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ABSTRACT
The problem of efficiently finding the best match for a query
in a given set with respect to the Euclidean distance or the
cosine similarity has been extensively studied. However, the
closely related problem of efficiently finding the best match
with respect to the inner-product has never been explored
in the general setting to the best of our knowledge. In
this paper we consider this problem and contrast it with
the previous problems considered. First, we propose a gen-
eral branch-and-bound algorithm based on a (single) tree
data structure. Subsequently, we present a dual-tree algo-
rithm for the case where there are multiple queries. Our
proposed branch-and-bound algorithms are based on novel
inner-product bounds. Finally we present a new data struc-
ture, the cone tree, for increasing the efficiency of the dual-
tree algorithm. We evaluate our proposed algorithms on a
variety of data sets from various applications, and exhibit
up to five orders of magnitude improvement in query time
over the naive search technique in some cases.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; G.4 [Mathematical Soft-

ware]: Algorithm design and analysis; H.2.8 [Database

Management]: Database Applications—Data mining ; H.3.3
[Information Storage and Retrieval]: Information Search
and Retrieval—Search process

General Terms
Algorithms, Design

Keywords
Metric trees, cone trees, dual-tree branch-and-bound

1. INTRODUCTION
In this paper, we consider the problem of efficiently find-

ing the best match for a query from a given set of points with
respect to the inner-product similarity. We focus on improv-
ing the efficiency of this search. Formally, we consider the
following problem:
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Maximum inner-product search. For a given set of N
points S ⊂ R

D and a query q ∈ R
D, efficiently find a point

p ∈ S such that:
〈q, p〉 = max

r∈S
〈q, r〉. (1)

At first glance, this problem appears to be very similar to
much existing work in literature. Efficiently finding the
best match with respect to the Euclidean (or more generally
Lp) distance is the widely studied problem of fast nearest-
neighbor search in metric spaces [9]. Efficient retrieval of the
best match with respect to the cosine similarity has been re-
searched in the field of text mining and information retrieval
[1]. But as we will explain in the next section, the maximum
inner-product search is not only different from these afore-
mentioned tasks, but also arguably harder.

1.1 Applications
An obvious application of maximum inner-product search

stems out of the widely successful matrix-factorization frame-
work in recommender system challenges like the “Netflix
prize” [22, 21, 2]. The matrix-factorization results in accu-
rate representation of the available data in terms of user vec-
tors and items vectors (examples for items would be movies
or music). In this setting, the preference of a user for an
item is the inner-product between the corresponding user’s
vector and the item’s vector1. The retrieval of recommen-
dations for a user is equivalent to maximum inner-product
search with the user as the query and the items as the ref-
erence set. Linear scan of the items are usually employed
to find the best recommendations. An efficient search algo-
rithm would make the retrieval of recommendations in the
matrix-factorization framework scalable to larger systems.

The usual document retrieval tasks use the cosine similar-
ity to match documents. However, in certain settings [11],
the documents are represented as (not necessarily normal-
ized) vectors and the inner-product between these vectors
represent their mutual similarity. In this case, unless the
vectors are normalized to have the same length, document
matching using the cosine similarity [1] might make the algo-
rithm scalable at the cost of returning inaccurate solutions
since the inner-product is not the same as the cosine simi-
larity (we will discuss this further in Section 2).

There is a similar problem known as the the max-kernel
operation: for a given set of points S and a query q and a
kernel function K(·, ·), the task is to find the point p ∈ S
with the maximum value of K(q, p) over the set S. This

1The preference is actually the inner-product between the
user and the item vector plus a item bias term. But this
can be reduced to an inner-product by appending the user
vector with 1 and the item vector with the item bias.



problem is widely used in maximum-a-posteriori inference
[20] in machine learning, and for image matching [23] in
computer vision. If the kernel function can be explicitly
represented in the form a function ϕ(·) such that K(q, p) =
〈ϕ(q), ϕ(r)〉, then this problem reduces to maximum inner-
product search after all the points in the set S and the query
q is transformed into the ϕ-space.

1.2 This Paper
In this paper, we propose two tree-based branch-and-bound

algorithms along with a new data structure to solve this
problem. In Section 2, we contrast this problem to the
more familiar problems of nearest-neighbor search in metric
spaces and best matches with respect to the cosine similarity.
In Section 3, we propose a simple branch-and-bound algo-
rithm using existing ball tree data structure [28] and a novel
bound. In the following section (Section 4), we address the
situation where there are multiple queries on the same set of
points and propose a dual-tree branch-and-bound algorithm.
In Section 5, we present a new data structure, thecone trees,
to index the queries for the dual-tree algorithm. These struc-
tures take advantage of novel inner-product bounds which
are tighter than those that can be achieved with traditional
ball trees. The proposed algorithms are evaluated for their
efficiency over a variety of data sets in Section 6. Section 7
demonstrates how the proposed algorithms can be applied
to the max-kernel operation with general kernel functions
without any explicit representation of the points in the ϕ-
space. In the final section, we provide our conclusions along
with possible future directions for this work.

2. MAXIMUM INNER-PRODUCT SEARCH
Numerous techniques exists for nearest-neighbor search

in Euclidean metric space (see surveys like [9]). Large scale
best matching algorithms have also been developed for the
cosine-similarity measure [1], with a lot of focus on text
data. The problem of nearest-neighbor search (in metric
space) has been solved approximately with the widely pop-
ular locality-sensitive hashing (LSH) [14, 18]. LSH has been
extended to other forms of similarity functions (as opposed
to the distance as a dissimilarity function) like the cosine
similarity [7]2. The approximate max-kernel operations can
also be solved efficiently with LSH under certain conditions
on the kernel function. Dimension reduction [30] and dual-
tree algorithms [20] have also been used to solve the approx-
imate max-kernel operation efficiently.

2.1 How is maximum inner-product search
different from existing problems?

Here we explain why the maximum inner-product search
is different from these existing search problems. Hence tech-
niques applied to these problems (like LSH) cannot be di-
rectly applied to this problem.
Nearest-neighbor search in Euclidean space. This in-
volves finding a point p ∈ S for a query q such that:

p = argmin
r∈S

‖q − r‖22 = argmax
r∈S

(

〈q, r〉 − ‖r‖22
2

)

6= argmax
r∈S

〈q, r〉 (unless ‖r‖22 = k ∀ r ∈ S).

2An important thing to note here is that the similarity function
used in Charikar et.al.[7] is not exactly the cosine-similarity. The
distance between two points p and q was measured by θ/π, where
θ is the angle made the two points at the origin, making the

similarity function
(

1− θ
π

)

. This similarity function has a direct

correspondence to the cosine similarity.
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Figure 1: Best matches: For a given query q, pC , pE
and pI denote the different best match candidates with

respect to the cosine similarity, the Euclidean distance

and the inner-product respectively.

Hence, if the norms of all the points in S are normalized to
have the same length, then maximum inner-product search
is equivalent to nearest-neighbor search in Euclidean metric
space. However, without this restriction, the two problems
can have potentially very different answers (figure 2).
Best-matching with cosine similarity. This constitutes
finding a point p ∈ S for a query q such that

p = argmax
r∈S

〈q, r〉
‖q‖ ‖r‖ = argmax

r∈S

〈q, r〉
‖r‖

6= argmax
r∈S

〈q, r〉 (unless ‖r‖ = k ∀ r ∈ S).

The best match with cosine similarity gives the maximum
inner-product only if all the points in the set S are normal-
ized to the same length (counter example in figure 2).
Locality-sensitive hashing. LSH has been applied to a
wide variety of similarity functions. LSH involves construct-
ing hashing functions such that each hash function h satisfies
the following for any pair of points r, p ∈ S:

Pr[h(r) = h(p)] = sim(r, p), (2)

where sim(r, p) ∈ [0, 1] is the similarity function of interest.
For our situation, we can normalize our data set such that
∀ r ∈ S, ‖r‖ ≤ 13, and assume that the all the data is in
the first quadrant (so that none of the inner-products go
below zero). In that case, sim(r, p) = 〈r, p〉 ∈ [0, 1] is a valid
similarity function of interest.

It is known that for any similarity function to admit a
locality sensitive hash function family (as defined in equa-
tion 2), the distance function d(r, p) = 1 − sim(r, p) must
satisfy the triangle inequality (Lemma 1 in [7]). However,
the distance function d(r, p) = 1−〈r, p〉 does not satisfy the
triangle inequality (even when all the points are restricted
to the first quadrant)4. So LSH cannot be applied to the
inner product similarity function even when all the data lies
in the first quadrant (which is quite a restrictive condition).
Efficient max-kernel operation. Various techniques have
been proposed to solve this problem efficiently. For kernel
functions with very high (possibly infinite) dimensional ex-
plicit representations, Rahimi, et.al., 2007 [30], propose a
technique to transform these high-dimensional representa-

3This normalization is different than the normalization men-
tioned earlier where all the points were normalized to have the
same length. Here the lengths are normalized to be less than
equal to one, but not equal to each other.
4Counter example: Let x, y, z ∈ S be points such that ‖x‖ =
‖y‖ = ‖z‖ = 1, and angles made between x & y, y & z and z & x
at the origin be

(

π
4
− 0.1

)

, π
4

and
(

π
2
− 0.3

)

respectively. The

triangle inequality, d(x, y) + d(y, z) ≥ d(z, x), does not hold for
d(·, ·) = 1−〈·, ·〉. d(x, y) = 0.23, d(y, z) = 0.29 & d(z, x) = 0.70.



tions into lower-dimensions while still approximately pre-
serving the inner-product to improve scalability. However,
the final search still involves a linear scan over the set of
points for the maximum inner-product or a fast nearest-
neighbor search under the assumption that finding the nearest-
neighbor is equivalent to maximizing the inner-product. For
translation invariant kernels5, a tree-based recursive algo-
rithm has been shown to scale to large sets [20]. However, it
is not clear how this algorithm can be extended to the gen-
eral class of kernels. LSH is widely used for image matching
in computer vision [23], but only for kernel functions that
admit a locality sensitive hashing function [7]. Hence, none
of the existing techniques can be directly applied to max-
imum inner-product search without introducing inaccurate
results or limiting assumptions.

2.2 Why is maximum inner-product search
possibly harder?

Inner-products lack a very basic property of generally used
similarity functions – coincidence. For example, the Eu-
clidean distance of a point to itself is 0; the cosine similarity
of a point to itself is 1. The inner-product of a point x ∈ S
to itself is ‖x‖2, which may be high or low depending on the
value of the ‖x‖. Additionally, there can possibly be many
other points y ∈ S such that 〈y, x〉 > ‖x‖2.
Efficient nearest neighbor search methods typically rely

heavily on these properties (triangle inequality and coinci-
dence) to achieve their efficiency. Hence, without any added
assumptions, this problem of maximum inner-product search
is inherently harder than the previously dealt similar prob-
lems. This is possibly the reason why there is no existing
work for this problem in its general form, to our knowledge.

2.3 Why try trees?
Trees have been widely used for nearest-neighbor search

[13, 4, 29, 8, 32]. Being widely used approach in the nearest
neighbor case, we believe it is instructive to review them
before considering the maximum inner-product search case.
For exact nearest-neighbor searches, trees can yield great

accelerations in anywhere from low- to high-dimensional data,
as long as there is low intrinsic dimensionality [4, 10]. Trees
can also be easily adapted to the approximate case, with er-
ror guarantees of various sorts. These include approximation
in the sense of rank, i.e. if the actual best match may not
be returned, trees can be used in a way that guarantees that
the result is, say, in the top 10 best matches [32] – rather
than provide a guarantee in terms of potentially less mean-
ingful abstract quantities such as distances (as is provided
by LSH; it is not clear how to extend LSH to provide rank
guarantees). This would appear to make particular sense
in many applications such as recommendations. Trees can
also be used for another kind of approximate search setting
which can be important in practical applications, in which
the best possible match is found given a user-defined time
limit. This kind of approximation is possible for tree-based
branch-and-bound algorithms because they are incremental
algorithms. This is not possible with something like LSH –
LSH provides theoretical error bounds, but there is no way
of ensuring the error constraint during the search. Another
important advantage of trees is that the trees require a single

5Kernel functions K(p, q) which are dependent only the (Eu-
clidean) distance between the points p and q are considered trans-
lation invariant kernels. The Gaussian RBF kernel is such a trans-
lation invariant kernel function.

Figure 2: Ball trees

Algorithm 1 MakeBallTreeSplit(Data S)

Pick a random point x ∈ S

A← argmax
x
′∈S ‖x− x′‖22

B ← argmax
x
′∈S ‖A− x′‖22

return (A,B)

Algorithm 2 MakeBallTree(Set of items S)

Input – Set S
Output – Tree T
T.S ← S //The set of points in node T
T.µ← mean(S) //The center of the ball around T.S

T.R← max
p∈S
‖p− T.µ‖22 //The radius of the ball around T.S

if |S| ≤ N0 then
return T

else
(A,B)← MakeBallTreeSplit(S)

Sl ← {p ∈ S : ‖p−A‖22 ≤ ‖p−B‖22}; Sr ← S \ Sl

T.lc← MakeBallTree(Sl) //Left child
T.rc← MakeBallTree(Sr) //Right child
return T

end if

Figure 3: Ball tree Construction

construction – the branch-and-bound algorithm adapts for
the different levels of approximate and/or time limitations.
Hashing techniques require multiple hashes for different lev-
els of approximation. The usual norm is to pre-hash for mul-
tiple values of approximation. Trees can also be constructed
by learning from the data using techniques from machine
learning [6, 25] to provide better accuracy and efficiency.

The significant advantages of the tree-based approach for
the nearest-neighbor setting motivate the question of whether
they can be brought to the maximum inner-product case.

3. TREE-BASED SEARCH
Ball trees [29, 28] are binary space-partitioning trees that

have been widely used for the task of indexing data sets.
Every node in the tree represents a set of points and each
node is indexed with a center and a ball enclosing all the
points in the node. The set of point at a node is divided into
two disjoint sets which form the child nodes, partitioning the
space into (possibly overlapping) hyper-spheres. The tree is
built hierarchically and a node is made a leaf if it contains
a set of points of size below a threshold value N0.

3.1 Tree construction
We use a simple ball tree construction heuristic that ap-

proximately picks a pair of pivot points which are farthest
apart from each other [28], and splits the data by assigning
the points to their closest pivot. The intuition behind this
heuristic is that these two points might lie in the principal
direction. The splitting and the recursive tree construction
algorithm is presented in Algorithms 1 & 2 for completeness.

3.2 Branch-and-bound algorithm
Ball trees are widely used for the task of nearest neigh-

bor search and are known to be fairly scalable to moder-
ately high dimensions [28, 26]. The search usually employs



Algorithm 3 LinearSearch(Query q, Reference Set S)

for each p ∈ S do
if 〈q, p〉 > q.λ then

q.bm← p
q.λ← 〈q, p〉

end if
end for

Algorithm 4 TreeSearch(Query q, Tree Node T )

if q.λ < MIP(q, T ) then
if isLeaf (T) then

LinearSearch(q, T.S)
else

Il ←MIP(q, T.lc); Ir ←MIP(q, T.rc);
if Il ≤ Ir then

TreeSearch(q, T.rc); TreeSearch(q, T.lc);
else

TreeSearch(q, T.lc); TreeSearch(q, T.rc);
end if

end if
end if

Algorithm 5 ExactMIP(Query set V , Reference Set S)

T ← MakeBallTree(S)
for each q ∈ V do

q.bm← ∅; //The current max-inner-product candidate
q.λ← −∞; //The current highest inner-product
TreeSearch(q, T );
return q.bm;

end for

Figure 4: Single-tree Search: See text for details

the depth-first branch-and-bound algorithm – a query is an-
swered by traversing the tree in a depth-first manner by
first going down the node closer to the query and bounding
the minimum possible distance to the other branch with the
triangle-inequality. If this bound is greater than the distance
to the current neighbor candidate for the query, the branch
is removed from computation.
An analogous greedy depth-first algorithm can be used

for maximum inner-product search. But instead of travers-
ing down the node closer to the query, the choice is made on
the basis of the maximum possible inner-product between
the query and any potential point from the node. The re-
cursive depth-first branch and bound algorithm is presented
in Algorithm 4. The search algorithm for a query (q) be-
gins at the root of the tree (Alg. 5). At each step, the
algorithm is at a tree node (T ). It checks if the maximum
possible inner-product between the query and any point in
the node, MIP(q, T ), is any better than the current best-
match for the query (q.bm). If the check fails, this branch of
the tree is not explored any more. Otherwise, the algorithm
recursively traverses the tree, exploring the branch with the
better potential candidates in a depth-first manner. If the
node is a leaf, the algorithm just finds the best-match within
the leaf with a linear search (Alg. 3). This algorithm ensures
that the exact solution (i.e., the maximum inner-product) is
returned by the end of the algorithm.

3.2.1 Bounding maximum inner-product with a ball
We present an novel analytical upper bound for the max-

imum possible inner product of a given point (in this case,
the query q) with points in a ball. It is important to note
that the information about the ball is limited to its cen-
ter and its radius. For the rest of this section, we use the
notation ‖·‖ to denote the ‖·‖2.

Theorem 3.1. Given a ball BRp
p0 of points centered at p0

with radius Rp and (query) point q, the maximum possible

O

x

y

q

p0

p∗

Rp

rp

φ

θq,p∗

ωp

θp

Figure 5: Bounding with a ball

inner product between the point q and the ball BRp
p0 is bounded

from above by:
max

p∈B
Rp
p0

〈q, p〉 ≤ 〈q, p0〉+Rp ‖q‖ . (3)

Proof. Suppose that p∗ is the best possible match in the

ball BRp
p0 for the query q and rp be the Euclidean distance

between the ball center p0 and p∗ (by definition, rp ≤ Rp).
Let θp be the angle between the vector ~p0 and the vector
~p0p∗, φ and ωp be the angles made at the origin between the

vector ~p0 and vectors ~q and ~p∗ respectively (see figure 5).
The length of p∗ in terms of p0 and θp is:

‖p∗‖ =
√

(‖p0‖+ rp cos θp)2 + (rp sin θp)2. (4)

The angle ωp can be expressed in terms of p0 and θp as:

cosωp =
‖p0‖+ rp cos θp

‖p∗‖ , sinωp =
rp sin θp
‖p∗‖ . (5)

Let θq,p∗ be the angle between the vectors ~q and ~p∗. With
the triangle inequality of angles, we have:

|θq,p∗ | ≥ |φ− ωp|.
Assuming that the angles lie in the range [−π, π] (instead of
the usual [0, 2π]), we get:

cos θq,p∗ ≤ cos(φ− ωp). (6)

Using this inequality we obtain the following bound for the

highest possible inner-product between q and any p ∈ BRp
p0 :

max
p∈B

Rp
p0

〈q, p〉 = 〈q, p∗〉(by assumption) = ‖q‖ ‖p∗‖ cos θq,p∗

By equations 4, 5 & 6, we have
max

p∈B
Rp
p0

〈q, p〉 ≤ ‖q‖ ‖p∗‖ cos(φ− ωp)

= ‖q‖ (cosφ(‖p0‖+ rp cos θp) + sinφ(rp sin θp))

≤ ‖q‖max
θp

(cosφ(‖p0‖+ rp cos θp) + sinφ(rp sin θp))

= ||q|| (cosφ(||p0||+ rp cosφ) + sinφ(rp sinφ))

≤ ‖q‖ (cosφ(‖p0‖+Rp cosφ) + sinφ(Rp sinφ)) .

The third inequality comes from the definition of maximum.
The following equality comes from maximizing over θp. This
gives us the optimal value of θp = φ. The final inequality
is comes from the fact that rp ≤ Rp. Simplifying the final
inequality gives us equation 3.

For the tree-search algorithm (Alg. 4), we set the maximum
possible inner-product between q and a tree node T as

MIP(q, T ) = 〈q, T.µ〉+ T.R ‖q‖ .
This upper bound can be computed in almost the same time
required for a single inner-product (since the norms of the
queries can be pre-computed before searching the tree).



4. DUAL-TREE BASED SEARCH
For a set of queries, the tree can be traversed separately

for each query. However, if the set of queries is very large,
a common technique to improve efficiency of querying is to
index the queries in the form of a tree as well. The search is
performed by traversing both trees simultaneously using the
dual-tree algorithm [15]. The basic idea is to amortize the
cost of tree-traversal for a set of similar queries. The dual-
tree algorithms have been applied to different tree-based al-
gorithms like nearest-neighbor search [15] and kernel density
estimation [16] with theoretical runtime guarantees [31].

4.1 Dual-tree branch-and-bound algorithm
The generic dual-tree algorithm is presented in Alg. 6.

Similar to the Alg. 4, the algorithm traverses down the tree
on the reference set S (RTree). However, the algorithm also
traverses down the tree on the set V of queries (QTree), re-
sulting in a four-way recursion. At each step, the algorithm
is at a QTree node Q and a RTree node T. For every Q,
the value Q.λ denotes the minimum inner-product between
any query in Q and its current best-match candidate. If this
value is greater than the maximum possible inner product,
MIP(Q,T ), between any query in Q and any reference point
in T , this part of the recursion is no longer explored. When
the algorithm is at the leaf level of both the trees, it obtains
the best-matches for each query in the QTree leaf by doing
a linear scan over the RTree leaf.
We explore two ways of indexing the queries – (1) indexing

the queries using the ball-tree (MakeQueryTree in Alg.7 is
Alg. 2) (2) indexing the queries using a novel data structure,
the cone-tree (MakeQueryTree in Alg.7 is Alg. 9). In the fol-
lowing subsection, we derive expressions for MIP(Q,T ) for
the ball-tree. The expressions for the cone-tree is presented
in section 5.

4.2 Using ball trees
In this subsection, we provide inner-product bounds be-

tween two balls with the following theorem:

Theorem 4.1. Given two balls BRp
p0 and BRq

q0 centered at
p0 and q0 with radius Rp and Rq respectively, the maximum

possible inner-product with any pair of points p ∈ BRp
p0 and

q ∈ BRq
q0 is bounded from above by:

〈q0, p0〉+RqRp + ‖q0‖Rp + ‖p0‖Rq. (7)

Proof. Consider the pair of point (p∗, q∗), p∗ ∈ B
Rp
p0 , q∗ ∈

B
Rq
q0 be such that

〈q∗, p∗〉 = max
p∈B

Rp
p0

,q∈B
Rq
q0

〈q, p〉. (8)

Let θp be the angle ~p0 makes with the vector ~p0p∗, and
θq be the corresponding angle in the query ball. Let ωp

be the angle between the vectors ~p0 and ~p∗ and ωq be the
angle between the vectors ~q0 and ~q∗. Let rp be the distance
between p0 and p∗, rq be the distance between q0 and q∗.
Let φ be the angle made between p0 and q0 at the origin.

Some facts for the ball BRp
p0 (the facts are analogous for

the ball BRq
q0 ):

‖p∗‖ =

√

‖p0‖2 + r2p + 2 ‖p0‖ rp cos θp,

cosωp =
‖p0‖+ rp cos θp

‖p∗‖ , sinωp =
rp sin θp
‖p∗‖ .

Using the triangle inequality of the angles, we know that:

|θq∗,p∗ | ≥ |φ− (ωp + ωq)|,
giving us the following:

〈q∗, p∗〉 = ‖p∗‖ ‖q∗‖ cos(φ− (ωp + ωq)). (9)

Algorithm 6 DualSearch(QTree Node Q, RTree Node T )

if Q.λ < MIP(Q,T ) then
if isLeaf (T ) & isLeaf (Q) then

for each q ∈ Q.S do
LinearSearch(q, T.S)

end for
Q.λ← minq∈Q.S q.λ

else if isLeaf (T ) then
DualSearch(Q.lc, T ); DualSearch(Q.rc, T );
Q.λ← min{Q.lc.λ,Q.rc.λ}

else if isLeaf (Q) then
Il ←MIP(Q,T.lc); Ir ←MIP(Q,T.rc);
if Il ≤ Ir then

DualSearch(Q,T.rc); DualSearch(Q,T.lc);
else

DualSearch(Q,T.lc); DualSearch(Q,T.rc);
end if

else
Il ←MIP(Q.lc, T.lc); Ir ←MIP(Q.lc, T.rc);
if Il ≤ Ir then

DualSearch(Q.lc, T.rc); DualSearch(Q.lc, T.lc);
else

DualSearch(Q.lc, T.lc); DualSearch(Q.lc, T.rc);
end if
Il ←MIP(Q.rc, T.lc); Ir ←MIP(Q.rc, T.rc);
if Il ≤ Ir then

DualSearch(Q.rc, T.rc); DualSearch(Q.rc, T.lc);
else

DualSearch(Q.rc, T.lc); DualSearch(Q.rc, T.rc);
end if
Q.λ← min{Q.lc.λ,Q.rc.λ}

end if
end if

Algorithm 7 ExactMIPDT(Query Set V , Reference Set S)

T ← MakeBallTree(S)
Q← MakeQueryTree(V )
∀ trees nodes Q′ in the tree Q, Q′.λ← −∞;
∀ queries q ∈ V , q.bm← ∅, q.λ← −∞;
DualSearch(Q, T );
∀ queries q ∈ V , return q.bm;

Figure 6: Dual-tree Search: See text for details.

Replacing ωp and ωq with θp and θq by using the afore-
mentioned equalities (similar to the techniques in proof for
theorem 3.1), we have:
〈q∗, p∗〉 = 〈q0, p0〉+ rprq cos(φ− (θp + θq))

+rp ‖q0‖ cos(φ− θp) + rq ‖p0‖ cos(φ− θq)

≤ max
θp,θq

〈q0, p0〉+ rprq cos(φ− (θp + θq))

+rp ‖q0‖ cos(φ− θp) + rq ‖p0‖ cos(φ− θq)

≤ max
rp,rq

〈q0, p0〉+ rprq + rq ‖p0‖+ rp ‖q0‖

≤ 〈q0, p0〉+RpRq +Rq ‖p0‖+Rp ‖q0‖ ,
where the first inequality comes from the definition of max.
The second inequality follows from cos(·) ≤ 1 and the final
inequality comes from the fact that rp ≤ Rp, rq ≤ Rq.

For the dual-tree search algorithm (Alg. 6), the maximum-
possible inner-product between two tree nodes Q and T is:

MIP(Q,T ) = 〈q0, p0〉+RpRq +Rq ‖p0‖+Rp ‖q0‖ .
It is interesting to note that this upper bound bound reduces
to the bound in theorem 3.1 when the ball containing the
queries is reduced to a single point, implying Rq = 0.

5. CONE TREES
In equation 1, the point p, where the maximum is achieved,

is independent of the norm ||q|| of the query q. Let θq,r be
the angle between the q and r at the origin, then the task
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of maximum inner-product search is equivalent to finding a
point p ∈ S such that:

p = argmax
r∈S

‖r‖ cos θq,r. (10)

This implies that only the directions of the queries affect the
solution. Balls provide bounds on the inner-product since
they bound the norm of the vector as well as the direction.
Since the norms do not matter for the queries, indexing them
in balls is not required (and hence bounding their norms) is
not necessary. Only the range of their directions need to be
bounded. For this reason, we propose the indexing of the
queries on the basis of their direction (from the origin) to
form a cone tree (figure 8). The queries are hierarchically
indexed as (possibly overlapping) open cones. Each cone is
represented by a vector, which corresponds to its axis, and
an angle, which corresponds to its aperture6.

5.1 Cone tree construction
The cone tree construction is very similar to the ball tree

construction. The only difference is the use of cosine similar-
ity instead of the Euclidean distances for the task of splitting
(pseudo-code in Figure 8).

5.2 Cone-ball bound
Since the norms of the queries do not affect the solution in

equation 10, we assume that all the queries have unit norm.

Theorem 5.1. Given a ball BRp
p0 of points centered at p0

with radius Rp and a cone Cωq
q0 of queries (normalized to

length 1) with the axis of the cone q0 and aperture of 2ωq ≥
0, the maximum possible inner-product between any pair of

points p ∈ BRp
p0 , q ∈ Cωq

q0 is bounded from above by:

‖p0‖ cos({|φ| − ωq}+) +Rp, (11)

where φ is the angle made between p0 and q0 at the origin
and the function {x}+ = max{x, 0}.
6The aperture of the cone is twice the angle made between the
axis and the perimeter of the cone.
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Figure 9: Bounding between a ball and a cone

Algorithm 8 MakeConeTreeSplit(Data Q)

Pick a random point x ∈ Q
A← argmin

x
′∈S cos θ

x,x′

B ← argmin
x
′∈S cos θA,x′

return (A,B).

Algorithm 9 MakeConeTree(Set of items S)

Input – Set S
Output – Tree T
T.S ← S //The set of points in node T
T.µ← mean(S) //The axis of the cone around T.S
T.C ← min

p∈S
cos θT.µ,p //The cosine of the aperture of the cone

if |S| ≤ N0 then
return T

else
(A,B)← MakeConeTreeSplit(S)
Sl ← {p ∈ S : cos θA,p > cos θB,p}; Sr ← S \ Sl

T.lc← MakeConeTree(Sl) //Left child
T.rc← MakeConeTree(Sr) //Right child
return T

end if

Figure 10: Cone tree Construction

Proof. There are two cases to consider here:
(i) |φ| < ωq

(ii) |φ| ≥ ωq

For case (i), the center p0 of the ball BRp
p0 lies within the

cone Cωq
q0 , implying that

max
q∈C

ωq
q0

,p∈B
Rp
p0

‖p‖ cos θq,p ≤ ‖p0‖+Rp. (12)

since there could be some query q∗ ∈ Cωq
q0 which is in the

same direction as p0, giving the maximum possible inner-
product.

For case (ii), let us assume that φ ≥ 0 without loss of gen-
erality. Then φ ≥ ωq. Continuing with the similar notation
as in theorem 3.1 & 4.1 for the best pair of points (q∗, p∗)
as well as the notation from figure 9, we can say that

|θp∗,q∗ | ≥ |φ− ωq − ωp| (13)

Since ωq is fixed, we can say that
max

q∈C
ωq
q0

,p∈B
Rp
p0

‖p‖ cos θq,p ≤ ‖p∗‖ cos θq∗,p∗ (by def.)

≤ ‖p∗‖ cos(φ− ωq − ωp).(14)

Expressing ‖p∗‖ and ωp in terms of ‖p0‖ , rp and θp, and
then subsequently maximizing over θp and using the fact
that rp ≤ Rp, we get that

max
q∈C

ωq
q0

,p∈B
Rp
p0

‖p‖ cos θq,p ≤ ‖p0‖ cos(φ− ωq) +Rp. (15)

Combining case (i) and (ii), we obtain equation 11.



Dataset Dimensions Reference set Query Set
Bio 74 210,409 75,000
Corel 32 27,749 10,000
Covertype 55 431,012 150,000
LCDM 3 10,777,216 6,000,000
LiveJournal 25,327 121,625 100,000
MNIST 786 60,000 10,000
MovieLens 51 3,706 6,040
Netflix 51 17,770 480,189
OptDigits 64 1,347 450
Pall7 7 100,841 100,841
Physics 78 112,500 37,500
PSF 2 3,056,092 3,056,092
SJ2 2 50,000 50,000
U-Random 20 700,000 300,000
Y!-Music 51 624,961 1,000,990

Table 1: Datasets used for evaluation

6. EXPERIMENTS AND RESULTS
In this section, we evaluate the efficiency of algorithms

5(SB – single ball tree) & 7. For the dual-tree algorithm,
we use the two variations – (i) the set of queries indexed
as a ball tree (DBB – dual ball-ball), (ii) the set of queries
indexed as a cone tree (DBC – dual ball-cone). We compare
our proposed algorithms to the linear search presented in
Alg. 3 (LS – linear search). We report the speedup7 of the
proposed algorithms over linear search. For the trees, the
leaf size N0 can be selected by cross-validation. However,
for our experiments, we choose a ad hoc value of N0 = 20
for all datasets to demonstrate the gain in efficiency without
any expensive cross-validation.
Datasets. We use a variety of datasets from different fields
of data mining. We use the following collaborative filtering
datasets: MovieLens [17], Netflix [3] and the Yahoo! Music
[12] datasets. For text data, we use the LiveJournal blog
moods data set [19]. We also use the MNIST digits dataset
[24] for evaluation. Three astronomy datasets, LCDM [27],
PSF and SJ2, are also considered. A synthetic data set (U-
Rand) of uniformly random points in 20 dimensions is used.
The rest of the datasets are widely used machine learning
data sets from the UCI machine learning repository [5]. The
details of the dataset sizes are presented in Table 18.
Tree construction times. The tree-building procedure is
extremely efficient. We present the tree construction times
in table 6 and contrast them with the runtime of the lin-
ear search algorithm. In the last column, we present the
ratio of the tree construction times with the runtimes of
Alg. 3. For the single ball and dual ball-ball algorithm, the
tree construction involves building one and two ball trees
respectively. For the dual ball-cone algorithm, the queries
are normalized to have unit length for convenience9. Fol-
lowing the query normalization, two trees are built. The
time required for query normalization is included in the con-
struction time. This accounts for the significant difference
between construction times for the dual ball-ball and the
dual ball-cone algorithm.
The numbers in the last column of table 6 (R) show how

small the construction times are with respect to the actual
linear search. The highest ratio is 0.15 for the OptDigits

7Speedup is defined as the ratio of the time taken by the linear
search and the time taken by the evaluated algorithm.
8For the collaborative filtering datasets, the references (the items)
and the queries (the users) are clearly defined. We randomly split
the datasets into queries (V ) and references (S) for the rest.
9This is because the query norms do not affect the answers.

Dataset SB DBB DBC LS R(%)
Bio 4.3 5.7 10.6 4,028 0.25
Corel 0.2 0.27 0.66 43 1.5
Covertype 5.5 7.2 14.8 14,885 0.1
LCDM 36.7 56.46 99.3 1,984,200 0.005
LiveJournal 2223 4073 4745 517,194 0.92
MNIST 8.06 9.1 11.38 817 1.5
MovieLens 0.03 0.08 0.27 4.62 6
Netflix 0.2 8.27 33.5 1,878 1.7
OptDigits 0.01 0.012 0.022 0.135 15
Pall7 0.26 0.52 1.4 364 0.4
Physics 2.33 3.0 5.8 1,114 0.5
PSF 9.06 18.1 34.95 282,514 0.01
SJ2 0.1 0.2 0.46 75 0.6
U-Rand 4.94 6.9 15.64 26,586 0.6
Y! Music 9.72 28.85 112.5 137,306 0.08

Table 2: Tree construction time (in seconds) contrasted

with the linear search time (in seconds).

Dataset SB DBB DBC
Bio 7,059.62 6.55 273.52
Corel 14.27 17.38 7.68
Covertype 927.51 10.05 773.34
LCDM 29,526 1,327 101,950
LiveJournal 8.36 1.59 15.45
MNIST 2.61 2.22 2.5
MovieLens 2.23 1.36 1.67
Netflix 1.98 1.92 1.84
OptDigits 1.13 1.10 1.10
Pall7 1,020 23.14 2,285
Physics 4.93 4.0 4.08
PSF 61,502 96,570 125,800
SJ2 544 190 767
U-Rand 3.76 3.18 3.28
Y!-Music 2.11 2.09 2.16

Table 3: Speedups over linear search for k = 1

dataset. This implies that any speedup over 1.18 at search
time is enough to compensate for the tree construction time.
For most of the datasets, this ratio is much lower. Moreover,
this tree building cost is a one time cost. Once the tree is
built, it can be used for searching the dataset multiple times.
Search efficiency. The speedups over linear search are
presented in Table 6. Overall, the speedup numbers vary
from as low as 1.13 for the OptDigits dataset to over 105 (4
orders of magnitude) for the LCDM and the PSF dataset.
An important thing to note here is that for datasets with low
speedup (below an order of magnitude) with the single ball
tree algorithm, the speedup numbers for all three algorithms
were pretty low and fairly comparable. However, even a
speedup of 2 is pretty significant in terms of absolute times.
For example, for the Yahoo! music dataset, a search speedup
of mere 2 with a tree construction time of 120 seconds gives
a saving of 19 hours of computation time. For most datasets
with a high value of speedup for single ball tree algorithm,
the speedups for the dual-tree algorithms are also very high.

There are three important things to note here. Firstly,
the dual-tree algorithms (Alg. 7) do not perform very well
if the single-tree algorithms (Alg. 5) does not have a high
speedup. This is mostly because the tree is unable to find
tight bounds and hence has to travel every branch. The
dual-tree scheme loosens the bound to amortize the traver-
sal cost over multiple queries. But if the bounds are bad for
algorithm 5, the bounds for the dual-tree are much worse.
Hence, the dual-tree algorithm does not show any significant
speedup. Secondly, the dual-tree algorithm (especially dual
ball-cone) starts outperforming the single-tree algorithm sig-
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Figure 11: Speedups over linear search for k = 1, 2, 5 & 10.

nificantly when the set of queries is really large. This is a
usual behavior for dual-tree algorithms. The query set has
to be large enough for the gains from the amortization of
query traversal of the reference tree (RTree) to outweigh the
computational cost of traversing the query-tree (QTree) it-
self. Finally, the dual-tree algorithm with ball trees for the
query set is generally significantly slower than the dual-tree
with a cone tree for the queries. There are possibly two
possible reasons for that – (i) The cones provide a tighter
indexing of the queries than balls. A single cone can be used
to index points in multiple balls which lie in the same di-
rection but have varying norms. (ii) The upper bound for
MIP(Q,T ) in equation 10 is fairly loose.
We also consider the general problem of obtaining the

points in the set S with the k highest inner-product with
the query q. This is analogous to the k-nearest neighbor
search problem. We present the speedups of our algorithms
over linear search for k = 1, 2, 5 & 10 in figure 11.

7. MAX-KERNEL OPERATION
WITH GENERAL KERNEL FUNCTIONS

In this section, we provide some discussion of how the
proposed algorithms might be applied in an inner-product
space without the explicit representation of the points in
the inner-product space. The inner-products are defined by
a kernel function K(q, p) = 〈ϕ(q), ϕ(p)〉.
The tree construction has to be modified to work in the

inner-product space. For a tree node T with the set of point
T.S, the mean in ϕ-space is defined as µ = 1

|T.S|

∑

p∈T.S ϕ(p).

However, µ might not have an explicit representation, but
it is possible to compute inner products with µ as follows:

〈µ, ϕ(q)〉 = 1

|T.S|
∑

p∈T.S

K(q, p).

However, this computation is possibly very expensive during
search time. Hence we propose picking the point in the ϕ-
space which is closest to the mean µ as the new center. So
the new center pc is given by:

pc = arg min
r∈T.S

K(r, r)− 2

|T.S|
∑

r′∈T.S

K(r′, r). (16)

This operation is quadratic in computation time, but is done
at the preprocessing phase to provide efficiency during the
search phase. Given this new center pc, the radius Rp of the
ball enclosing the set T.S in ϕ-space is given by:

R
2
p = max

r∈T.S
K(pc, pc) +K(r, r)− 2K(r, pc). (17)

With these definitions for the center and the radius, a ball
tree can be built in any ϕ-space using Algorithm 2. Given
a ball in ϕ-space, the equation 3 in theorem 3.1 becomes:

MIP(q, T ) = K(q, pc) +Rp

√

K(q, q). (18)

Computing this upper bound is equivalent to a single kernel
function evaluation (K(q, q) be pre-computed before search-
ing the tree). Using this upper bound, the tree-search algo-
rithm (Alg. 5) can be performed in any ϕ-space. We will
evaluate this method in the longer version of the paper.

Using the same principles, the dual-tree algorithm (Alg.
7) can also be applied to any ϕ-space. For the dual-tree
with ball-tree for the queries, the upper bound (eq. 7) on
the maximum inner-product between queries in node Q and
points in node T in theorem 4.1 is modified to:

K(qc, pc) +RpRq +Rp

√

K(qc, qc) +Rq

√

K(pc, pc), (19)

where pc and qc are the chosen ball centers in the ϕ-space
with radius Rp and Rq respectively.

For queries indexed in a cone-tree, the central axis of the
cone can be the point in the ϕ-space making the smallest
angle with the mean of the set in the ϕ-space. Since the
queries are supposed to be normalized in the ϕ-space, for a
query tree node Q, the mean of the set Q.S is supposed to

be µ = 1
|Q.S|

∑

q∈Q.S

ϕ(q)
‖ϕ(q)‖

. So the new central axis qc of

the cone is given by:

qc = arg max
q∈Q.S

∑

q′∈Q.S

K(q′,q)√
K(q′,q′)

√

K(r, r)
. (20)

Again, this computation is quadratic in the size of the dataset,
but provides efficiency during search time. The cosine of half



the aperture of the cone is now given by:

cosωq = min
q∈Q.S

K(qc, q)
√

K(qc, qc)K(q, q)
. (21)

The upper bound in theorem 5.1 for a cone-tree node Q of
queries and a ball-tree node T of reference points becomes:

√

K(pc, pc) cos({|φ| − ωq}+) +Rp, (22)
where φ is defined as:

cosφ =
K(pc, qc)

√

K(qc, qc)K(pc, pc)
.

This bound is very efficient to compute as it only requires
a single kernel function evaluation (the terms K(pc, pc) and
K(qc, qc) can be pre-computed and stored in the trees).

8. CONCLUSION
We consider the general problem of maximum inner-product

search and present three novel methods to solve this prob-
lem efficiently. We use the tree data structure and present
a branch-and-bound algorithm for maximum inner-product
search. We also present a dual tree algorithm for multiple
queries. We evaluate the proposed algorithms with a variety
of datasets and exhibit their computational efficiency.
A theoretical analyses of these proposed algorithms would

give us a better understanding of the computational effi-
ciency of these algorithms. A rigorous analysis of the run-
time for our algorithm would be part of our future work.
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