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In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation
in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled
image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting
scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other
methods where each image patch independently predicts its displacement, we jointly estimate the dis-
placements from all patches together in a data driven way, by considering not only the training data
but also geometric constraints on the test image. The displacements estimation is formulated as a convex
optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model
as the a priori information to regularize the landmark positions and thus generate the segmented shape
contour. We validate our method on X-ray image datasets of three different anatomical structures: com-
plete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in
landmark detection, and, combined with the shape model, gives a better or comparable performance
in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data
shows the extensibility of our method to 3D data.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In clinical practice, X-ray radiography is widely used for various
purposes due to its convenience and low cost. Segmenting shape
contours such as femur and pelvis benefits many applications, such
as computer aided disease diagnosis (Chen et al., 2005; Lindner
et al., 2012), image based surgery planning and intervention (Got-
tschling et al., 2005). In addition, 3D reconstruction of anatomical
models can also be performed with the segmented 2D contours
(Baka et al., 2011; Dong and Zheng, 2008; Zheng et al., 2007,
2009a). Traditionally, shape segmentation in X-ray images, despite
its extreme usefulness, is seldom done in clinical practice due to its
difficulty. In cases where it is ever done, it is carried out manually
by doctors, which is both time-consuming and error-prone. There-
fore, in this paper our attention is on fully-automatic techniques,
which will immediately make this traditionally useful but difficult
task widely applicable. However, automatic segmentation of X-ray
images faces many challenges. The poor and non-uniform image
contrast, along with the noise, makes the segmentation very diffi-
cult. Occlusions and the overlap between bones make it difficult to
identify local features of bone contours. Furthermore, the existence
of implants often drastically changes the visual appearance of the
relevant anatomical regions.

A typical pipeline of X-ray segmentation consists of two steps:
landmark detection and shape regularization (Lindner et al.,
2012, 2013), as depicted in Fig. 1. In this paper we also follow this
pipeline. Given an image, we first detect the positions of a set of
landmarks which are defined along the shape contour. Then, the
landmark detection output is regularized using a statistical shape
model. In this way, the final contour is controlled by both the im-
age cue encoded in the landmark detection output, and the shape
prior information conveyed in the statistical shape model.

In the above pipeline, accurately detecting landmarks is crucial
for a good segmentation performance. In this paper, we propose a
new method for this task. We estimate the displacements from a
set of randomly sampled local image patches to the landmark
based on patch appearance, and the individual predictions are then
combined in a voting scheme to produce the predicted landmark
position. In previous methods, the displacement from each patch
to the landmark is estimated independently using a pre-trained
model. Our method is fundamentally different, as we jointly
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Fig. 1. The general pipeline of shape segmentation which is composed of two steps: landmark detection and shape regularization.
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estimate the displacements from all patches to landmarks together
in a data-driven way. This joint estimation scheme allows us to ex-
ploit the mutual interactions among the displacements that are
being estimated by considering the geometric relations between
the patches in the test image. Combining the information from
training data and the geometry constraints, our displacement esti-
mation method achieves better accuracy.

After landmark detection, these predicted landmark positions
are regularized by a statistical shape model to get the final seg-
mented shape contour. In this paper we exploit the sparse shape
composition model (Zhang et al., 2011a), which is shown to be bet-
ter than classical PCA based shape models.

We tested our method on large and challenging datasets involv-
ing three anatomic structures: complete femur, proximal femur
and pelvis. These datasets contain a considerable amount of images
with an implant and images with low contrast. In the experiments,
we show that both the landmark detection method and the shape
regularization improve the performance, and that by combining
them together we get better or comparable results compared to
other methods. Finally, we also performed a preliminary 3D study
using CT data to show the 3D extensibility of our method.

The paper is organized as follows: We first briefly summarize
the related work in Section 2. Then, in Section 3 we introduce
our new landmark detection algorithm, followed by Section 4
which presents the shape regularization method using the sparse
shape composition model. The experiments are presented in Sec-
tion 5. We conclude the paper in Section 6.
2. Related work

In recent literature, there has been a considerable amount of
work in landmark detection. Some methods utilize low-level image
features such as gradients and edges (Chen et al., 2005; Cristinacce
and Cootes, 2008; Smith et al., 2009). For example, Chen et al.
(2005) locate candidate femoral shafts and heads by detecting par-
allel lines and circles. This type of methods often suffers from the
large appearance variation and image noise encountered in X-ray
images. To alleviate this problem, some similar methods such as
(Bergtholdt et al., 2010; Donner et al., 2010; Gamage et al., 2010;
Schmidt et al., 2007) incorporate the topological constraints in a
model-based way, where they search for the best configuration
of the model given the image cue revealed by the low-level image
features.

To overcome the challenge of appearance variation, some ma-
chine learning based methods have been proposed which have
shown promising performance. For example, in (Zheng et al.,
2007; Dong and Zheng, 2008, 2009), a particle filter-based ap-
proach is first used to determine the morphological parameters,
and then a belief propagation based approach is used to extract
contours from multiple calibrated X-ray images. Zhou and Comani-
ciu (2007) introduce the so-called shape regression machine to
segment in real time the left ventricle endocardium from an echo-
cardiogram of an apical four chamber view. Zheng et al. (2008,
2009b) use marginal space learning for localizing the heart cham-
bers, and then estimate the 3D shape through learning-based
boundary delineation.

In recent years, random forest (RF) (Breiman, 2001) based
methods are becoming more and more popular. RF (Breiman,
2001) was originally proposed for general classification or regres-
sion, and the class-specific Hough forest was presented in (Gall
and Lempitsky, 2009) for object detection. Since then, RF has
shown very promising results in tasks related to landmark detec-
tion or organ localization in medical data (Criminisi et al., 2010;
Lindner et al., 2012, 2013). The basic idea is as follows: First, some
local patches are sampled in the image. Then, the displacements
from the patches to the landmark are estimated by RF regression.
Finally, the landmark position is estimated by a voting scheme
considering the individual estimations from all the patches. Pauly
et al. (2011) localize organs in MR images using Random Ferns
which has a similar idea with RF except that a fern systematically
applies the same decision function for each node of the same level
of the tree. There are two key components behind the success of
RF-like voting based methods. The first is the strategy of position-
ing landmarks by estimating its relative displacements with regard
to other image parts. Here the fact of medical image being highly
structured is exploited to improve the localization using relational
displacement prediction. The second is the discriminative power of
the RF model. In this paper, we follow the framework of predicting
relational displacements from image patches. However, instead of
using RF, we propose a new method to improve the displacement
prediction by a data-driven approach. The significant difference
of our method is that we predict the displacement of test patches
not only by comparing the test patch with the training patches, but
also exploit the fact that the location of these test patches are
known to us and can be used to enforce a geometric constraint
on the displacements: the displacement from different patches to
a common landmark position should be consistent with the geo-
metric relation between the test patches. By utilizing this informa-
tion as a regularization on the displacement being predicted, we
improve the prediction accuracy.

Recently, Donner et al. (2013) proposed a new landmark detec-
tion method by combining the RF-based prediction with the high-
level topological relation between the landmarks, and they get
very good results on X-ray images and 3D CT data. First, RF classi-
fication and regression give the candidates for each landmark, and
then an MRF model encoding the global configuration of landmarks
is employed to get the final landmark positions. This method aims
at disambiguating landmark candidates using a global model on
top of the individual landmark predictions, which is especially suit-



Fig. 2. Overview of our landmark detection algorithm. During training stage (a) and (b), a set of patches are sampled around the ground-truth landmark position. During
testing stage, given an image, a set of patches are randomly sampled (c), each patch makes a prediction of the landmark position (d), and then the predictions are aggregated
to produce a response image (e).
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able for repetitive anatomical patterns. In contrast, our method
aims at improving the prediction for individual landmarks by
exploiting the local geometric relations between the sampled im-
age patches and the landmarks. The global landmark relation is in-
stead encoded in the sparse shape composition model used for
shape regularization. On the other hand, since our method directly
improves the localization of individual landmarks, it can be easily
combined with other high-level regularizors (such as the MRF
model in Donner et al. (2013)) to provide more accurate ‘‘basic
localizations’’ on top of which the global reasoning can be
performed.

Another related topic of this paper is the statistical shape model
which is typically used to regularize the landmark positions using
global topological information. Apart from the methods inspired by
the popular Active Shape Models (ASM) (Behiels et al., 1999;
Cootes and Taylor, 1992; Cristinacce and Cootes, 2008; Pilgram
et al., 2008), different new shape models have been proposed, such
as the models based on mixture of Gaussians (Cootes et al., 1997),
sparse PCA (Sjostrand et al., 2007), manifold learning (Etyngier
et al., 2007; Zhang et al., 2011b). Recently, Zhang et al. (2011a,
2012) proposed sparse shape composition, which is based on
sparse representation techniques (Candes and Tao, 2006; Donoho,
2004). This method has the advantage of keeping the local shape
information and is shown to have better performance than previ-
ous methods, and in this paper we use this model for shape regu-
larization. Also, we comment that, from a generalized point of
view, models such as MRF in Donner et al. (2010, 2013), which reg-
ularize the individual landmark positions by global topological
constraints, can also be viewed as a shape model.
3. Landmark detection by jointly estimating image
displacements

In this study, a shape is defined by an ordered set of landmarks
along its boundary. Each shape is mathematically represented by
the concatenation of the coordinates of each landmark. In this
way, a 2D or 3D shape is a vector in the R2L or R3L space, respec-
tively. As introduced in Section 1, similar to Lindner et al. (2012,
2013) and Zhang et al. (2012), we adopt a two-step segmentation
framework where landmark detection is followed by shape regu-
larization. In this section we present our landmark detection algo-
rithm. The shape regularization will introduced in Section 4 and
can be found in details in Zhang et al. (2011a).
1 Or the relevant ROI (region of interest) of the image. See Section 5.1.2 for details
of our multi-resolution implementation.

2 For interpretation of color in Fig. 3, the reader is referred to the web version of
this article.
3.1. Basic idea

The overview of our landmark detection algorithm is given in
Fig. 2. In the training step, as shown in (a), a rectangular image
patch is randomly sampled around the ground-truth landmark po-
sition, with f denoting the visual feature of the patch, and d denot-
ing the displacement from this patch to the landmark position. In
the same way, we randomly sample a number of patches around
the ground-truth landmark position, as shown in (b). The features
and corresponding displacements of all these training patches con-
stitute the training data. Then, in the prediction step, given a new
image, we also randomly sample a number of image patches, as in
(c). Since now we do not know the landmark position, these test
patches are sampled everywhere in the image.1 The visual features
of these patches will be calculated, and based on their features, the
corresponding displacements with regard to the (unknown) land-
mark position can be estimated. In this way, each patch makes a vote
on the landmark prediction as in (d), where each vote contains a po-
sition (depicted by dots) and uncertainty (color-coded). Then, from
these votes, we construct the response image as in (e), which can
be viewed as the probability of the landmark position on every im-
age location.

The crucial part of the procedure presented above is the estima-
tion of displacements for the test patches, which is also the key of
our contribution. To better explain the idea of our method, we
illustrate a simplified scenario as in Fig. 3. The training data in
the left consists of the features and displacements of seven training

patches ~fk;
~dk

� �n o
k¼1...7

. During the test step, we randomly sample

two test patches; ‘‘Patch 1’’ centered at image location c1 with vi-
sual feature f1, and ‘‘Patch 2’’ centered at image location c2 with vi-
sual feature f2. Our task is now to estimate the corresponding
displacements d1 and d2 of the two patches (red2 in the figure).
To this end, we consider the following two factors.

� Exploitation of training data
The training data should serve as a basic guidance to estimate
the displacements. Specifically, the displacement of a test patch
should be similar to those of training patches with similar visual
features. To this end, we establish links between test data and
training data based on feature proximity. For example, in
Fig. 3, test patch 1 is linked to training patches 1 and 6 because
they have similar features, and similarly, test patch 2 is linked
to training patches 4 and 7. Then, a criterion to estimate d1

and d2 is to minimize the discrepancy between the displace-
ments that are linked:
minimize kd1 � ~d1k2 þ kd1 � ~d6k2 þ kd2 � ~d4k2 þ kd2 � ~d7k2

ð1Þ



Fig. 3. A simplified situation where we try to estimate the displacements of the test patches. See text for details.
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where k � k gives the length of the displacement vector. If we denote
wk;i as the ‘‘proximity flag’’, where wk;i ¼ 1 if training patch k is
linked to test patch i, and wk;i ¼ 0 otherwise, we can compactly
write Eq. (1) as:
minimize
X

k

X
i

wk;ik~dk � dik2 ð2Þ
� Exploitation of the geometric constraint
There is a potential geometric constraint between d1 and d2, as
they are displacements from two different patches to the same
landmark. Although the true position of this landmark, x, is
unknown, we do know that c1; c2 and x form a triangle, and
therefore we have d1 � d2 ¼ c2 � c1. Therefore, we also want
to minimize the discrepancy:
minimize kðd1 � d2Þ � ðc2 � c1Þk2 ð3Þ
Using i and j to index the test patches, Eq. (3) can be written com-
pactly as:
minimize
X

i

X
j

kðdi � djÞ � ðcj � ciÞk2 ð4Þ
The idea of our method is thus to design an objective function with
regard to the displacements to be estimated (e.g. d1;d2 in the above
figure), by considering both the training data and the geometric
constraint.
The above explanation is a simplified illustration. In the following,
we formally present our method.

3.2. Problem formulation

Training step. Assume that we are interested in L landmarks
whose ground-truth position is known in a set of training
Fig. 4. Problem formulation of the joint estimation of image d
images. As shown in Fig. 4(a), ~xl 2 R2 is the position of the lth
landmark. We randomly sample a number of rectangular
patches around all the landmarks. For the kth patch, we denote
~ck 2 R2 as its center position, ~fk 2 Rdf as its visual feature, and

~dl
k

� �
GT
¼ ~xl � ~ck 2 R2 as its ground-truth (GT) displacement to

the lth landmark. In total, we sample eK patches over all the

training images, and we denote ~F ¼ ~f1; . . . ;~feK
h i

2 Rdf�eK as the

matrix of features of all training patches, and ~D
� �

GT
2 R2L�eK ,

whose element ~Dij

� �
GT
¼ ~di

j

� �
GT

, as the matrix of all training

displacements.
Prediction (test) step. In the prediction step, we are given a
new test image, on which we want to estimate the positions
of the L landmarks, as shown in Fig. 4(b). To this end, we ran-
domly sample K patches, where ck 2 R2 and fk 2 Rdf are the
center position and the visual feature of the kth patch. We
denote F ¼ f1; . . . ; fk½ � 2 Rdf�K as the matrix of features of all test
patches.
Strategy. To estimate the position of the L landmarks on the test

image, we first want to estimate fdl
kgk¼1...K;l¼1...L, which is the dis-

placement from each patch to each landmark. Then,

ck þ dl
k

n o
k¼1...K

will be the set of votes of the lth landmark’s

position from all the test patches, from which we can compute
the landmark position by a voting scheme (details in Sec-
tion 3.5). Therefore, if we denote D 2 R2L�K , whose element

Dij ¼ di
j, as the matrix of displacements in the test image, our

goal is to estimate D.
isplacements. (left) Training data. (right) Prediction data.



Table 1
Computational complexity of different steps of our method.

Train Test
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3.3. Objective function

First, we construct a compound displacement matrix which
contains jointly the training displacements and the test displace-
ments to be estimated:

bD ¼ ~D D
h i

¼

~d1
1 � � � ~d1eK d1

1 � � � d1
K

..

. . .
. ..

. ..
. . .

. ..
.

~dL
1 � � � ~dLeK dL

1 � � � dL
K

2
66664

3
77775 2 R2L�ðeKþKÞ ð5Þ

The left part (the first eK columns) of bD contains the displacements
in the training images, and the right part (the last K columns) is the
displacements in the test image. Note that we can write ~D ¼ bDP and
D ¼ bDQ by defining appropriate (0,1) matrices P and Q which se-
lect corresponding columns.

Treating bD as a variable, we design an objective with regard tobD:

EðbDÞ ¼ EgðbDÞ þ aEf ðbDÞ þ bEpðbDÞ ð6Þ

Please note that although we are ultimately interested in esti-
mating the displacements of test patches D, our objective function
is defined on bD, which is the combination of training and test dis-
placements. In this way we can embed the relations between train-
ing and test data into our objective function. After we get the
optimal bD, the optimal D is simply given by D ¼ bDQ . Below we de-
fine each term in the objective function.

3.3.1. Ground-truth Discrepancy EgðbDÞ
The left part of bD should be close to the ground-truth displace-

ments in the training data, which is encoded in ~D
� �

GT
. Therefore,

we want to minimize the Ground-truth Discrepancy:

EgðbDÞ ¼ 1

2LeK bDP� ð~DÞGT

��� ���2

F
ð7Þ

where k � kF is the Frobenius norm.3

3.3.2. Feature propagation discrepancy Ef ðbDÞ
First, we construct a compound feature matrixbF ¼ ~f f
h i

2 Rdf�ðeKþKÞ. Now, each column of bF is the feature of a
(training or test) patch, and the corresponding column of bD is
the displacement vector (to all landmarks) of that patch. We de-
note kcoliðbFÞ � coljðbFÞkL2 as the L2 feature distance of a pair of
patches ði; jÞ, where coliðÞ denotes the ith column. From all pairwise
distances, we construct a binary affinity matrix S 2 f0;1gðeKþKÞðeKþKÞ,
where sij ¼ 1 if and only if the ith and the jth patches are mutually
q nearest neighbors (q ¼ 10 in this paper) in the feature space.
Note that the edges in the affinity matrix might link two training
patches, two test patches, or a training patch and a test patch.

For every pair of patches ði; jÞ, if they are similar in the feature
space, their displacements to landmarks should also be similar.
We define the Feature Propagation Discrepancy Ef ðbDÞ as the viola-
tion from this assumption:

Ef ðbDÞ ¼ 1
2L
P

i–j

X
i–j

sij coliðbDÞ � coljðbDÞ��� ���2

L2
ð8Þ

For each pair of patches, Ef introduces a high penalty if the two
patches are similar in the feature space (i.e. sij ¼ 1) but their dis-

placements are very different (i.e. coliðbDÞ � coljðbDÞ��� ���
L2

is large).

If we construct M as the (trace normalized) Laplacian matrix
(Kokiopoulou et al., 2011) of S; Ef can be compactly written as:
3 Eg is normalized by the number of landmarks L and the number of training
patches eK . The following terms are normalized in a similar way.
Ef ðbDÞ ¼ 1
L

Tr bDMbD>� �
ð9Þ

In short, this term favors the consistency between feature prox-
imity and displacement proximity. In this way, the ground-truth
displacements are propagated to the test data via the links be-
tween training and test patches.

3.3.3. Patch offset penalty EpðbDÞ
Each column of D is the displacements from a single patch in

the test image to all the landmarks. The subtraction of two
columns can be written as coliðDÞ � coljðDÞ ¼

DðeK
i � eK

j Þ ¼
d1

i � d1
j

� � �
dL

i � dL
j

2
4

3
5, where eK

i is a K dimensional column

vector whose ith element is 1 and all other elements are 0s. From

Fig. 4(b), we can see that d1
i � d1

j ¼ . . . ¼ dL
i � dL

j ¼ cj � ci, because

ðd1
i ;d

1
j Þ; . . . ; ðdL

i ;d
L
j Þ form triangles with the same edge cj � ci.

Therefore, we impose a penalty Ei�j
p ðDÞ ¼ DðeK

i � eK
j Þ � �cj�i

��� ���2

F
,

where �cj�i is the L times vertical replicate of cj � ci. We can include
a penalty for each pair ði; jÞ of columns. For efficiency reasons, we
eliminate redundancies and use K � 1 pairs:

EpðbDÞ ¼ 1
2LK

XL�1

i¼1

Ei�ðiþ1Þ
p ðDÞ ¼ 1

2LK
bDQU� �C
��� ���2

F
ð10Þ

where U ¼ eK
1 � eK

2 ; . . . ; eK
K�1 � eK

K

� �
and �C ¼ �c2�1 . . . �cK�ðK�1Þ

� �
.

3.4. Optimization

Substituting Eqs. (7), (9) and (10) into Eq. (6), we get the final
objective function. We can prove that Eq. (6) is convex, and there-
fore to find the global optimum, we need to solve the equation:

@EðbDÞ=@ bD ¼ bDAþ G ¼ 0 ð11Þ

where A ¼ 1

LeK PP> þ 2a
L Mþ b

LK QUU>Q>, and G ¼ �
~Dð ÞGT

P>

LeK � b�CU>Q>

LK .

The optimal solution is given by bD ¼ �GA�1.

3.5. Constructing response image

After we find the optimum bD, we have D ¼ bDQ , and

ck þ dl
k

n o
k¼1...K

will be the set of votes for the position of the lth

landmark. We write vk ¼ ck þ dl
k as the position vote made by

the kth patch. For each vote, there is also an uncertainty Rk, which
is calculated as the (diagonal) variance of the training displace-
ments that are linked to the kth test patch when we calculated

the feature propagation discrepancy Ef ðbDÞ in Section 3.3. The next
step is to calculate the probability of landmark on different image
locations, from the votes fðvk;RkÞgk¼1...K . We view each vote ðvk;RkÞ
as a Gaussian distribution Gð�jl;RÞ with mean vk and variance Rk.
Then, the probability of landmark at an image coordinate ðx; yÞ is
given by accumulating the contribution of all votes on this image
location:

Iðx; yÞ ¼
XK

k¼1

Gððx; yÞjvk;RkÞ ð12Þ
Feature Feature Build A and G Optimization Response

OðeK Þ OðKÞ OððeK þ KÞ
2
Þ OððeK þ KÞ

3
Þ OðKLÞ
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Iðx; yÞ is viewed as an image function which is called response image
of the landmark, as in Fig. 2 (e), which will be used in Section 4 for
shape regularization.

3.6. Computational complexity

Table 1 shows the dominant computational complexity of our
method in different steps. During the training stage, we need to
calculate the visual feature and displacements (column ‘‘Feature’’),
which is linear to eK , the number of training patches. In the predic-
tion stage, given a new image, we first need to calculate the visual
feature of the test patches (column ‘‘Feature’’), which is linear to K.
Then, we need to build the matrices A and G. Then, the solution of
the optimization problem is cubic respect to eK þ K as it requires
the inversion of matrix A. Finally, we need to construct the re-
sponse image (column ‘‘Response’’), which is linear both to K ,
and the number of landmarks L.

3.7. Discussions

An important difference of our method from previous ones is
that during the estimation of image displacements, we consider
both the consistency with regard to the training data and the in-
ter-patch relations between the test patches. In our objective func-
tion Eq. (6), EgðbDÞ minimizes the deviation of the training
displacements from the ground-truth, which serves as the root of
the entire inference. Ef ðbDÞ links patches with similar appearance,
which can be viewed as the exploitation of the training data. Final-
ly, EpðbDÞ ensures that the predictions made by the test patches are
consistent with regard to the inter-relation between those patches.
This final term does not involve the training data, and can be
viewed as a regularization of the test displacements that are being
estimated. All these three terms are combined to form a single
objective function, where all the displacements are jointly esti-
mated. In Section 5.2.3, we will see how the performance is im-
proved by both the exploitation of training data and the inter-
patch relation.

It is also noteworthy to mention the difference from (Chen et al.,
2013), which contains an additional term ElðÞ which is the row-
wise counterpart of EpðÞ. Considering two landmarks l1 and l2,
patch i makes two predictions dl1

i and dl2
i , respectively. Similarly,

another patch j makes two predictions dl1
j and dl2

j . Then, we should
have dl1

i � dl2
i ¼ dl1

j � dl2
j , because both quantities are equivalent to

the (unknown) location difference of the two landmarks xl2 � xl1 . In
this paper, ElðÞ is removed because it is implied by EpðÞ, which
makes it redundant. This can be seen more easily by writing out
the equations. EpðÞ says that dl1

i � dl1
j ¼ dl2

i � dl2
j and ElðÞ says that

dl1
i � dl2

i ¼ dl1
j � dl2

j . An advantage of removing this term is that
the objective function now can be globally optimized in closed
form.
4. Shape regularization by sparse shape composition

Given the response image of each landmark, the shape regular-
ization step is performed using a statistical shape model to gener-
ate the optimal segmented shape contour by considering both the
image cue encoded in the response images and the shape prior
information encoded in the shape model. First, we initialize the
shape by the mode on the response image for each landmark. Then,
we update the shape iteratively. In each iteration, we perform
three actions: (1) update the shape by moving each landmark lo-
cally to a better position according to its response image, (2) regu-
larize the shape by the shape model, and (3) update the shape pose
by calculating the optimal similarity (translation + rotation + scale)
transformation from the shape in the image space to the model
space using Procrustes Analysis. These steps are straightforward
except step (2), which regularizes the locally updated shape by
the shape model. Traditionally, this can be done by the Active
Shape Model (Cootes and Taylor, 1992) based on PCA (Principal
Component Analysis). In this paper, we instead employ the re-
cently proposed shape model based on sparse representation
(Zhang et al., 2011a, 2012). Here we briefly explain this method.

The shape model consists of a set of pre-aligned training shapes
fyigi¼1;...;N . For a new shape y0 to be regularized, after a similarity
transformation T (which is evaluated by Proscrustes Analysis as
an optimal similarity transformation which minimizes the average
landmark-wise distance between the new shape and the mean
training shape), it should be approximated by a linear combination
involving only a small subset of the training shapes, plus a sparse
error:

Tðy0Þ � Yxþ � ¼ Y I½ �
x
�

� �
¼ Y0x0 ð13Þ

Both the linear coefficient x and the error � are sparse. Therefore,
the composite coefficient x0 is also sparse. Our goal becomes solving
the following L1-regularized least squares problem:

x0opt ¼ arg min
x0

Tðy0Þ � Y0x0
�� ��2

2 þ k x0k k1

� �
ð14Þ

where k is a parameter controlling the importance of the sparsity
constraint. There are a number of solvers for Eq. (14), and we em-
ploy the method using truncated Newton interior-point method
as described in Kim et al. (2007).

The interpretation of Eq. (13) is this: the shape y0 should be
approximated (after transformation T) as a linear combination of
only a small number of ‘‘bases’’, which can either be the training
shapes, or standard basis of the R2L space. The contribution from
the training shapes represents the ‘‘true’’ part of shape y0 that is
consistent with the shape model, and the contribution from the
standard basis accommodates large but sparse errors (noise).
Therefore, after we get the optimal x0opt by Eq. (14), we decompose

x0opt by x0opt ¼ x>opt;�
>
opt

h i>
, discard the �opt which corresponds to the

noises, and the regularized shape is given by back-projecting the
‘‘true’’ part of the shape:

y0regularized ¼ T�1ðYxoptÞ ð15Þ
5. Experiments

In this section we present our experimental results. We first
introduce the experiment setup in Section 5.1. In Sections 5.2
and 5.3 we report the evaluation on the landmark detection algo-
rithm and the shape regularization method, respectively. Individ-
ual evaluation of these two components is important, as the
shape regularization may ‘‘smooth out’’ the errors in landmark
detection. Then we evaluate the complete segmentation method
in Section 5.4. Finally, we present an experiment on 3D data in
Section 5.5.

5.1. Experiment setup

5.1.1. Data
We tested our method on X-ray images from our clinical part-

ner. These images are classified into three datasets based on the in-
volved anatomical structures: complete femur, proximal femur
and pelvis. For each dataset, we randomly select some images for
training and the rest for test purposes:
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(1) Complete femur: 80 training images, 109 test images.
(2) Proximal femur: 100 training images, 188 test images.
(3) Pelvis: 100 training images, 163 test images.

A considerable part of the images is post-operative X-ray radio-
graphs after trauma or joint replacement surgery, which signifi-
cantly increases the challenge due to large variation of femur/
pelvis appearance and the presence of implants. As an indication,
we made a manual counting, which shows that 32% of the test
images contain implants.

For each image in the training dataset, we manually annotate
the contour of the left part (i.e., the left femur or the left semi-pel-
vis). To establish landmark correspondences, we randomly choose
one image as the reference and other images are floating images.
We evenly sample a set of landmarks along the contour on the ref-
erence image, and the corresponding landmarks in floating images
are found by an Expectation Conditional Maximization (ECM)-
based deformable shape registration method (Zheng, 2013). In this
way, for each image, we have both the dense contour and land-
marks. We establish 59, 97 and 89 landmarks for proximal femur,
pelvis and complete femur, respectively.
Fig. 6. Variation of EAP along with different numbers of trees in the RF ensemble.
5.1.2. Implementation details
To improve the efficiency, we adopt a multi-scale strategy with

three scale levels [0.250.51], where the test image is resized to
25%, 50% and 100% of its original size in each dimension, as shown
in Fig. 5. At each level, we detect the landmarks as in Section 3, and
then the shape is regularized as in Section 4. The result of each le-
vel is propagated to the next level as initialization, where the land-
marks are detected by sampling patches only in a limited region
around the initial position. At the first level where no initialization
is available, the landmarks are detected by sampling patches all
through the image. In this way, we combine the global detection
at the first level and local detection at the higher levels, which
achieves high accuracy without exploding the computation time.

In each scale level, we use the same parameters as follows: For
landmark detection, each shape is divided into subshapes of 4 suc-
cessive landmarks (i.e. L=4). For each subshape, we sampleeK ¼ 2000 training patches and K ¼ 500 test patches. For the visual
feature of the patches, we use multi-level HoG (Histogram of Ori-
ented Gradient) feature (Dalal and Triggs, 2005) with block sizes
1� 1 and 2� 2. Each block is divided into 2� 2 cells and for each
Fig. 5. Multi-scale framework. At level 1 there is no initialization, so the landmarks are d
only in the neighborhood of the initial positions. To save space, the third level is omitte
cell an 18 dimensional HoG feature is extracted by histogramming
the gradient direction of each pixel. Therefore, our original feature
dimension is df ¼ 360. To improve the efficiency, we adopt a fea-
ture selection algorithm as proposed in Chen et al. (2011) to reduce
the feature dimension to 100. This method reduces the feature
dimension with an LDA (Linear Discriminant Analysis)-like crite-
rion. The difference is that it seeks an optimal subset of feature
dimensions rather than a linear transformation of the full feature.
For the objective function, we use a ¼ 0:1 and b ¼ 0:01 as our de-
fault value. In each scale level, the landmark detection algorithm is
performed on each subshape independently, and then the shape is
regularized once for the complete shape.

5.2. Evaluation of the landmark detection algorithm

In this section we evaluate our landmark detection algorithm. To
isolate the influence, we drop the statistical shape model, i.e. we
evaluate the detected landmarks before the shape regularization.

5.2.1. Evaluation metric
Suppose that we are considering a landmark whose ground-

truth position is x. During prediction we sample K patches, which
etected by searching all over the image. At higher levels the landmarks are detected
d.



Table 2
Quantitative comparison of our method and RF method. The EIP and EAP measurements are in unit mm.

Complete femur Proximal femur Pelvis

EIP EAP EIP EAP EIP EAP

Our method (default) 8.7 4.4 8.8 4.3 8.3 4.5
RF method 14.5 5.5 14.1 4.5 15.6 5.0
p-Value < 1�30 < 1�15 < 1�30 < 1�5 < 1�30 < 1�8

Fig. 7. Comparison of the response images. Top row: the original image. Middle row: RF method. Bottom row: our method. In each sub-image, the green square is the ground-
truth landmark position. This figure is best viewed in color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

4 All the computation time in this paper is measured in our unoptimized Matlab
implementation on a PC with a quad-core CPU at 3.0 GHz.
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give us a set of votes fvkgk¼1...K as described in Section 3.5. We de-
fine two performance measurements. EIP (Error of Individual
Predictions) and EAP (Error of Aggregated Prediction):

EIP ¼ 1
K

X
k

x� vkk k; EAP ¼ k�v � xk ð16Þ

where �v is the aggregated prediction, i.e. the mode of the response
image. These two measurements emphasize on different aspects.
EIP directly estimates the quality of each individual vote, and EAP
estimates the error of the final landmark detection.

As our X-ray images are in DICOM format where the pixel spac-
ing is known, to unify the comparability, in all our evaluations we
convert the image plane distances into physical unit millimeter.

5.2.2. Comparison with Random Forest based method
We compare our method with the Random Forest based meth-

od as in Lindner et al. (2012). We use exactly the same training
data ~F; ~D

� �
as in our method to train the RF regressor. Since for

each patch we want to estimate the displacements to L landmarks,
we utilize 2L RF regressors for each subshape, one for each output
dimension. In each tree of the forest, each node splits the training
data points into either its left or right branch according to a thresh-
old test on one dimension of the feature vector, and nodes with less
than 5 data samples will stop expanding and become a leaf nodes.
For RF, we use the same parameter as our method when applicable
(e.g. the same multi-scale framework and visual feature). As for the
ensemble size for RF, we use 10 trees for all datasets, as the perfor-
mance does not change significantly with > 10 trees, as shown in
Fig. 6.

Table 2 shows the quantitative comparison. We can see that in
all the three datasets, our method generates better results in both
EIP and EAP. Fig. 7 shows some qualitative comparisons of the re-
sponse images of some landmarks using our method and RF meth-
od. In each sub-image, the green square represents the ground-
truth position of the landmarks concerned. We have two observa-
tions. First, in our method the peak in the produced response image
is more compact (the spread of the distribution is smaller), which
contributes to a smaller EIP. This is because our method exploits
the inter-relations between the individual predictions by the geo-
metric constraints, thus the predictions are more ‘‘compatible’’,
while in RF method the predictions of different patches are inde-
pendent and less consistent. Second, the final prediction of land-
mark position of our method is more accurate (the mode of the
distribution is more close to the ground-truth), which corresponds
to smaller EAP.

We also compare the computation time needed for our method
and the RF method as in Table 3, which reports the time con-
sumed4 to process each subshape when L ¼ 4. The column ‘‘Feature’’
represents the sampling and feature calculation of patches. ‘‘Predic-
tion’’ stands for the estimation of displacements. This includes the
time to build corresponding matrices and the optimization, while
in RF case this is the time to project the feature of test patches to
the forest and retrieve the displacement prediction. ‘‘Response’’ rep-
resents the construction of response image. We note that the time
spent on feature calculation is neglectable. As for the training, our
method is faster as it does not involves training any regressor as
RF. For the Testing stage, in both cases most time is consumed to
build the response image, while our method takes a slightly longer
time because we spend more time in the prediction of
displacements.



Table 3
Computational time comparison of our method and RF method per subshape with L ¼ 4 landmarks. Time unit is in second.

Step Train Test

Feature Train model Total Feature Prediction Response Total

Time (our method) 0.2 N/A 0.2 0.1 0.5 1.9 2.5
Time (RF method) 0.2 19.1 19.3 0.1 0.2 1.9 2.2

Fig. 8. Variation of EIP and EAP on the complete femur dataset, with different parameter settings of the objective function.

Table 4
EAP and computation time on complete femur dataset with different numbers of
train/test patches. Bold values indicates default parameters.

eK ¼ 2000;K ¼ . . . 50 100 200 500 1000

EAP (mm) 5.4 4.8 4.6 4.4 4.4
Time (s) 0.7 0.9 1.2 2.5 3.8

K ¼ 500; eK ¼ . . . 200 500 1000 2000 4000

EAP (mm) 7.3 5.9 4.8 4.4 4.1
Time (s) 1.8 1.9 2.0 2.5 2.9

Table 5
EAP values (in mm) if we use different numbers of training images. ‘‘Full’’ means
using 80/100/100 training images for the three datasets as specified in Section 5.1.1.

Num. of training images Full 60 40 20 10 5

Proximal femur 4.3 4.3 4.3 4.4 4.9 6.4
Pelvis 4.5 4.6 4.6 4.9 5.3 7.1
Complete femur 4.4 4.4 4.5 4.6 5.0 6.6
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5.2.3. Objective function parameters
There are two parameters a and b in our objective function. a

(default 0.1) controls the importance of the training data, while b
(default 0.01) controls the inter-patch constraint. To see the perfor-
mance variance with different parameter values, we perform two
experiments. First, we set b ¼ 0 and try different a values. In this
case, no inter-patch constraint is enforced, and the performance
is only determined by the training data. Note that a cannot be zero.
Otherwise the optimization problem will become singular and can-
not be solved. The result is shown in Fig. 8 (left). Due to the space
limit we report only on complete femur dataset, but on the other
two datasets we have similar observations. We can see that the re-
sult is not sensitive to the a value as long as it is not too large. As a
second experiment, we fix a ¼ 0:1 and tune b, as in Fig. 8 (right).
We note that with increasing b, both EIP and EAP drop. After a cer-
tain value (around b ¼ 0:01), continue increasing b still decreases
EIP, but EAP starts to increase. This is because, with very strong
emphasis on the inter-patch geometric constraint, all the predic-
tions are squeezed together, yielding a very concentrated (but
somewhat misplaced) distribution on the response image. As an
extreme condition, if b!1, all predictions will collapse to a single
point, yielding exactly the same EIP and EAP.
5.2.4. Numbers of training/test patches
Our landmark detection algorithm works by sampling patches

in the image and aggregate their predictions. Therefore, the perfor-
mance is influenced by eK , number of training patches, and K , num-
ber of test patches. To better understand this, we conducted
experiments on different eK and K values on the complete femur
dataset. We consider both accuracy (the EAP value) and efficiency
(the required time to complete the test stage of a subshape, corre-
sponding to the rightmost ‘‘Total’’ column in Table 3).

From Table 4 we see that in terms of accuracy, eK plays a more
important role than K. Increasing eK constantly decreases the EAP
error. We choose eK ¼ 2000 as our default parameter because this
seems to be a good compromise between accuracy and efficiency.
As for K , increasing K also decreases EAP, but the influence seems
saturated when K P 500. We choose K ¼ 500 as our default
parameter.

On the other hand, with respect to efficiency, in Table 1 we see
that the optimization process of our method is cubic with regard to
both eK and K. However, in Table 4 we see that the computation
time only increases moderately with increasing eK and K. This is be-
cause, as can be seen in Table 3, the most time-consuming part of
our method is the construction the response image, which is linear
to K and independent of eK .
5.2.5. Selection of training images
As stated in Section 5.1.1, 80/100/100 training images are ran-

domly selected for the three datasets. To study the sensitivity of
our method with respect to the training image selection, we per-
form an experiment where we select a smaller number of training
images, while keeping all other parameters unchanged (i.e. eK
keeps the same, which means that in the case of fewer training



Table 7
Comparison of generality measurement of the two statistical models. Numbers are in
unit mm.

Complete
femur

Pelvis Proximal
femur

Table 6
Computation time and EAP for different number of landmarks in each subshape on the Complete Femur dataset.

L ¼ 1 L ¼ 2 L ¼ 4 L ¼ 8 L ¼ 16 L ¼ Lmax(89)

Time per subshape (s) 0.8 1.4 2.5 5.3 12.4 88.5
Num of subshapes 89 45 23 12 6 1
Time for all subshapes (s) 70.3 63.1 57.5 63.3 74.5 88.5
EAP (mm) 4.5 4.4 4.4 4.7 4.8 5.3
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images, the patches sampled in each single image might increase),
and the results are shown in Table 5. From this we can see that the
performance drops when the number of training images reduces,
but the deterioration is significant only when the number of train-
ing images is very small (below 20).
PCA based model 0.79 1.36 1.21
Sparse shape composition

model
0.23 0.44 0.51

Table 8
Comparison of generality measurement in the presence of outliers on Pelvis dataset.
Numbers are in unit mm.

Num. or outlier points 0 1 2 4

PCA based model 1.36 2.39 3.34 4.79
Sparse shape composition model 0.44 1.63 2.30 3.99
5.2.6. Size of subshape L
Our landmark detection algorithm works with subshapes which

consists of L successive landmarks (default L ¼ 4). The value of L
influences both accuracy and efficiency. To study this issue, we
make a study using the complete femur dataset using different
sizes of subshape. The result is summarized in Table 6.

Given a fixed K which is the number of test patches, K patches
are sampled around all landmarks per subshape. Therefore, for a
subshape with more landmarks, the sampling region for the
patches will be larger, and for each landmark, the number of near-
by patches that make good predictions is smaller. Therefore, in
general the accuracy drops when L increases, as suggested in
Table 6.

On the other hand, the influence of L on efficiency is more
complex.

(1) As shown in Table 1, the time required to process each sub-
shape increases with L sub-linearly.

(2) On the other hand, as L increases, we need to process fewer
subshapes (inverse to L).

Combining (1) and (2), it seems to suggest that the processing
time in terms of the complete shape will always reduce as L in-
creases (multiplication of a sub-linear term with an inverse-pro-
portional term). However, from Table 6 we see that the smallest
computation time (57.5 s) occurs at L ¼ 4. This is related to our
implementation. When constructing the response image in Sec-
tion 3.5, to save time, we only calculate for locations within the
area where test patches are sampled (outside this area the proba-
bility is close to zero). As L increases, this area increases, and when
L is very large, we see this effect as we spend significantly more
time in the construction of response image.
5.3. Evaluation of the sparse shape composition model

In this section we compare the sparse shape composition model
with the traditional PCA based active shape model. To isolate the
influence, landmark detection is not involved in this section.

First, we compare Davies’ generality measurement (Davies,
2002; Styner et al., 2003) of the two shape models5 using the train-
ing shapes of the three datasets, respectively. The is done by regular-
izing a selected test shape by a shape model constructed by all
remaining shapes. The generality score is the distance from the test
shape and the regularized shape (The average point-to-point dis-
tance converted to millimeters). This procedure is repeated for every
shape in a leave-one-out manner, and the generality measurement
5 Davies’ other two measurements ‘‘specificity’’ and ‘‘compactness’’ do not apply
here, as the sparse shape decomposition model does not permit generating new shape
instances.
on the three datasets are listed in Table 7, from which we clearly
see the advantage of the sparse shape composition model.

To evaluate the robustness of the statistical shape model with
regard to outliers. We also perform the above experiment with
artificially added outliers. Specifically, for the test shape, we ran-
domly perturb the position of some landmarks by an omnidirec-
tional noisy displacement whose magnitude is sampled from a
Gaussian distribution with zero mean and 100 mm standard devi-
ation. Due to the page limit, we only report the result on the pelvis
dataset as in Table 8. From the table we can see that the sparse
shape composition model is more robust against outliers.
5.4. Evaluation of the complete segmentation system

In this section, we evaluate our complete shape segmentation
system as a combination of our landmark detection algorithm
and the sparse shape composition model. The qualitative result is
shown in Fig. 9 for proximal femur and pelvis, and Fig. 10 for com-
plete femur. From these figures we can visually conclude that our
segmentation approach generates very good result. Since we only
annotated the left part of the training images, during test stage,
we perform an additional pass by horizontally mirroring each im-
age to get the segmentation of the right part. The quantitative eval-
uation, however, is restricted to the left part as we do not have the
ground-truth for the right part on the test images.

For quantitative evaluation, we calculate the average point-to-
curve distance (converted to millimeter) between the segmented
shape and the manually segmented ground-truth contour. For
comparison, we compare our method with the popular RF based
landmark detection combined with PCA based shape model or
sparse shape composition. The detailed result is shown in Table 9.
Note that both methods achieve a success rate of 100%, 98.4% and
98.8% on complete femur, proximal femur and pelvis datasets,
respectively,6 and the unsuccessful cases are excluded when we cal-
culate the errors in Table 9.
6 The unsuccessful cases are determined by manual inspection, and are usually
caused by extreme appearance/shape abnormality due to fracture.



Fig. 9. Qualitative result of our complete segmentation method on proximal femur and pelvis.

Fig. 10. Qualitative result of our complete segmentation method on complete femur.

Table 9
Quantitative comparison of the segmented shape of our method with RF method. Error values are in unit millimeter.

Complete femur Proximal femur Pelvis

Mean Std p-Value Mean Std p-Value Mean Std p-Value

Our method 1.2 0.4 N/A 1.3 0.5 N/A 2.0 0.7 N/A
RF + PCA 1.7 0.5 <1e�5 1.3 0.5 0.25 2.4 0.7 <1e�4
RF + Sparse 1.6 0.5 <1e�5 1.3 0.5 0.1 2.3 0.7 <1e�3

Table 10
Leave-one-out result on the CT data. In each column one patient is used for test and
the remaining 6 are used for training.

#1 #2 #3 #4 #5 #6 #7 Average

Segmentation error (mm) 1.6 1.8 1.7 1.3 1.5 1.2 1.5 1.5

C. Chen et al. / Medical Image Analysis 18 (2014) 487–499 497
5.5. Extension to 3D data

To test the 3D extensibility, we also implemented an extension
of our method in 3D cases, where the 2D elements in the method
are changed to their 3D counterparts. For example, the 2D image
patches become 3D volumes, and the image displacements are
now 3D vectors. As a preliminary study, we perform an experiment
using a dataset containing CT data of proximal femurs from 7
patients, with the volumetric data and the corresponding
ground-truth 3D femoral shape represented by 8789 vertices.
The pixel size of the volumetric data is about 200� 400� 150,
and the pixel spacing is 1 mm in each dimension. All the ground
truth 3D femoral shapes are semi-automatically segmented from
the corresponding volume data with a Amira software (FEI Visual-
ization Sciences Group, France) and the vertex correspondences
across the different femoral shapes are established with the
diffeomorphic demons algorithm (Vercauteren et al., 2009). It is
well-known that the separation of the femoral head and the ace-
tabulum is one of the main difficulties in automatic segmentation



Fig. 11. Qualitative result of our segmentation method on CT data. In the bottom row the red contours are the ground-truth segmentation, and the green contours are the
segmentation results with our method. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of such a dataset due to the extreme narrowness of the joint space
and the intensity similarity between the two neighboring struc-
tures (Yokota et al., 2009).

As for the algorithm parameters, we keep eK ¼ 2000;
K ¼ 500;a ¼ 0:1 and b ¼ 0:01. We use L ¼ 1, because defining
neighboring vertices on a 3D shape is more complex than 2D and
is beyond the scope of this paper. For the visual feature of 3D image
volumes, we devide each volume into 5� 5� 5 blocks, and the
mean intensity of each block is calculated and concatenated to
form the 125 dimensional feature vector.

Since the 8789 vertices represent the 3D shape very densely, we
do not perform landmark detection on every vertex. Instead, we
randomly choose a subset of ‘‘key points’’ for landmark detection.
The other points are determined in the shape regularization pro-
cess. Specifically, in Eqs. (13) and (14) we use only the key points
to calculate the reconstruction coefficient x, and then, in Eq. (15),
all the 8789 points are used to reconstruct the regularized shape.
Similar to the 2D case, we also adopt a multi-scale strategy of
two scales [0.51]. To further improve the efficiency, we use differ-
ent numbers of key points in different levels. For the first level
whose purpose is to coarsely localize the shape, we use 50 key
points. For the second level we use 500 key points.

The experiment is performed in a leave-one-out manner, where
in each round one data is selected for test and the remaining 6 data
are used for training. The segmentation error is calculated by the
average point-to-surface distance between the segmented shape
and the ground-truth shape (all 8789 points are involved in this
calculation). The result is shown in Table 10, where we can see that
we achieve an average error of 1.5 mm. Fig. 11 shows some quali-
tative results, where in the top row we show the 3D view where
the reconstructed shapes are superimposed with three orthogonal
slices of CT data, and in the bottom we show the 2D view which is
the contour intersection of the slice with the ground-truth shape
(red) and our segmented shape (green).

As for the efficiency, please note that when the other parame-
ters are fixed, the computational time of our landmark detection
algorithm is linear with regard to the number of subshapes (or
the number of key points in this since L ¼ 1). In our unoptimized
Matlab implementation, it takes about 10 min to segment a 3D
shape.

Please note that this is a preliminary study, and that we use a
very simple volume feature and a small dataset. Several improve-
ments may immediately improve the performance, e.g. better fea-
ture for volumes, larger dataset with more expressive shape model,
better strategy to select key points, and so on. We leave these for
the further study.
6. Conclusions

In this paper, we proposed a new method for landmark detec-
tion and shape segmentation in X-ray images. Our method works
by jointly estimating the image displacements of test patches using
the training data and also the geometric information on the test
image itself. The key contribution is the exploitation of the inter-
patch relations to impose the geometric regularizations on the im-
age displacements that are being estimated. We formulate our
problem as a convex objective function which can be solved effi-
ciently. The landmark detection output is then exploited together
with the sparse shape composition model to generate the seg-
mented shape. Our method is evaluated on three datasets concern-
ing Complete Femur, Proximal Femur and Pelvis. The experiments
show that our method indeed improves the estimation of image
displacements from image patches to landmark positions. The im-
proved predictions give us a more accurate landmark detection re-
sult, and, combined with the shape model, show an improved or
comparable performance compared with other methods. We also
extend our method to a 3D case involving a small CT proximal fe-
mur dataset which shows that our method also generates promis-
ing result.

In the future, we would like to study in details our method on
3D segmentation problem. We are also interested in combining
our objective function of image displacements with the objective
of shape regularization by statistical shape model and finally gen-
erate a unified optimization problem which deals with the image
cue (landmark detection) and shape prior cue (shape model)
simultaneously.
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