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Reducing Distant Supervision Noise
with Maxpooled Attention and Sentence-Level Supervision
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Abstract

We propose an effective multitask learning
setup for reducing distant supervision noise
by leveraging sentence-level supervision. We
show how sentence-level supervision can be
used to improve the encoding of individual
sentences, and to learn which input sentences
are more likely to express the relationship be-
tween a pair of entities. We also introduce a
novel neural architecture for collecting signals
from multiple input sentences, which com-
bines the benefits of attention and maxpool-
ing. The proposed method increases AUC
by 10% (from 0.261 to 0.284), and outper-
forms recently published results on the FB-
NYT dataset.

1 Introduction

Early work in relation extraction from text used
fully supervised methods, e.g., Bunescu and
Mooney (2005), which motivated the development
of relatively small datasets with sentence-level an-
notations such as ACE 2004/2005, BioInfer and
SemEval 2010 Task 8. Recognizing the difficulty
of annotating text with relations, especially when
the number of relation types of interest is large,
Mintz et al. (2009) pioneered the distant super-
vision approach to relation extraction, where a
knowledge base (KB) and a text corpus are used
to automatically generate a large dataset of la-
beled sentences which is then used to train a re-
lation classifier. Distant supervision provides a
practical alternative to manual annotations, but in-
troduces many noisy examples. Although many
methods have been proposed to reduce the noise
in distantly supervised models for relation extrac-
tion (e.g., Hoffmann et al., 2011; Surdeanu et al.,
2012; Roth et al., 2013; Fan et al., 2014; Zeng
et al., 2015; Jiang et al., 2016; Liu et al., 2017),
a rather obvious approach has been understudied:

using sentence-level supervision to augment dis-
tant supervision. Intuitively, supervision at the
sentence-level can help reduce the noise in dis-
tantly supervised models by identifying which of
the input sentences for a given pair of entities are
likely to express a relation.

We experiment with a variety of model archi-
tectures to combine sentence- and bag-level su-
pervision and find it most effective to use the
sentence-level annotations to directly supervise
the sentence encoder component of the model in
a multi-task learning framework. We also intro-
duce a novel maxpooling attention architecture for
combining the evidence provided by different sen-
tences where the entity pair is mentioned, and use
the sentence-level annotations to supervise atten-
tion weights.

The contributions of this paper are as follows:

• We propose an effective multitask learning
setup for reducing distant supervision noise by
leveraging existing datasets of relations anno-
tated at the sentence level.

• We propose maxpooled attention, a neural ar-
chitecture which combines the benefits of max-
pooling and soft attention, and show that it helps
the model combine information about a pair of
entities from multiple sentences.

• We release our library for relation extraction as
open source.1

The following section defines the notation we use,
describes the problem and provides an overview of
our approach.

2 Overview

Our goal is to predict which relation types are ex-
pressed between a pair of entities (e1, e2), given

1We attach the anonymized code as supplemental material
in this submission instead of providing a github link in order
to maintain author anonymity.



2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

EMNLP 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

sentence encoder sentence encodersentence encoder

Sentence-level supervision Bag-level supervision

Entity 1 (e1) Entity 2 (e2) Relation type

Steve Jobs Apple founder_of

Steve Jobs Apple ceo_of

> Jobs and Wozniak co-founded Apple in 1976 to sell 
Wozniak's Apple I personal computer.

> Jobs and Apple co-founder Steve Wozniak are widely 
recognized as pioneers of the microcomputer revolution.

> Apple merged with NeXT in 1997, and Jobs became CEO of 
Apple within a few months.

> Jobs was forced out of Apple in 1985 after a 
long power struggle.

no_relation

sentence encoder

Bag encoder

<e1>Jobs</e1> was forced out 
of <e2>Apple</e2> in 1985 
after a long power struggle .

<e1>Jobs</e1> and Wozniak 
co-founded <e2>Apple</e2> in 
1976 to sell Wozniak 
's Apple I personal computer 
.

<e1>Jobs</e1> and <e2>Apple</e2> 
co-founder Steve Wozniak are 
widely recognized as pioneers of 
the microcomputer revolution . 

<e2>Apple</e2> merged with 
NeXT in 1997 , and 
<e1>Jobs</e1> became CEO 
of Apple within a few 
months . 

sentence
encoding P(e1~e2 | s)

0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

0

P(ri = true| e1, e2)

s

+
unlabeled 
sentences

KB
labeled sentences

Figure 1: An overview of our approach for augmenting distant supervision with sentence-level annotations. The
left side shows one sentence in the labeled data and how it is used to provide direct supervision for the sentence
encoder. The right side shows snippets of the text corpus and the knowledge base, which are then combined
to construct one training instance for the model, with a bag of three input sentences and two active relations:
‘founder of’ and ‘ceo of’.

all sentences in which both entities are mentioned
in a large collection of unlabeled documents.

Following previous work on distant supervi-
sion, we use known tuples (e1, r, e2) in a knowl-
edge base K to automatically annotate sentences
where both entities are mentioned. In particular,
we group all sentences s with one or more men-
tions of an entity pair e1 and e2 into a bag of sen-
tencesBe1,e2 , then automatically annotate this bag
with the set of relation types Ldistant = {r ∈ R :
(e1, r, e2) ∈ K}, where R is the set of relations
we are interested in. We use ‘positive instances’
to refer to cases where |L| > 0, and ‘negative in-
stances’ when |L| = 0.

In this paper, we leverage existing datasets with
sentence-level relation annotations in a similar do-
main, where each example consists of a token se-
quence s, token indexes for e1 and e2 in the se-
quence, and one relation type (or ‘no relation’).
Since the relation types annotated at the sentence
level may not correspond one-to-one to those in
the KB, we replace the relation label associated
with each sentence with a binary indicator. (1 in-
dicates that the sentence s expresses one of the re-
lationships of interest.) We do not require the en-
tities to match those in the KB either.

Fig. 1 illustrates how we modify neural archi-
tectures commonly used in distant supervision,
e.g., Lin et al. (2016); Liu et al. (2017) to effec-
tively incorporate sentence-level supervision. The
model consists of two components: 1) A sentence
encoder (displayed in blue) reads a sequence of

tokens and their relative distances from e1 and e2,
and outputs a vector s representing the sentence
encoding, as well as P (e1 ∼ e2 | s) represent-
ing the probability that the two entities are related
given this sentence. 2) The bag encoder (dis-
played in green) reads the encoding of each sen-
tence in the bag for the pair (e1, e2) and predicts
P (r = 1 | e1, e2), ∀r ∈ R.

We combine both bag-level (i.e., distant)
and sentence-level (i.e., direct) supervision in a
multi-task learning framework by minimizing the
weighted sum of the cross entropy losses for
P (e1 ∼ e2 | s) and P (r = 1 | e1, e2). By shar-
ing the parameters of sentence encoders used to
compute either loss, the sentence encoders become
less susceptible to the noisy bag labels. The bag
encoder also benefits from sentence-level supervi-
sion by using the supervised distribution P (e1 ∼
e2 | s) to decide the weight of each sentence in
the bag, using a novel architecture which we call
maxpooled attention.

3 Model

The model predicts a set of relation types
Lpred ⊂ R given a pair of entities e1, e2 and a bag
of sentences Be1,e2 . In this section, we first de-
scribe the sentence encoder part of the model (Fig-
ure 2, bottom), then describe the bag encoder (Fig-
ure 2, top), then we explain how the two types of
supervision are jointly used for training the model
end-to-end.



3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

EMNLP 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

3.1 Sentence Encoder Architecture
Given a sequence of words w1, . . . , w|s| in a sen-
tence s, a sentence encoder translates this se-
quence into a fixed length vector s.

Input Representation. The input representation
is illustrated graphically with a table at the bottom
of Figure 2. We map word token i in the sen-
tence wi to a pretrained word embedding vector
wi.2 Another crucial input signal is the position
of entity mentions in each sentence s ∈ Be1,e2 .
Following Zeng et al. (2014), we map the distance
between each word in the sentence and the entity
mentions3 to a small vector of learned parameters,
namely de1

i and de2
i .

Instead of randomly initializing position em-
beddings with mean = 0, we obtain notable per-
formance improvements by randomly initializing
all dimensions of the position embedding for dis-
tance d around the mean value d. Intuitively, this
makes it easier to learn useful parameters since the
embedding of similar distances (e.g., d = 10 and
d = 11) should be similar, without adding hard
constraints on how they should be related.

We find that adding a dropout layer with a small
probability (p = 0.1) before the sentence encoder
reduces overfitting and improves the results. To
summarize, the input layer for a sentence s is a
sequence of vectors:

vi = [wi;d
e1
i ;de2

i ], for i ∈ 1, . . . , |s|

Word Composition. Word composition is illus-
trated with the block CNN in the bottom part of
Figure 2, which represents a convolutional neu-
ral network (CNN) with multiple filter sizes. The
outputs of the maxpool operations for different fil-
ter sizes are concatenated then projected into a
smaller vector using one feed forward linear layer.

This is in contrast to previous work (Pennington
et al., 2014) which used Piecewise CNN (PCNN).
In PCNN, we convolve three segments of the sen-
tence separately: windows before the left entity,
windows inbetween the two entities and windows
after the right entity. Every split is maxpooled in-
dependently, then the three vectors are concate-
nated. The intuition is that this helps the model
put more emphasis on the middle segment which

2Following Lin et al. (2016), we do not update the word
embeddings while training the model.

3If an entity is mentioned more than once in the sentence,
we use the distance from the word to the closest entity men-
tion. Distances greater than 30 are mapped to the embedding
for distance = 30.

Jobs pos:0 pos:5
was pos:1 pos:4

forced pos:2 pos:3
out pos:3 pos:2
of pos:4 pos:1

Apple pos:5 pos:0
… … …

CNN

scalar mult.

ReLU

sigmoid

se
nt

 1
 e

nc
od

er

Jobs pos:0 pos:2
and pos:1 pos:1

Apple pos:2 pos:0
co-founder pos:3 pos:1

Steve pos:4 pos:2
Wozniak pos:5 pos:3

… … …

scalar mult.

maxpool

Jo
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Ap
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e

pointwise mult.

ReLUReLU

sigmoidsigmoid sigmoid

P(r1 | e1, e2) P(r2 | e1, e2) P(r3 | e1, e2)bag encoder

maxpooled 
attention

ReLU

sigmoid

ReLU

sigmoid

P(e1~e2|s1) = p P(e1~e2|s2)

CNN ReLU

sigmoid

se
nt

 2
 e

nc
od

er

s1

t

u1

s2

u2

g
m

Figure 2: Blue box is the sentence encoder, it maps
a sentence to a fixed length vector (CNN output) and
the probability it expresses a relation between e1 and
e2 (sigmoid output). Green box is the bag en-
coder, it takes encoded sentences and their weights
and produces a fixed length vector (maxpool output),
concatenates it with entity embeddings (pointwise
mult. output) then outputs a probability for each
relation type r. White boxes contain parameters that
the model learns while gray boxes do not have learn-
able parameters. Sentence-level annotations supervise
P (e1 ∼ e2 | s). Bag-level annotations supervise
P (r = 1 | e1, e2).

connects the two entities. As discussed later in
Section 4.2, we compare CNN and PCNN and find
the simpler CNN architecture works better.

Sentence encoding s is computed as follows:

cx = CNNx(v1, . . . ,v|s|), for x ∈ {2, 3, 4, 5}
s = W1 [c2; c3; c4; c5] + b1,

where CNNx is a standard convolutional neural
network with filter size x, W1 and b1 are model
parameters and s is the sentence encoding.

We feed the sentence encoding s into a ReLU
layer followed by a sigmoid layer with output size
1, representing P (e1 ∼ e2 | s), as illustrated in
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Figure 2 (bottom):

P (e1 ∼ e2 | s) = (1)

p = σ(W3ReLU(W2s+ b2) + b3),

where σ is the sigmoid function and
W2,b2,W3,b3 are model parameters.

3.2 Bag Encoder Architecture

Given a bag Be1,e2 of n ≥ 1 sentences, we com-
pute their encodings s1, . . . , sn as described ear-
lier and feed them into the bag encoder, which
is responsible for combining the information in
all sentence encodings and predict the probability
P (r = 1 | e1, e2),∀r ∈ R. The bag encoder also
makes use of p = P (e1 ∼ e2 | s) from Eq. 1
as an estimate of the degree to which sentence s
expresses the relation between e1 and e2.

Maxpooled Attention. To aggregate the sen-
tence encodings s1, . . . , sn into a fixed length vec-
tor that captures the important features in the bag,
Jiang et al. (2016) used maxpooling, while Lin
et al. (2016) used soft attention.

In this work, we propose maxpooled attention,
a new form of attention which combines some of
the characteristics of maxpooling and soft atten-
tion. Given the encoding sj and an unnormalized
weight uj for each sentence sj ∈ Be1,e2 , the bag
encoding g is a vector with the same dimensional-
ity as sj with the k-th element computed as:

gj [k] = maxj∈1,...,n{sj [k]× σ(uj)}.
Maxpooled attention has the same intuition of

soft attention; learning weights for sentences that
enable the model to focus on the important sen-
tences. However, maxpooled attention differs
from soft attention in two aspects.

The first is that every sentence sj is given a
probability that indicates how useful the sentence
is, independently of the other sentences. Notice
how this is different from soft attention where sen-
tences compete for probability mass, i.e., proba-
bilities must sum to 1. This is implemented in
maxpooled attention by normalizing the weight of
each sentence with a sigmoid function rather than
a softmax. This is a better fit for the task at hand
because the sentences are not competing. It also
makes the weights useful even when |Be1,e2 | = 1,
while soft attention will always normalize such
weights to 1.

The second difference between maxpooled at-
tention and soft attention is the use of weighted
maxpooling instead of weighted average. Max-

pooling is more effective for this task because it
can pick the useful features from different sen-
tences.

As shown in Figure 2, we do not directly use the
p from Eq. 1 as weight in maxpooled attention.
Instead, we found it useful to feed it into more
non-linearities. The unnormalized maxpooled at-
tention weight for sj is computed as:

uj = W7 ReLU(W6 p+ b6) + b7.

Entity Embeddings. Following Ji et al. (2017),
we use entity embeddings to improve our model
of relations in the distant supervision setting, al-
though our formulation is closer to that of Yang
et al. (2015) who used point-wise multiplication
of entity embeddings: m = e1 � e2, where � is
point-wise multiplication, and e1 and e2 are the
embeddings of e1 and e2, respectively. In order
to improve the coverage of entity embeddings, we
use pretrained GloVe vectors (Pennington et al.,
2014) (same embeddings used in the input layer).
For entities with multiple words, like “Steve Jobs”,
the vector for the entity is the average of the GloVe
vectors of its individual words. If the entity is ex-
pressed differently across sentences, we average
the vectors of the different mentions. As discussed
in Section 4.2, this leads to big improvement in the
results, and we believe there’s still big room for
improvement from having better representation for
entities. We feed the output m as additional input
to the last block of our model.

Output Layer. The final step is to use the bag
encoding g and the entity pair encoding m to pre-
dict a set of relations Lpred which is a standard
multilabel classification problem. We concatenate
g and m and feed them into a feedforward layer
with ReLU non-linearity, followed by a sigmoid
layer with an output size of |R|:

t = ReLU(W4[g;m] + b4)

P (r = 1 | e1, e2) = σ(W5t+ b5),

where r is a vector of Bernoulli variables each of
which corresponds to one of the relations in R.
This is the final output of the model.

3.3 Model Training

To train the model on the bag-level labels obtained
with distant supervision, we use binary cross-
entropy loss between the model predictions and
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the labels obtained with distant supervision, i.e.,

bag loss =
∑

Be1,e2

− logP (r = rdistant | e1, e2)

where rdistant[k] = 1 indicates that the tuple
(e1, rk, e2) is in the knowledge base.

In addition to the bag-level supervision com-
monly used in distant supervision, we also use
sentence-level annotations. One approach is to
create a bag of size 1 for each sentence-level an-
notation, and add the bags to those obtained with
distant supervision. However, this approach re-
quires mapping relations in the sentence-level an-
notations map to those in the KB.

Instead, we found that the best use of the su-
pervised data is to improve the model’s ability to
predict the the potential usefulness of a sentence
by using sentence-level annotations to help super-
vise the sentence encoder module. According to
our analysis of baseline models, distinguishing be-
tween positive and negative examples is the real
bottleneck. This supervision serves two purposes:
it improves our encoding of each sentence, and im-
proves the weights used by the maxpooled atten-
tion to decide which sentences should contribute
more to the bag encoding.

We maximize log loss of gold labels in the
sentence-level data D according to the model de-
scribed in Eq. 1:

sent loss =
∑

s,lgold∈D

− logP (l = lgold | s) (2)

where D consists of all the sentence-level annota-
tions in addition to all distantly-supervised nega-
tive examples.4

We jointly train the model on both types of su-
pervision. The model loss is a weighted sum of
the sentence-level and the bag-level losses:

loss =
1

λ+ 1
× bag loss +

λ

λ+ 1
× sent loss

where λ is a parameter that controls the contribu-
tion of each loss, tuned on a validation set.

4 Experiments

4.1 Data and Setup

This section discusses datasets, metrics, experi-
ment configurations and the models we are com-
paring with.

4We note that the distantly supervised negative examples
may still be noisy. However, given that relations tend to be
sparse, the noise to signal ratio is high.

Distantly Supervised Dataset. The FB-NYT
dataset5 introduced in Riedel et al. (2010) was
generated by aligning Freebase facts with The
New York Times articles. They used the arti-
cles of 2005 and 2006 for training, and 2007
for testing. Recent prior work (Lin et al., 2016;
Liu et al., 2017; Huang and Wang, 2017) changed
the original dataset and trained on articles except
2007 which were left for testing as in Riedel et al.
(2010). We use the modified dataset which was
made available by Lin et al. (2016).6

Train Test
Positive bags 16,625 1,950
Negative bags 236,811 94,917

Sentences 472,963 172,448

Fully Supervised Dataset. We get the sentence-
level supervision from the dataset by Angeli et al.
(2014) which was collected within their active
learning framework. We use sentences with the
relevant relations, which results in a dataset con-
sisting of 17,291 positive examples and 11,049
negative examples. It is important to mention that
there’s no overlap between the test set and the la-
beled examples in this dataset.7

Metrics. Prior works used precision-recall (PR)
curves to show their results on the FB-NYT
dataset. In this multilabel classification setting, all
model predictions for all relation types are sorted
by confidence from highest to lowest. Then apply-
ing different thresholds gives the points on the PR
curve. We use the area under the PR curve (AUC)
for early stopping and hyperparameter tuning.

Because we are interested in the high-precision
extractions, we focus on the high-precision low-
recall part of the PR curve. That is, in our experi-
ments, we only keep points on the PR curve with
recall below 0.4 which means that the largest pos-
sible value for AUC is 0.4.

Configurations. The FB-NYT dataset does not
have a validation set for hyper-parameter tuning
and early stopping. For these, Liu et al. (2017)
use the test set, and Lin et al. (2016) use 3-fold
cross validation. We use 90% of the training set
for training and keep the other 10% for validation.

The pretrained word embeddings we use are
300-dimensional GloVe vectors, trained on 42B
tokens. Since we do not update word embeddings

5http://iesl.cs.umass.edu/riedel/ecml/
6https://github.com/thunlp/NRE
7We will make this dataset available with the final draft.
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while training the model, our vocabulary may in-
clude any word which appears in the training, vali-
dation or test sets with frequency greater than two.
When a word with a hyphen (e.g., ‘five-star’) is not
in the GloVe vocabulary, we average the embed-
dings of its subcomponents. Otherwise, all OOV
words are assigned the same random vector (nor-
mal with mean 0 and standard deviation 0.05).

Our model is implemented using PyTorch and
AllenNLP (Gardner et al., 2017) and trained on
machines with P100 GPUs. Each run takes five
hours on average. We train for a large number of
epochs and use early stopping with patience = 3.
The batches of the two datasets are randomly shuf-
fled before every epoch. The optimizer we use is
Adam with its default PyTorch parameters. We run
every configuration three times with three differ-
ent random seeds then report the PR curve for the
run with the best validation (thresholded) AUC.
In the controlled experiments, we report the mean
and standard deviation of the AUC metric.

Compared Models. Our baseline for compari-
son is a model that is similar to what is described
in Section 3 with the following configurations. It
uses our approach for position embedding initial-
ization, encodes sentences using CNN, uses entity
embeddings, aggregate sentences using maxpool-
ing and does not use the sentence-level annota-
tion. Our best configuration adds the maxpooled
attention and the sentence-level annotations. We
also compare with existing models in the litera-
ture. The model by Lin et al. (2016) uses an atten-
tion mechanism that assigns weights to each sen-
tence followed by a weighted average of sentence
encodings. The model by Liu et al. (2017) extends
the model by Lin et al. (2016) by using soft labels
during training.

4.2 Results

Main Result. Figure 3 summarizes the main re-
sults of our experiments.8 The AUC of our base-
line (green) is comparable to that of Lin et al.
(2016) (blue), which verifies that we are build-
ing on a strong baseline. Adding maxpooled at-
tention and sentence-level supervision (i.e., the
full model, in red) substantially improves over the
baseline (green). The figure also illustrates that
our full model outperforms the strong baseline

8Results of Lin et al. (2016) and Liu et al. (2017) are
copied from their papers.
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Figure 3: Precision-recall curve comparing our base-
line and best configuration with the performance of ex-
isting models.

Configurations AUC
baseline 0.261 ± 0.004
− position embedding init. 0.223 ± 0.031
+ PCNN 0.229 ± 0.011
− entity embeddings 0.247 ± 0.002
+ attention 0.258 ± 0.014
+ maxpooled attention 0.271 ± 0.007

baseline + maxpooled att. 0.271 ± 0.007
+ additional bags 0.269 ± 0.001
+ sentence loss 0.284 ± 0.007

Table 1: The + and − signs indicate independent
changes to the baseline configuration.

of (Liu et al., 2017) in orange.9

We emphasize that the improved results re-
ported here conflate both additional supervision
and model improvements. Next, we report the
results of controlled experiments to quantify the
contribution of each modification in Table 1. The
first line in the table is the baseline model and con-
figuration described in the previous section and in
Figure 3, and the + and− signs indicate (indepen-
dent) additions to and removals from that configu-
ration, respectively.

Position Embedding Initialization. The sec-
ond line in Table 1 shows that removing the
distance-based initialization of position embed-
dings results in a large drop in AUC. We hypothe-
size that the position-based initialization reduces
the burden of finding optimal values for posi-
tion embeddings, without explicit constraints that
guarantee similar distances to have similar embed-
dings.

9Our results are also competitive with state of the art re-
sults in Ye et al. (2017), but we were not able to regenerate
the PR curves in their paper.
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Sentence Encoder. In the next line of Table 1,
we replace the simpler CNN in our baseline with
the more complex PCNN (Zeng et al., 2015). Both
encoders use filters of sizes 2, 3, 4 and 5. Table 1
shows that using CNN works markedly better than
PCNN which is in contrast to the findings of Zeng
et al. (2015). This could be due to the use of mul-
tiple filter sizes and to the improved representation
of entity positions in our model, which may obvi-
ate the need to have a separate encoding of each
segment in the sentence.

Entity Embeddings. The next line in Table 1
shows that entity embeddings (which are included
in the baseline model) provide valuable informa-
tion and help predict relations. This information
may encode entity type, entity compatibility with
each others and entity bias to participate in a re-
lation. Given that our entity embeddings are sim-
ple GloVe vectors, we believe there is still a large
room for improvement.

Sentence Aggregation We compare different
ways of aggregating sentences into a single vector
including maxpooling (baseline, originally pro-
posed in Jiang et al. (2016)), attention (Lin et al.,
2016) and our proposed maxpooled attention.10

Maxpooling works better than soft attention be-
cause it is better at picking out useful features
from multiple sentences, while attention can only
weight the whole representation of the sentence.
We hypothesize that our proposed maxpooled at-
tention works better than both because it combines
the soft attention’s ability to learn and use different
weights for different sentences, and the maxpool’s
ability to pick out useful features from multiple
sentence. Another advantage of maxpooled atten-
tion over attention is that it helps in cases where
bag size equals 1 because the softmax typically
used in attention results in a weight of 1 for the
sentence rendering that weight useless.

Sentence-Level Supervision The last three
lines in Table 1 compare different ways for us-
ing sentence-level annotations. The line “base-
line + maxpooled att.” is copied from the pre-

10Our reimplementation of Lin et al. (2016) attention dif-
fers from what was described in the paper. The unnormalized
attention weights of Lin et al. (2016) are oj = sj ×A× q
where sj is the sentence encoding, A is a diagonal matrix
and q is the query vector. We tried this but found that im-
plementing it as a feedforward layer with output size = 1
works better. The results in Table 1 are for the feedforward
implementation.

2^- 2^-1.0 2^0.0 2^1.0 2^2.0 2^3.0 2^4.0 2^5.0 2^6.0

0.255
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0.265
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0.285

0.290
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Average Precision

Figure 4: AUC at different λ. X-axis is log-scale.

vious line and is the basis for the following two
lines. In “additional bags,” we add the sentence-
level annotations as additional bags along with the
distantly supervised data. In “sentence loss,” we
use the method described in Section 3 for integrat-
ing sentence-level supervision. The results show
that simply adding the sentence-level supervised
data to the distantly supervised data as additional
bags has little effect on the performance. This
is probably because they change the distribution
of the training to differ from the test set. How-
ever, adding the sentence-level supervision follow-
ing our proposed multitask learning improves the
results considerably because it allows the model to
better filter noisy sentences.

Selecting Lambda. Although we did not spend
much time tuning hyperparameters, we made sure
to carefully tune λ (Equation 3) which balances
the contribution of the two losses. Early experi-
ments showed that sentence-level loss is typically
smaller than bag-level loss, so we experimented
with λ ∈ {0, 0.5, 1, 2, 4, 8, 16, 32, 64}. Figure 4
shows thresholded AUC for different values of λ,
where each point is the average of three runs. It
is clear that picking the right value for λ has a big
impact on the final result.

Qualitative Analysis. An example of a positive
bag is shown in Table 2. Our model, which in-
corporates sentence-level supervision, assigns the
most weight to the first sentence while the atten-
tion model assigns the most weight to the last sen-
tence (which is less informative for the relation be-
tween the two entities). Furthermore, the attention
model does not use the other two sentences be-
cause their weights are dominated by the weight of
the last sentence. We also found that the weights
from our model usually range between 0 and 0.08,
suggesting the relative values of the weights are
informative to the model, even when the absolute
values are small.
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Attention This work Sentences
0.00 0.029 You can line up along the route to cheer for the 32,000 riders, whose 42-mile trip will start in

battery park and end with a festival at Fort Wadsworth on Staten Island .
0.00 0.026 Gateway is a home to the nation’s oldest continuing operating lighthouse, Sandy Hook lighthouse,

built in 1764; Floyd Bennett field in Brooklyn, which was the city’s first municipal airfield; Fort
Wadsworth on Staten Island, which predates the revolutionary war.

0.99 0.027 home energy smart fair, gateway national recreation area, Fort Wadsworth visitor center, bay
street and school road, Staten Island.

Table 2: Weights assigned to sentences by the attention model and our best model. The attention model incorrectly
predicts no relation, while our model correctly predicts neighbourhood of for this bag.

5 Related Work

Distant Supervision. The term ‘distant supervi-
sion’ was coined by Mintz et al. (2009) who used
relation instances in a KB (Freebase, Bollacker
et al., 2008) to identify any sentence in a text cor-
pus where two related entities are mentioned, then
developed a classifier to predict the relation. Re-
searchers have since extended this approach for re-
lation extraction (e.g., Takamatsu et al., 2012; Min
et al., 2013; Riedel et al., 2013; Koch et al., 2014).

A key source of noise in distant supervision
is that sentences may mention two related enti-
ties without expressing the relation between them.
Hoffmann et al. (2011) used multi-instance learn-
ing to address this problem by developing a graph-
ical model for each entity pair which includes a
latent variable for each sentence to explicitly in-
dicate the relation expressed by that sentence, if
any. Our model can be viewed as an extension of
Hoffmann et al. (2011) where the sentence-bound
latent variables can also be directly supervised in
some of the training examples.

Neural Models for Distant Supervision. More
recently, neural models have been effectively used
to model textual relations (e.g., Hashimoto et al.,
2013; Zeng et al., 2014; Nguyen and Grishman,
2015). Focusing on distantly supervised models,
Zeng et al. (2015) proposed a neural implemen-
tation of multi-instance learning to leverage mul-
tiple sentences which mention an entity pair in
distantly supervised relation extraction. However,
their model picks only one sentence to represent
an entity pair, which wastes the information in the
neglected sentences. Jiang et al. (2016) addresses
this limitation by maxpooling the vector encod-
ings of all input sentences for a given entity pair.
Lin et al. (2016) independently proposed to use at-
tention to address the same limitation. Results in
Section 4.2 suggest that maxpooling is more ef-
fective than attention for multi-instance learning.
Ye et al. (2017) proposed a method for leveraging

dependencies between different relations in a pair-
wise ranking framework.

Sentence-Level Supervision. Despite the sub-
stantial amount of work on both fully supervised
and distantly supervised relation extraction, the
question of how to combine both signals has been
mostly ignored in the literature, with a few ex-
ceptions. Nguyen and Moschitti (2011) first man-
ually defined a mapping between relation types
in YAGO to compatible relation types in ACE
2004 (Doddington et al., 2004), then trained two
separate SVM models using the training portion
of ACE 2004 and the distantly supervised sen-
tences. Model predictions are then linearly com-
bined to make the final prediction. In contrast, we
use a neural model which combines both sources
of supervision in a multi-task learning framework
(Caruana, 1997). We also do not require a strict
mapping between the relation types of the KB and
those annotated at the sentence level. Another im-
portant distinction is the unit of prediction (at the
sentence level vs. at the entity pair level), each of
which has important practical applications. Also
related is Angeli et al. (2014) who used active
learning to improve the multi-instance multi-label
model of Surdeanu et al. (2012).

6 Conclusion

We propose two complementary methods to im-
prove performance and reduce noise in distantly
supervised relation extraction. The first is incor-
porating sentence-level supervision and the sec-
ond is maxpooled attention, a novel form of at-
tention. The sentence-level supervision improves
sentence encoding and provides supervision for
attention weights, while maxpooled attention ef-
fectively combines sentence encodings and their
weights into a bag encoding. Our experiments
show a 10% improvement in AUC (from 0.261
to 0.284) outperforming recently published results
on the FB-NYT dataset (Liu et al., 2017).
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