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ABSTRACT

Neural network-based methods have recently demonstrated state-of-the-art results
on image synthesis and super-resolution tasks, in particular by using variants of
generative adversarial networks (GANs) with supervised feature losses. Neverthe-
less, previous feature loss formulations rely on the availability of large auxiliary
classifier networks, and labeled datasets that enable such classifiers to be trained.
Furthermore, there has been comparatively little work to explore the applicability
of GAN-based methods to domains other than images and video. In this work we
explore a GAN-based method for audio processing, and develop a convolutional
neural network architecture to perform audio super-resolution. In addition to sev-
eral new architectural building blocks for audio processing, a key component of
our approach is the use of an autoencoder-based loss that enables training in the
GAN framework, with feature losses derived from unlabeled data. We explore
the impact of our architectural choices, and demonstrate significant improvements
over previous works in terms of both objective and perceptual quality.

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have become a cornerstone in modern solutions for
image and audio analysis. Such networks have excelled at supervised discrimination tasks, for
instance on ImageNet (Deng et al., 2009; Simonyan & Zisserman, 2014), where image classifier
networks are trained on a large corpus of labeled data. More recently, CNNs have successfully been
applied to data synthesis problems in the context of generative adversarial networks (GANs) (Good-
fellow et al., 2014). In the GAN framework, a neural network is used to synthesize new instances
from a modeled distribution, or resolve missing details given lossy observations. In the latter case,
the GANs have been shown to greatly improve reconstruction of fine texture details for images,
compared to standalone sample-space losses that result in overly smoothed outputs (Dosovitskiy &
Brox, 2016; Isola et al., 2017; Ledig et al., 2017). However, GANs are notoriously hard to train,
and the use of conventional sample-space objectives in conjunction with an adversarial loss either
de-stabilizes training, or results in outputs with significant artifacts (Figure 1).

To address the smoothness problem described above, previous works typically augment or replace
conventional sample-space losses with a feature loss (also called a perceptual loss) (Dosovitskiy
& Brox, 2016; Ledig et al., 2017; Johnson et al., 2016). Instead of distance in raw sample-space,
such feature losses reflect distance in terms of the feature maps of an auxiliary neural network.
While classifier-based feature losses are effective, they require either a pre-trained neural network
that is applicable to the problem domain (e.g., synthesizing images of cats), or a labeled dataset
that is amenable to training a relevant classifier. Training new classifiers for use in a feature loss
can be non-trivial for numerous reasons. Besides the difficulty of training large classifiers that are
commonly used for feature losses, such as VGG (Simonyan & Zisserman, 2014), creating a labeled
dataset that is sufficiently large and diverse is often infeasible.

In this work, we sidestep the difficulty of training auxiliary classifiers by developing a feature loss
that is unsupervised. In particular, we focus on an audio modeling task called super-resolution,
where the goal is to generate high-quality audio given down-sampled, low-resolution input. Inspired
by previous work on audio and image super-resolution, we develop a neural network architecture for

Audio samples available: https://mugandemo.github.io/mugandemo/
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Figure 1: (a) High-resolution, (b) low-resolution, (c) and super-resolution spectrograms. The super-
resolution spectrogram corresponds to audio generated by the GAN described in Section 3, trained
only with an adversarial loss and conventional L2 loss. Training tends to either diverge, or results in
audio with persistent high-frequency tones and alias-like artifacts.

end-to-end super-resolution that operates on raw audio. In addition to providing new algorithms to
model audio, our work suggests new techniques to improve GAN-based methods in other domains
such as images and video. Specifically, our contributions are as follows:

1. We formulate a new, general-purpose feature loss that is fully unsupervised and circumvents the
need for problematic classifier-based models.

2. We successfully adapt the adversarial framework for audio processing, and provide solutions to
previously unsolved problems associated with the application of GANs to audio.

3. We demonstrate our methods in an end-to-end architecture for audio super-resolution, with state-
of-the-art results on both speech and music tasks.

4. We analyze important architectural parameters of our model, and in particular discover
previously-unobserved behavior with effective receptive field sizes.

2 BACKGROUND & RELATED WORK

Audio super-resolution Audio super-resolution is the task of constructing a high-resolution audio
signal from a low-resolution signal that contains a fraction of the original samples. Concretely, given
a low-resolution sequence of audio samples xl = (x1/Rl

, . . . , xRlT/Rl
), we wish to synthesize a

high-resolution audio signal xh = (x1/Rh
, . . . , xRhT/Rh

), whereRl andRh are the sampling rates
of the low and high-resolution signals, respectively. We denoteR = Rh/Rl as the upsampling ratio,
which ranges from 2 to 6 in this work. Thus, the audio super-resolution problem is equivalent to
reconstructing the missing frequency content between frequencies Rl/2 and Rh/2.

There is a vast body of prior work on audio super-resolution in the signal and audio processing com-
munities under the term artificial bandwidth extension (Larsen & Aarts, 2004). Neural network-
based methods in this domain generally apply a DNN on top of hand-crafted features as part of
complex bandwidth extension systems (Liu et al., 2015; Abel & Fingscheidt, 2018). Gaussian mix-
ture and hidden Markov models have also been used (Bachhav et al., 2017; Tokuda et al., 2013), but
these methods generally perform worse compared to neural networks (Abel & Fingscheidt, 2018).
In contrast with the works above, our method does not rely on hand-crafted features (e.g., transfor-
mations or cepstrum coefficients), and is not specific to problems in speech modeling.

Audio modeling with neural networks Learning-based approaches for audio have also been ex-
plored in the largely in the context of representation learning, generative modeling, and text-to-
speech (TTS) systems. Unsupervised methods such as convolutional deep belief networks (Lee
et al., 2009) and bottleneck CNNs (Aytar et al., 2016) have been shown to learn useful representa-
tions from audio, such as phonemes and sound textures. Stacked autoencoders (Vincent et al., 2010)
and variational autoencoders (Kingma & Welling, 2014; Sonderby et al., 2016) have been used for
denoising, image generation, and music synthesis (Sarroff & Casey, 2014). Bottleneck-like CNNs
have also demonstrated significant improvements for audio super-resolution in supervised settings
compared to previous DNN and spline-based methods (Kuleshov et al., 2017). Donahue et al. (2018)
is among the first to develop methods for raw audio synthesis with GANs. Notably, Donahue et al.
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(2018) show that non-trivial modifications of GAN architectures are required to generative diverse
and plausible audio outputs. We build on the works above by developing a GAN framework for
audio super-resolution with an improved bottleneck-style generator, and show that leveraging repre-
sentations learned from unsupervised training greatly aid the super-resolution task. Autoregressive
probabilistic models have recently demonstrated state-of-the-art results for generation of music (En-
gel et al., 2017), general audio (van den Oord et al., 2016; Mehri et al., 2017), and for parametric TTS
systems (Sotelo et al., 2017). Several works have leveraged model distillation (van den Oord et al.,
2018; ClariNet, 2019)1 to mitigate the overhead of autoregressive methods, making them feasible for
real-time audio generation. In general, our work can be used to augment existing speech synthesis
systems, including those that employ autoregressive methods. For instance, the unsupervised feature
loss proposed in our work could be used as a drop-in replacement for the classifier-based feature loss
used by van den Oord et al. (2018). While we are not aware of any efforts that explore autoregressive
modeling for audio super-resolution, we believe it may be a promising future direction.

Generative adversarial networks for images Generative methods have been extensively ex-
plored for image generation and super-resolution. Building upon the original formulation of Good-
fellow et al. (2014), GANs have been continuously improved to generate plausible, high-fidelity
images (Radford et al., 2015; Denton et al., 2015; Berthelot et al., 2017; Karras et al., 2018). GAN
variants conditioned on class labels or object sketches have also demonstrated promising results on
tasks such as in-painting and style transfer (Mirza & Osindero, 2014; Isola et al., 2017).

3 METHOD

GANs for Super-Resolution GANs developed for super-resolution tasks have several important
differences compared to the original formulation of Goodfellow et al. (2014). When used to generate
new instances from a data distribution pdata, the generator (G) parameterized by θG learns the map-
ping to data space as G(z; θG), where z is a latent noise prior. The discriminator (D) parameterized
by θD then estimates the probability that G(z; θG) was drawn from pdata rather than the generator
distribution pg . In contrast, for super-resolution, G is no longer conditioned on noise and learns the
mapping to high-resolution data space ph as G(xl; θG), where xl is drawn from the low-resolution
data distribution pl. The task of D is to discriminate between samples from the high-resolution and
super-resolution (generator) distributions ph and pg , respectively. Since low-resolution data xl cor-
responds directly to a downsampled version of xh during training, we expect G(xl; θG) ≈ xh. G
and D are optimized according to the two-player minimax problem:

min
θG

max
θD

Exh∼ph(xh) [logD (xh; θD)] + Exl∼pl(xl) [log(1−D (G (xl; θG)))] (1)

This framework enables the joint optimization of two neural networks -G generates super-resolution
data with the goal of foolingD, andD is trained to distinguish between real and super-resolved data.
Thus, the GAN approach encouragesG to learn solutions that are hard to distinguish from real, high-
resolution datum.

Architecture overview MU-GAN (Multiscale U-net GAN) is composed of three models that all
operate on raw audio2 - a generator (G), discriminator (D), and convolutional autoencoder (A)
(Figure 2). The generator’s task is to learn the mapping between the low and high-resolution data
spaces, corresponding to signals xl and xh, respectively. The discriminator’s task is then to classify
whether presented data instances are real, or produced by the generator. In addition to G and D, the
autoencoder extracts perceptually-relevant features from both real and super-resolved data for use in
feature-space loss functions. The use of A is crucial in the GAN framework, as generators trained
solely on L2 or other sample-space losses suffer from training instability or output artifacts (Ledig
et al., 2017).

Multiscale convolutional layers In comparison to images, audio signals are inherently periodic
with time-scales on the order of 10’s to 100’s of samples. As a consequence, filters with very large

1
https://openreview.net/forum?id=HklY120cYm

2Data is encoded in 32-bit floating point format.
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Figure 2: Overview of the model architecture
and corresponding loss terms.
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Figure 3: Subpixel and superpixel layers for
increasing and decreasing spatial resolution,
respectively.
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Figure 4: Generator and discriminator models.

receptive fields are required to create high quality raw audio (Donahue et al., 2018; van den Oord
et al., 2016). Previous work with classifier models also suggests that varying the filter size within
a network helps capture information at multiple scales (Szegedy et al., 2015). Leveraging these
observations, we use a multiscale convolutional building block composed of concatenated 3x1, 9x1,
27x1, and 81x1 filters. In practice, and with a fixed number of parameters for a given layer, we
found that filters larger than 81x1 provided no additional benefit, while omitting large filter sizes
resulted in significantly degraded audio quality. We interpret the poor performance of small filters
as being a byproduct of their frequency selectivity; it is well known from signal processing theory
that the resolution of an FIR filter’s frequency response is proportional to the length of the filter.

Superpixel layers Recently, it has been shown that pooling and strided convolutions tend to induce
periodic “checkerboard” artifacts (Odena et al., 2016; Donahue et al., 2018). Shi et al. (2016) devel-
oped a subpixel layer to increase spatial resolution, and showed that it is less prone to checkerboard
artifacts. While the subpixel layer was subsequently adopted by several works (Kuleshov et al.,
2017), no efforts have evaluated the performance of the inverse operation for decreasing spatial res-
olution. Concretely, the inverse subpixel operator interleaves samples from the time dimension into
the channel dimension, and thus reduces the spatial resolution by an integer factor. We refer to this
simple inverse operation as a superpixel layer (Figure 3), and use it as a drop-in replacement for
strided convolution and pooling layers.

Generator network The high-level architecture for the generator network (Figure 4, top) is in-
spired by autoencoder-like U-net models (Ronneberger et al., 2015; Isola et al., 2017; Kuleshov
et al., 2017). In a U-net-style model, the first half of the network consists of B downsampling
blocks (D-blocks) that perform feature extraction at multiple scales and resolutions 3. The second
half the model consists of B upsampling blocks (U-blocks), which successively increase the spatial
resolution of the signal. We use multi-scale convolutional layers throughput the generator network,
and replace all strided convolutions with superpixel layers.

3Note that to have matching resolutions at the input and output ofG, the LR signal is first upsampled with a cubic spline.
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Discriminator network The discriminator (Figure 4, bottom) is used during training to differen-
tiate between real, high-resolution audio and super-resolved signals produced by the generator. Our
design is loosely based on the recommendations of Radford et al. (2015), and the image discrimina-
tor from Ledig et al. (2017). All discriminator activations are LeakyReLU (Maas et al., 2013) with
α = 0.2. As with the generator, we use multi-scale convolutions, and the superpixel layer described
above instead of strided convolutions to minimize artifacts in the loss gradients (Odena et al., 2016).

Autoencoder network The autoencoder A is used to extract perceptually relevant features from
the low and high-resolution signals. The features extracted by A are incorporated in the generator’s
feature loss Lf , which is described in more detail in following sections. For the specific imple-
mentation of A, we use a modified version of the generator model that excludes all additive and
stacking skip connections. Hence, the model for A is a convolutional autoencoder, augmented with
multiscale convolutional layers, and super/subpixel layers for down/up-sampling.

Loss functions MU-GAN incorporates several loss terms for training the generator and discrimi-
nator. The first term in the generator loss is the sample-space L2 loss, given by4

LL2 =
1

W

W∑
i=1

‖xh,i −G(xl)i‖22 . (2)

We found that using only the sample-space and adversarial losses either resulted in little to no
improvement over the baseline non-GAN model, or introduced persistent audible artifacts (e.g.,
high-frequency tones, Figure 1). These findings are in line with those of Ledig et al. (2017), who
experience similar issues with images 5. As described in Section 2, the use of a feature loss with
GAN training encourages the generator to learn solutions that incorporate perceptually relevant tex-
ture details. Given the autoencoder A, we denote the output feature tensor at the bottleneck of the
autoencoder as φ. The feature loss Lf is then given by

Lf =
1

CfWf

Cf∑
c=1

Wf∑
i=1

‖φ(xh)i,c − φ(G(xl))i,c‖22 , (3)

where Wf and Cf denote the width and channel dimensions for the feature maps of autoencoder
bottleneck. The adversarial loss Ladv is determined by discriminator’s ability to discern whether
data produced by the generator is real or fake. We use the gradient-friendly formulation originally
posed in Goodfellow et al. (2014), given by

Ladv = − logD(G(xl)). (4)

The composite loss LG for the generator is then given by the sum of the losses above, and the
discriminator loss LD derives directly from the GAN optimization objective in Equation 1, i.e.,

LG = LL2 + λfLf + λadvLadv, (5)

LD = − [logD(xh) + log(1−D(G(xl))] , (6)

where λf and λadv are constant scaling factors.

4 EXPERIMENTS

Datasets We evaluate our methods on three super-resolution tasks derived from the VCTK Corpus
(Yamagishi), and the non-vocal music dataset from Mehri et al. (2017). For speech from VCTK,
we compose a dataset with recordings from a single speaker (the Speaker1 task), and a dataset

4We write losses with respect to a single sample, with an implicit mean over the minibatch dimension.
5Ledig et al. (2017) posit that this poor performance is due to the competing nature of the adversarial and sample-space losses.
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with recordings from multiple speakers (the Speaker99 task). Speaker1 consists of the first 223
recordings from VCTK speaker 225 for training, and the final 8 recordings for testing. Speaker99
uses all recordings from the first 99 VCTK speakers for training, and recordings from the last 10
speakers for testing. Piano uses the standard 88%-6%-6% train/validation/test split. For all tasks,
the dataset is created by first applying an anti-aliasing lowpass filter, and then sampling random
patches of fixed length from the resulting audio. Note that for the sake of direct comparison, the
datasets above are the same as those used in Kuleshov et al. (2017).

Training methodology For Speaker1, we instantiate variants of MU-GAN and train for 400
epochs. For the larger datasets Speaker99 and Piano, models are trained for 150 epochs. The
epoch number is empirically selected based on observed convergence, and performance saturation
on the validation set. For all models, we use the ADAM optimizer with learning rate 1e-4, β1 = 0.9,
β2 = 0.999, and a batch size of 32. For the autoencoder feature losses, we instantiate a model
with L = 4, and train for 400 epochs on the same dataset as its associated GAN model. The loss
scaling factors λf and λadv are fixed at 1.0 and 0.001, respectively. Additional details on model
hyperparameters can be found in Appendix A.1.

Performance metrics We use three metrics to assess the quality of super-resolved audio:
(1) signal-to-noise ratio (SNR), (2) log-spectral distance (LSD), and (3) mean opinion score (MOS).
The SNR is a standard metric in signal processing communities, defined as

SNR (x, xref ) = 10 log10
‖xref‖22
‖x−xref‖22

, (7)

where x is an approximation of reference signal xref . LSD (Gray & Markel, 1976) measures dif-
ferences between signal frequencies, and has better correlation with perceptual quality compared to
SNR (Jie et al., 2014; Kuleshov et al., 2017). Given short-time discrete Fourier transforms X and
Xref , the LSD is given by

LSD (X,Xref ) =
1
W

∑W
w=1

√
1
K

∑N
k=1

(
log10

|X(w,k)|2
|Xref (w,k)|2

)2
, (8)

where w and k are the window and frequency bin indices, respectively6. Perceptual evaluation
of speech quality (PESQ) (ITU-T, 2001) is an industry-standard methodology for the assessment
of speech communication systems. Given reference and degraded audio signals, PESQ models the
mean opinion score (MOS) of a group of listeners. Specifically, we use PESQ to produce MOS-LQO
(listening quality objective) scores (ITU-T, 2003), which range from 1 to 5.

Impact of superpixel layers We find that the use of superpixel layers results in ∼14% improve-
ment in training time across model sizes, with insignificant differences in terms of objective quality
metrics. Differences in audio produced by the two methods were also imperceptible in informal self-
blinded listening tests. This indicates that superpixel layers may be a suitable replacement for con-
ventional strided convolutions, while offering improvements in training time without performance
loss. Additional details are provided in Appendix A.2.

Objective performance evaluation Table 1 shows the quantitative performance of MU-GAN
against other recent works. We denote MU-GAN8 as an instance of MU-GAN with a depth pa-
rameter of L = 8, i.e., with 8 downsampling and 8 upsampling blocks. U-net4 is the model with
L = 4 from Kuleshov et al. (2017). To eliminate depth as a factor in the performance comparison,
we reimplement the architecture from Kuleshov et al. (2017) with L = 8, denoted as U-net8.

Table 1 shows that MU-GAN8 often performs worse in terms of SNR compared to the baseline
models, but has lower LSD and higher MOS-LQO. This indicates that while MU-GAN8 produces
reconstructions with lower SNR, deviating in terms of sample-wise distance results in synthesis of
more perceptually-relevant frequency content. The exception is with the Piano task, where MU-
GAN8 performs orders of magnitude better than the U-net baseline in terms of SNR. In general, we

6We use non-overlapping Fourier transform windows of length 2048.

6



Under review as a conference paper at ICLR 2019

Table 1: Objective comparison with baseline super-resolution networks†.

Up. Ratio R = 2 Up. Ratio R = 4 Up. Ratio R = 6

U-net4 U-net8 MU-GAN8 U-net4 U-net8 MU-GAN8 U-net4 U-net8 MU-GAN8

Speaker1
SNR 21.1 21.94 21.40 17.1 18.68 17.72 14.4 14.85 13.98
LSD 3.2 2.24 1.63 3.6 2.34 1.92 3.4 2.92 1.95
MOS-LQO - 4.54 4.54 - 3.81 3.79 - 2.97 3.21

Speaker99
SNR 20.7 20.05 20.01 16.1 14.30 14.03 10.0 11.11 10.92
LSD 3.1 2.22 2.14 3.5 2.92 2.72 3.7 3.23 2.97
MOS-LQO - 3.68 3.75 - 2.68 2.93 - 2.44 2.69

Piano SNR 30.1 44.98 52.03 23.5 31.71 32.28 16.1 22.53 24.71
LSD 3.4 1.12 0.90 3.6 1.35 1.30 4.4 1.53 1.41

† Metrics for U-net4 are taken directly from Kuleshov et al. (2017); those for U-net8 are from our reimplementation.

Table 2: A/B test user study scores.

Piano Speaker99

#1 #2 #1 #2 #3 #4

MU-GAN8 9 15 14 11 15 10
U-net8 (baseline) 5 3 4 6 4 8
No preference 8 4 4 5 3 4

R = 4: Piano #1, Speaker99 #1, #3
R = 6: Piano #2, Speaker99 #2, #4

Table 3: Speaker1 objective metrics for MU-
GAN8 trained with the speech classifier-
based loss, and proposed loss (Lf,SV , Lf ).

R = 2 R = 4 R = 6

Lf,SV Lf Lf,SV Lf Lf,SV Lf
SNR 21.28 21.40 17.57 17.72 13.85 13.98
LSD 1.65 1.63 1.92 1.92 1.99 1.95
MOS-LQO 4.54 4.54 3.67 3.79 3.24 3.21

also find that performance on the speech tasks generally saturates atR = 2 for both U-net8 and MU-
GAN8. Informal listening tests confirm that there are minimal differences at R = 2, indicating that
more difficult up-sampling ratios (i.e.,R = 4, 6) are better suited for grounds of further comparison.

Subjective quality analysis To evaluate the performance of MU-GAN with real listeners, we per-
form a randomized, single-blinded user study with 22 participants (Table 2). The study presents pairs
of audio clips produced by MU-GAN8 and the best baseline model U-net8, and asks participants to
select a preferred clip, or “No preference.” We present two clips from Piano, and four sonically
diverse clips from Speaker99. Table 2 shows that in all cases, listeners prefer audio produced by
MU-GAN8 over the baseline method.

In general, we observe that audio produced by MU-GAN has greater clarity compared to audio pro-
duced by the baseline networks. The quality difference is most apparent during consonant sounds,
which have more high-frequency content compared to typical vowel sounds. For instance, in the
phrase “Ask her to bring these things from the store,” (Figure 5, bottom row) the consonant sounds
in ‘Ask,’ ‘things,’ and ‘store’ have noticeably better articulation. In contrast, audio from the best
baseline, U-net8, sounds relatively dull and “muffled” in comparison. Note that on some audio clips
super-resolved at R = 4, 6, we observe intermittent, audible noise that is not present in the baseline
reconstructions. To ensure a fair analysis, we include audio clips in the user study where this noise
is apparent. Additional comments on spurious noise can be found in Appendix A.3.

Comparison with classifier-based feature loss We compare the proposed unsupervised feature
loss with the classifier-based loss from Germain et al. (2018) 7. Germain et al. (2018) use a VGG-
based (Simonyan & Zisserman, 2014) network as a feature loss for speech denoising, and train the
loss network on classification and audio tagging tasks from DCASE 2016 (Mesaros et al., 2018). Ta-
ble 3 shows objective results obtained using the proposed loss Lf and the classifier-based lossLf,SV
on the Speaker1 task. Across all up-sampling ratios, the proposed unsupervised method performs
on-par (and slightly better in some cases) compared to the classifier-based loss. Thus, our results
suggest that using a domain-specific classifier-based loss may not provide any advantage in terms of
performance. Given the issues related to training classifier models on general audio (Section 1), our
method may be an attractive solution that does not compromise audio quality.

7The authors’ pre-trained classifier models are obtained from
https://github.com/francoisgermain/SpeechDenoisingWithDeepFeatureLosses
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(f)(e)(d)

(a) (b) (c)

Figure 5: Spectrograms from the Speaker1 task atR = 2 (top row, Speaker 225), and Speaker99 task
at R = 4 (bottom row, Speaker 360). (a-d) high-resolution, (b-e) super-resolved with U-net8, and
(c-f) super-resolved with MU-GAN8. Increased synthesis of high-frequency content by MU-GAN8
becomes more pronounced at difficult up-sampling ratios.

Table 4: MOS-LQO for ablated models on the Speaker1 task.

Configuration

Up. Ratio MU-GAN4
−Lf − Ladv

MU-GAN4
−Ladv(+Lf )

MU-GAN4
(+Ladv + Lf )

MU-GAN8
−Lf − Ladv

MU-GAN8
−Ladv(+Lf )

MU-GAN8
(+Ladv + Lf )

R = 2 3.53 4.54 4.54 4.54 4.54 4.54
R = 4 3.15 3.55 3.62 3.74 3.79 3.79
R = 6 2.78 3.07 3.12 3.15 3.17 3.21

Ablation Analysis Table 4 shows the MOS-LQO metrics for the MU-GAN architecture with ab-
lated model parameters. While almost all variations perform similarly well at R = 2, adding depth
(i.e., from L = 4 to L = 8) and additional loss terms improves performance on harder up-sampling
ratios. Furthermore, adding the adversarial loss and unsupervised feature loss terms improve MOS-
LQO monotonically. For MU-GAN8, we see diminishing returns from adding the additional loss
terms; much of the improvement over MU-GAN4 appears to come from the additional depth. On
the other hand, adding the Lf and Ladv losses to the MU-GAN4 variant yields significant bene-
fits, such that its performance is comparable to that of MU-GAN8. This indicates that the feature
and adversarial losses may be particularly useful to mitigate underfitting, or to decrease model size
iso-performance.

Receptive Field Analysis While previous works have stressed the importance of large receptive
fields (van den Oord et al., 2016; Luo et al., 2016; Yu & Koltun, 2016), little work exists to quantify
receptive field sizes on practical problems. We use the methods of Luo et al. (2016) to measure
the effective receptive field (ERF)8 of our model on different tasks with varying architectural hyper-
parameters. Notably, we find that while the theoretical receptive field of our network is on the order
of hundreds of milliseconds (thousands of samples), measured ERF’s are generally no wider than
100 samples. Furthermore, we find that ERF size is strongly correlated with problem difficulty,
rather than architectural hyperparameters such as depth and specific loss terms. While Luo et al.
(2016) found that ERF size always increased compared to the ERF at initialization, we find that
ERF decreases in many cases (Figure 6). Our findings imply that there may be subtle but important
tradeoffs involved with receptive field size (for instance, ERF size versus noise rejection), and sug-
gest promising avenues for deeper investigation of architectures that rely on large receptive fields.

8As in Luo et al. (2016), we define samples that lie within 2σ of the gradient-magnitude sample mean as “within-ERF.”
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Epoch 0

(a) (b) (c) (d)

Figure 6: Measured gradient magnitude at the model input and associated Gaussian fit with MU-
GAN4 for (a-c) R = 2, 4, 6, respectively. (d) 2σ ERF trend, compared to ERF at initialization.

5 CONCLUSION

In this work we develop methods to enable the application of GANs to audio processing, in particular
with classifier-free feature losses. In addition to several new model building blocks, we show that a
convolutional autoencoder can be used to implement a high-performance feature loss in the context
of audio super-resolution. Demonstrated on several speech and music super-resolution tasks, we
show that our architecture achieves state-of-the-art performance in both objective and subjective
metrics. We perform a detailed analysis of our model, and also show that effective receptive field size
may be an important property that is not well-explored. Finally, our work raises new possibilities for
the design and analysis of neural network-based synthesis methods in important problem domains
beyond audio processing.
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Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative model
for raw audio. CoRR, abs/1609.03499, 2016.

Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George van den Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, Nor-
man Casagrande, Dominik Grewe, Seb Noury, Sander Dieleman, Erich Elsen, Nal Kalchbrenner,
Heiga Zen, Alex Graves, Helen King, Tom Walters, Dan Belov, and Demis Hassabis. Parallel
WaveNet: Fast high-fidelity speech synthesis. In ICML, volume 80, pp. 3918–3926, 2018.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. JMLR, 11:3371–3408, 2010.

Junichi Yamagishi. CSTR VCTK corpus. http://homepages.inf.ed.ac.uk/
jyamagis/page3/page58/page58.html.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. ICLR,
abs/1511.07122, 2016.

11

http://distill.pub/2016/deconv-checkerboard
http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html


Under review as a conference paper at ICLR 2019

A APPENDIX

A.1 MODEL PARAMETERS

A.2 EVALUATION OF SUPERPIXEL LAYERS

We evaluate the impact of the superpixel layer proposed in Section 3 by comparing a baseline mul-
tiscale U-net with strided convolutions (Strided) against a multiscale U-net with superpixel layers
(Super). We halve the number of convolutional kernels in each downsampling layer for Super such
that the output feature map dimensions at each downsampling and upsampling layer are identical
to those in Strided. Both model types are trained with the baseline L2 loss for 400 epochs on the
Speaker1 task.

Table 5: Comparison of superpixel and strided convolutional layers.

(a) Training time per minibatch

Depth Parameter

L = 4 L = 8

Strided 149.8 s 195.1 s
Super 128.1 s 168.0 s
Speedup 14.5% 13.8%

(b) Quality metrics

Upsampling Ratio

R = 2 R = 4 R = 6

SNR Strided 21.67 18.45 14.91
Super 21.75 18.41 14.89

LSD Strided 1.67 2.20 2.73
Super 1.70 2.08 2.39

MOS-LQO Strided 3.57 3.13 2.71
Super 3.53 3.15 2.78

A.3 NOTE ON INTERMITTENT SPURIOUS NOISE

As described in Section 4, some audio clips super-resolved at R = 4, 6 exhibit intermittent, audible
noise that is not present in the baseline reconstructions. We find that this noise is not inherent to
our specific feature loss, and is present if we replace the unsupervised feature loss with a classifier-
based feature loss. The spurious noise is also unrelated to the use of Ladv , as it is present in audio
generated by models trained only with Lf . While a deeper investigation is planned for future work,
we hypothesize that such noise stems from phase ambiguity in missing high-frequency content.
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