method, a standard transformer decoder
is used with the target word embeddings replaced
by the output representation of the pretrained lan-
guage model. Preliminary experiments consid-
ered both fixing and updating these representa-
tions, and found that a fixed weighted-averaging
(”ELMo-Style”) method performed better, consis-
tent with Edunov et al. (2019).

As an alternative baseline, (Context-Attn,
fig 1b) considers initializing a standard trans-
former decoder with the shared weights of a pre-
trained LM. All possible parameters of the trans-
former decoder are preinitialized, whereas the
newly added context attention weights are ran-
domly initialized. We believe this method places
the pretrained parameters closer to the generation
signal at finetuning.

Preliminary Analysis These alternatives are ap-
pealing as they more closely mimic the condi-
tional transformer (Vaswani et al., 2017). How-
ever, these new modules may interfere with
the pretrained model, whereas the proposed ap-
proach only introduces new parameters in the self-
attention block.To explore this question, we plot
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Figure 2: Root median squared deviation between feed
forward block parameters and GPT-2 initialization over
the course of training, for the Pseudo-Self and Context-
Attn models. Squared deviations are taken from all pa-
rameters and all layers. The Context-Attn approach re-
quires a larger deviation from the initialization to fit the
data. 95% confidence intervals are too small to be seen.

the root median squared deviation of parameters
from their original values in the feed-forward layer
of our first task (Figure 2). While both start with
the same parameters, the Context-Attn parameters
change significantly more than Pseudo-Self over
training. As the pretrained LM weights encode for
generation capability, deviating further from this
initialization may lead to worse generation perfor-
mance.

4 Experiments and Results

Experiments consider four generation tasks span-
ning input modalities, training dataset sizes, and
information about the target contained in the
source. Tasks are chosen to emphasize long-form
targets to probe the natural language generation
capabilities of the different models in a conditional
setting. Long-form outputs require models to cap-
ture general textual phenomena that may be diffi-
cult to learn from task-specific training.

For all tasks, GPT-2 is used as the pretrained
language model. GPT-2 is a large autoregres-
sive transformer LM trained on 40 GB of non-
Wikipedia text (Radford et al., 2019). We use the
“small” publicly available version of the model
(117M parameters); it has 12 layers, 12 heads per
layer, and a model dimension of 768 units.3 To
ensure fair comparisons, all experiments use the
same 50k type BPE vocabulary that was used to
train GPT-2.

3This was the largest publicly available language model
at the time of writing, but the method is applicable to larger
models as they are released.

Model PPL � Cls Acc �

Test set - 90.1

GPT-2 41.21 -
Simple Fusion 38.31 65.1

Transformer 105.43 92.7
Repr-Trans 39.69 72.7
Context-Attn 40.74 88.8
Pseudo-Self 34.80 92.3

Table 1: Class-Conditional Generation on IMDb
movie reviews. Classification accuracy is measured by
a sentiment classifier trained on the IMDb training set.

4.1 Class-Conditional Generation
We first consider a baseline task of producing
class-conditional samples, e.g. p(y | x = 0) and
p(y | x = 1), from the IMDb sentiment classifica-
tion dataset (Maas et al., 2011). We set x to be the
sentiment bit (positive/negative), and the movie re-
view as the target y. We maintain the original
IMDb 25k/25k train/test split, with 2.5k reviews
of the original train split held out for validation,
and truncate reviews to 400 BPE tokens during
training. Model quality is evaluated by perplex-
ity, and adherence to the source bit x is evaluated
by the sentiment classification accuracy of an ex-
ternal classifier on generated reviews. Reviews are
generated via random sampling with a temperature
of 0.7. To detect sentiment, we use the fastText ex-
ternal classifier from Joulin et al. (2016) which has
an accuracy of 90.1% on the IMDb test set.

Table 1 shows results for all model, as well as
unconditional GPT-2 and the results using simple
fusion (Stahlberg et al., 2018). GPT-2 model itself
already shows a greatly reduced PPL compared
to a problem-specific transformer. All pretraining
methods further improve perplexity. The pseudo
self attention approach significantly outperforms
the approaches in terms of class adherence. De-
spite being initialized as a language model, the
approach only sees a decrease of 0.4% classifica-
tion accuracy compared to the randomly initial-
ized model. In contrast, the Repr-Transformer
model sees a decrease in accuracy of 20.0% and
the Context-Attn model sees a decrease in accu-
racy of 3.9%. As a point of comparison, we addi-
tionally report the results of simple fusion in Ta-
ble 1. Compared to Pseudo-Self it gives a worse
PPL and extremely poor classification accuracy.
Given the weak results, we focus on comparisons
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Model R1 � / R2 � / RL � PPL �

PGenerator+BU 41.22 / 18.68 / 38.34 -
ELMo+SHDEMB† 41.56 / 18.94 / 38.47 -
BERT+Two-Stage† 41.38 / 19.34 / 38.37 -

CopyTransformer 39.94 / 17.73 / 37.09 8.21
Repr-Trans 37.09 / 13.77 / 33.99 13.58
Context-Attn 40.59 / 18.17 / 37.24 6.68
Pseudo-Self 40.72 / 18.38 / 37.46 6.43
Pseudo-Self+BU 41.62 / 18.66 / 38.46 6.43

Table 2: CNN/DM summarization results. Literature
results above, our models below. † indicates pretraining
on the source side. PGenerator+BU from (Gehrmann
et al., 2018), ELMo+SHDEMB from (Edunov et al.,
2019), BERT+Two-State from (Zhang et al., 2019)

between the deep models for the rest of the paper.

4.2 Document Summarization
Next we experiment on a large competitive bench-
mark for text generation, abstractive document
summarization. For these experiments we use the
non-anonymized CNN-Daily Mail dataset (Her-
mann et al., 2015). The dataset is comprised of
280k training examples of document-scale source
news articles and corresponding 2-4 sentence tar-
get summaries. Summarization is a mature testbed
with state-of-the-art models that use task-specific
architecture modifications, so transfer learning
methods need be able to mesh well with these
changes. We use the transformer version of the
copy mechanism from (Gehrmann et al., 2018)
and employ bottom-up (BU) summarization atten-
tion pruning (Gehrmann et al., 2018). For evalu-
ation we report the standard ROUGE-1, ROUGE-
2, and ROUGE-L F1 scores. As we are interested
in pretraining on the decoder side, in all experi-
ments we start with a randomly initialized encoder
(current state-of-the-art models use pretraining for
the encoder). Generation is conducted via beam-
search with a beam size of 5 with tri-gram block-
ing, consistent with the literature models (Edunov
et al., 2019).

Table 2 shows the performance of the models
tested with recent state-of-the-art models for com-
parison. Compared to the baseline model with-
out pretraining, our approach improves ROUGE-1
by 0.78, ROUGE-2 by 0.65, ROUGE-L by 0.37,
and reduced PPL by 20%. The Context-Attn ap-
proach nearly matches these results for this task,
but the Repr-Transformer approach performs more

Model PPL � Rank Acc. �

Transformer 29.80 80.6
Repr-Trans 21.16 77.8
Context-Attn N/A* 9.3
Pseudo-Self 21.21 80.3

Table 3: WritingPrompt results. “Rank acc.” refers to
the top-1 prompt ranking accuracy metric described in
Section 4.3. Since our experiments use the GPT2 BPE
scheme, our PPL numbers are not directly comparable
to those reported in (Fan et al., 2018). * The Context-
Attn method fails to learn for this task.

poorly.
Given the strong results of the model, we

additionally experiment with simple bottom-up
summarization attention pruning approach with-
out pretraining applied at inference time as in
(Gehrmann et al., 2018). We achieve a state-
of-the-art value for ROUGE-1, demonstrating the
ability of the method to be combined with task-
specific architecture modifications. Furthermore,
because these results only involve pretraining the
decoder, the performance can potentially be im-
proved with the addition of ELMo/BERT on the
encoder side.

4.3 Conditional Story Generation

Conditional story generation with the Writing-
Prompts dataset (Fan et al., 2018) requires the
model to produce an on-topic story given a textual
prompt. The dataset is well supervised, containing
300k single sentence writing prompts (the source)
and stories (the target). Following the preprocess-
ing of Fan et al. (2018), we truncate the stories to
1000 tokens. Note that due to the length of the sto-
ries, the total number of training tokens is on the
order of 100 million, resulting in a relatively large
in-domain data setting.

To compare models we compute two metrics:
perplexity (PPL) and prompt ranking. Perplexity
is used as a proxy for generation quality, whereas
prompt ranking is used to measure the relevance of
the story to the prompt. To calculate prompt rank-
ing, we use the procedure from Fan et al. (2018):
For each story in the test set, the likelihood is eval-
uated under the model for the “true” correspond-
ing prompt and 9 other randomly selected “fake”
prompts from the test set. Then, the rank accuracy
is the percentage of stories for which the model
gave the highest likelihood to the true prompt.
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Model CIDEr � B4 �

LSTM Baseline 11.1 7.3
Krause et al. (2017) 13.5 8.7
Chatterjee et al. (2018) 20.9 9.4
Melas-Kyriazi et al. (2018) 22.7 8.7

Transformer, Repr-Trans 19.3 7.2
Transformer, Context-Attn 22.6 7.6
Transformer, Pseudo-Self 24.0 8.3

Table 4: Image paragraph captioning on Visual
Genome, as measured by CIDEr and BLEU-4 (B4)
scores.

Table 3 shows the results. Despite the large
dataset size, the Repr-Transfomer and Pseudo-Self
approaches still substantially reduce the PPL. That
the models are able to improve PPL, despite the
100 million+ target tokens, suggests these mod-
els are able effectively make use of the GPT-2
LM. The main approach sees only a 0.3% de-
crease in prompt ranking accuracy, while the Repr-
Transformer approach sees a larger decrease. The
Context-Attn model fails to learn in this setting.4

4.4 Image Paragraph Captioning

Finally, we apply our model to the task of im-
age paragraph captioning on the Visual Genome
dataset from Krause et al. (2017). As opposed
to the standard image captioning task, where cap-
tions are single sentences or sentence fragments,
the task of image paragraph captioning involves
generating an entire paragraph (usually 5-8 sen-
tences) describing a given image.

Recent work in the image captioning litera-
ture has argued for a greater focus on paragraph
captioning because the descriptive capacity of
single-sentence image captions is inherently lim-
ited. However, due to the difficulty of produc-
ing labeled paragraph captions, existing paragraph
captioning datasets are quite small; whereas the
MSCOCO (single-sentence captioning) dataset
contains around 600,000 image-caption pairs, Vi-
sual Genome contains fewer than 20,000 image-
paragraph pairs. As a result, models trained from
scratch on Visual Genome have been observed to
have difficulty learning the structure of language,
necessitating the use of heuristics.

To apply pretraining models to this dataset,

4We have investigated this failure extensively to confirm
it is not the result of an error.

Model PPL � Cls Acc �

Pseudo-Self 117M 34.80 92.3
Pseudo-Self 345M 30.26 92.4

Table 5: IMDb conditional movie review generation
results, comparing the larger 345M parameter GPT2
model to the 117M parameter GPT model.

we extract pre-processed image features from a
convolutional neural network encoder. We use
the same convolutional encoder as Krause et al.
(2017), without the final pooling layer; that is, for
each image, the output of the encoder is a tensor of
size (36, 2048) extracted from a ResNet. Note that
in this experiment, unlike those above, the encoder
(CNN) and decoder (finetuned LM) are trained
separately rather than end-to-end. Since we are
interested in analyzing how to most effectively
utilize pretraining for generation, we only com-
pare with approaches using the same loss function
(cross-entropy). Recent work shows it is possi-
ble to improve paragraph captioning models by in-
corporating sequence-level (Melas-Kyriazi et al.,
2018) and adversarial (Chatterjee and Schwing,
2018) losses, but these loss function improve-
ments are orthogonal to improvements in the un-
derlying model architecture.

Table 4 shows the results on the captioning
task, as measured by the widely-used CIDEr
and BLEU-4 metrics. We compare our trans-
fer learning method with an LSTM baseline, the
Hierarchical-LSTM from Krause et al. (2017), and
the current state-of-the-art model. Within the class
of pretraining methods, we see similar results as
previous experiments. Compared to other cross-
entropy based approaches our transfer learning-
based model performs well on CIDEr, but slightly
worse on BLEU-4.

5 Analysis and Discussion

Across all tasks studied, pseudo self attention
yields strong results, both in terms of quality
and adherence to the source. Other approaches
also significantly improve over the non-pretrained
baseline, but others are less stable. In this section
we discuss other aspects of the system and present
qualitative analysis.

5.1 Effect of pretrained LM size
There is a continuing trend to larger pretrained
LMs. During the preparation of this manuscript,
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Model Grammaticality Non-redundancy Consistency Typicality Combined

Test set 71.3 ± 4.3 87.2 ± 3.2 85.1 ± 3.4 74.4 ± 4.1 3.18 ± 0.10

Transformer 55.4 ± 4.7 60.5 ± 4.6 53.7 ± 4.7 39.7 ± 4.6 2.09 ± 0.13
Repr-Trans 62.1 ± 4.4 71.0 ± 4.1 57.1 ± 4.5 43.7 ± 4.5 2.34 ± 0.12
Pseudo-Self 65.2 ± 4.6 69.3 ± 4.5 61.3 ± 4.7 48.4 ± 4.8 2.44 ± 0.13

Table 6: Human evaluation of story generation quality. Participants were asked specific binary questions con-
cerning the four criteria, the numbers for the four left categories represent percentages of approval. On the right,
the methods are rated on a 4-point scale based on the combination of the four criteria. Uncertainties represent
a 95% confidence interval, bold indicates statistically significant maxima for each category of the models under
consideration.

2 4 6 8 10 12 14 16
# Train datapoints (x1000)

36

38

40

42

44

PP
L

0.70

0.75

0.80

0.85

Cl
s. 

ac
c.

Figure 3: Data efficiency analysis with IMDb. PPL
shown in blue (left), classification accuracy shown in
orange (right). Error bars show an approximate 95%
confidence interval.

a larger version of GPT-2 was made available
with 345M parameters, increasing the model di-
mension to 1028, the number of attention heads
to 16, and the number of layers to 24. We re-
trained our model using this larger LM for class-
conditional generation, using the same training hy-
perparameters and re-tuning the generation tem-
perature (Table 5). The larger model improves
PPL by 4.5 points while attaining similarly high
classification accuracy. This datapoint suggests
that transfer learning effectiveness can continue to
improve along with the quality of the pretrained
model used.

5.2 Low-data supervision

Many of our tasks showed improvements even
with medium-to-large training sets. To study
the effectiveness of the the approach in low data
regimes, we create artificial small datasets by sub-
sampling the IMDb dataset to sizes between 200
and 16k datapoints. We retrain our model us-
ing the same hyperparameters and use datasize-
dependent early stopping to prevent overfitting. To
reduce variance and measure uncertainty we re-

peat the process 8 times for each dataset size, cal-
culating the PPL and classification accuracy. Re-
sults are shown in Figure 3. Note that a non-
pretrained model has a PPL of over 1000 when
trained on 200 examples. The pretrained model
starts with reasonable outputs (44.4 PPL after 200
examples) and increases task accuracy steadily
with more data. (See Section 5.4 for representa-
tive samples.)

5.3 Human evaluation
To assess the quality of generations, we conducted
a human evaluation based on the story genera-
tion task. Generation uses a temperature of 0.9
and a top-k value of 100. We ask participants on
Amazon Mechanical Turk a series of four yes/no
questions mapped to desirable linguistic proper-
ties outlined in Dang (2006): grammaticality, non-
redundancy, consistency, and typicality. 125 sto-
ries are evaluated for each model, and each story is
evaluated by 5 unique workers. Scores are calcu-
lated for each property as the total percent of pos-
itive responses. A combined score rates the model
overall on a scale from 0-4 based on the equally-
weighted combination of the four properties.

The results are shown in Table ??. In all four
categories the Pseudo-Self and Repr-Transformer
models show statistically significant performance
gains compared to the baseline Transformer
model. The Pseudo-Self model achieves a gram-
maticality score of only 6.1% less than the test set,
indicating strong grammaticality, likely a more lo-
calized property, is well learned by the pretrained
LM and effectively transferred to the conditional
models. In contrast, all models score signifi-
cantly worse than the test data in terms of con-
sistency and typicality. This suggests that these
higher level properties, while best transferred in
the Pseudo-Self case, still represent a challenge for
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Sentiment: Positive

No pretraining 1.8k: “Set’s that I liked this movie. I have seen I remember the original movie is one of the music that it is great movie. I’ve seen
this film and one of the whole movie is like this movie. It is so bad, I watched the top of this movie. i would see the movie
was bad, I have seen it. This movie, it’s a TV main movie is about the plot, relaxing. I liked this movie takes it is a few times,
was awesome. I’m a DVD. The critics in the first time I know it were a lovely plot. You could watch I’m seen the acting, and
I don’t watch this. I’ve seen what you really i love the film. The film on the DVD.

No pretraining 22k: I was enthralled by the performance of Hartnett at the time of this film. At the time this film was shot, I thought, I was
absolutely fantastic in the film, and thought it was a real ride. It is about a family living in a small town San Francisco, where
a couple lives in Mexico, where they are working at home with the family. In the end, they are in the family to decide the
family will just have their fathers through endless periods, coffee, disillusionment, and finally, can’t escape, but there’s no
story. There are some delightful performances (particularly the two leads) and the actors are well known, I really can’t help
but feel that the film could have been better as a comedy, with the exception of Ernesto L’Amelie.

Pseudo-Self 1.8k: I fell in love with this film in 1985. It’s a quintessential short film that explores the everyday lives of the human condition.
The main character of the movie is a man named Donald (Husband George). He buys a home and captures a great deal of
information about the businessmen who live and work in his neighborhood. This film is a complete departure from the norm
or what a typical American would expect from a successful businessman with a short fuse. His stereotypical actors are less
than likable, and his best friend is Kelly (Preet Bharara). The film is full of humor, and a great deal of heart and soul.

Pseudo-Self 22k: When I saw the preview of this film, I thought it was going to be a horrible movie. I was wrong. The film has some of the
funniest and most escapist scenes I’ve seen in a long time. The acting is superb. The story is decent, but the direction and
editing may have been a bit harsh at times. The director and cast achieved a great balance of comedy and drama. I’ve seen
some bad films, but this one is one of the ones I’ve seen that is really good. I loved the acting and the pace. The two leads
were compelling. The only real problem with the film was that I was a bit bored with it. The ending is a bit long, but it’s still
a funny, good movie. It’s efficient. I give it a 7/10.

Table 7: Example generations from models trained on the movie review generation task. In all cases the indicated
sentiment was positive. The number in the left column is the number of training examples (22k is the full dataset).

neural models.

5.4 Qualitative examples

Representative samples for the movie review
dataset are shown in Table 7. The No-Pretraining
model is the transformer from Table 1, and the
number in the left column indicates the number of
supervised examples in the training dataset. Sam-
ples are generated via random sampling with a
temperature of 0.75.

Without pretraining, sentences are largely co-
herent and grammar mistakes are relatively rare.
The model makes a number of clear mistakes
though such as indicating that the author is in the
movie. The Pseudo-Self 22K makes no grammat-
ical mistakes and follows a single train of thought,
although it is somewhat more generic.

The distinction between the models is further
exaggerated when only 1.8k supervised examples
are given. The baseline model trained on only
1.8k datapoints leads to an exceptionally poor gen-
eration. In contrast, the Pseudo-Attention model
shows significantly improved grammar and sen-
tence structure. Despite a handful of mistakes,
the review follows a consistent description of a
movie over multiple sentences. Given the poor
performance of the baseline model, these proper-
ties must have been transferred from the original
unconditional LM. These samples were selected
to be representative of the broader set for the indi-
cated models.

6 Conclusion

In this paper we propose the pseudo self at-
tention approach for improving conditional lan-
guage generation via transfer learning. Across
a set of diverse long-form conditional generation
tasks we show that the proposed approach con-
sistently improves performance over strong non-
pretraining and pretraining baselines. Further-
more, we demonstrate the data efficiency and qual-
itative properties of the approach.

This study joins a growing body of work ad-
dressing aspects of transfer learning for NLP. Dif-
ferent from previous works based around natural
language understanding, however, we find that for
generation using pretrained models as contextual
features gives less signal than initializing a de-
coder directly. This is just one example suggest-
ing that the best methods for generation tasks may
be different than those for NLU tasks. Future work
should investigate these subtle distinctions further.
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