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ABSTRACT

Deep learning based approaches have been widely used in various urban spatio-
temporal forecasting problems, but most of them fail to account for the unsmooth-
ness issue of urban data in their architecture design, which significantly deterio-
rates their prediction performance. The aim of this paper is to develop a novel
clustered graph transformer framework that integrates both graph attention net-
work and transformer under an encoder-decoder architecture to address such un-
smoothness issue. Specifically, we propose two novel structural components to
refine the architectures of those existing deep learning models. In spatial domain,
we propose a gradient-based clustering method to distribute different feature ex-
tractors to regions in different contexts. In temporal domain, we propose to use
multi-view position encoding to address the periodicity and closeness of urban
time series data. Experiments on real datasets obtained from a ride-hailing busi-
ness show that our method can achieve 10%-25% improvement than many state-
of-the-art baselines.

1 INTRODUCTION

The aim of this paper is to use urban data to study spatio-temporal prediction problems, whose
goal is to forecast region-based spatial distribution in the future (Shi & Yeung, 2018; Wang et al.,
2019). Recently, region-based spatio-temporal forecasting has been extensively studied with var-
ious applications in traffic (Li et al., 2018b), ride-hailing services (Zhang et al., 2018; Li &
Zheng, 2019), environment (Liang et al., 2018), resources (Li & Zheng, 2019), and human flows
(Wang et al., 2019; Shi et al., 2020), among others. Such spatio-temporal forecasting is cru-
cial for various tasks, such as dispatching and pricing, in urban computing (Zheng et al., 2014).
Accurate spatiotemporal forecasting methods may not only lower the barrier for decision mak-
ing, but also improve the quality of various services including traffic management, transporta-
tion, and air quality management. However, achieving accurate prediction represents major chal-
lenges for many existing methods due to some difficulties in urban data, such as unsmoothness.
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Figure 1: An example of spa-
tial distribution for illustrating spa-
tial smoothness and unsmoothness,
where S1, S2 and S3 are smooth
function areas and U1, U2 and U3

are on their boundaries.

As an illustration, we will show throughout the paper that ur-
ban spatio-temporal prediction task suffers from not appropri-
ately handing spatial and temporal unsmoothness. Unsmooth-
ness is a common phenomenon in many spatial and/or tempo-
ral data sets. The observations in some locations/time-steps
differ substantially from the observations in their neighboring
locations/time-steps. For example, rush-hour traffic surge is
temporally unsmoothed, while it occurs in many regions in a
city. Figure 1 shows potential spatial unsmoothness due to
different points of interest. Specifically, S1, S2 and S3 de-
note business, residential, and recreational areas, respectively,
whereas U1, U2, and U3 are their boundaries. Traffic observa-
tions in the interior areas of S1, S2 and S3 may be quite close
to each other, whereas observations along U1, U2, and U3 may
have much larger variations. Figure 2 shows 24-hour tempo-
ral patterns in the spatial neighborhood of a selected smooth
region (2a) and a selected unsmooth region (2b). The temporal patterns for the smooth region are
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(a) The close neighborhood of a
smooth region (blue line)

(b) The close neighborhood of an
unsmooth region (blue line)

Figure 2: The 24-hour demand patterns of selected smooth and unsmooth regions (in blue lines) and
their close neighbors (in other colors). In Figure 2a, the target region and neighbor 2-4 are smooth
regions, while the neighbor 1 is an unsmooth region. In Figure 2b, the target region is an unsmooth
region. As shown in an interpretation in Section 4.3, the spatial learner assigns neighbor 1 in Figure
2a and target region in Figure 2b to the same cluster. Remaining regions in Figure 2a are assigned
to another cluster.

close to those of most of their closest neighbors except the region with yellow color 1 in terms of
shape and magnitude. The temporal patterns of the unsmooth region differ more significantly from
those in all his closest neighbors. Moreover, we also discover some sharp surge and drop patterns
in the unsmooth region. For more quantitative metrics for measuring unsmoothness, please refer to
Appendix A for details.

However, the attempt to handling unsmoothness is quite limited both at model and feature levels.
Many existing prediction methods share their spatial and temporal feature extractors universally
across all time-steps and/or all regions. Thus, it greatly limits the expressiveness of those prediction
methods, since they are greatly vulnerable to the presence of unsmoothness in urban data.

In this paper, we develop a novel Clustered Graph Transformer (CGT) framework by integrating
Graph Attention Network (GAT) (Veličković et al., 2018) with Transformer (Vaswani et al., 2017)
based on a unified attention encoder-decoder architecture (Bahdanau et al., 2015). The GAT and
Transformer are effective methods for spatial and temporal feature extraction based on attention
mechanism. To handle spatial unsmoothness, we develop a novel Clustered Graph Attention Net-
work (CGAT) by leveraging different graph attention kernels on different regions. The CGAT learns
clustering assignments for each region according to their temporal patterns so that regions with dif-
ferent temporal patterns are assigned with different spatial feature extractors. To handle temporal
unsmoothness, we propose additivity-preserved multi-view position encoding (MVPE) by charac-
terizing different kinds of temporal relationship including weekly or daily periodicity and temporal
closeness (Zhang et al., 2017). In summary, our major contributions are summarized as follows:

• To the best of our knowledge, CGT is the first of its kind in using graph attention network
with a transformer under an encoder-decoder architecture for long sequence spatiotemporal
forecasting.

• We propose to improve the expressiveness of spatial feature extraction using the clustering
technique. We also handle the temporal unsmoothness by using MVPE, which is a tailored
position encoding for urban computing.

• Compared with most existing baseline models, CGT achieves improvement ranging from
10% to 25% in spatiotemporal prediction on various tasks, datasets and cities. Error reduc-
tion on unsmooth areas dominates this improvement.

1Except region 1. Details are in section 4.3
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2 METHODOLOGY

We formalize the learning problem of urban spatiotemporal forecasting and introduce the CGT
framework to capture the spatial and temporal dependencies and unsmoothness of urban data.

2.1 URBAN SPATIOTEMPORAL FORECASTING

We consider urban spatiotemporal forecasting problems in a city. Suppose that the city can be
divided into V disjoint regions and we observe temporal information across T time intervals within
each region. Our spatio-temporal data is represented as a |V | × T matrix. As an example, we
consider taxi demand forecasting problem and each entry in the matrix represents the total number
of taxi orders inside a region within a specific time interval. Our prediction problem is formulated
as f : R|V |×Tx → R|V |×Ty such that we use the historical data within time period Tx to predict the
future trend in time period Ty , that is,

Xt−Tx+1:t = [Xt−Tx+1, . . . , Xt]
f(·)−−→ Xt+1:t+Ty = [Xt+1, . . . , Xt+Ty ]. (1)

Problem (1) is a one-step prediction problem as Ty = 1 and a multi-step prediction problem as
Ty > 1. We regard the whole city as a graph with V regions (or vertices), each of which has both
demand and supply numbers across T time intervals.
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Figure 3: The CGT framework overview. CGT is an encoder-decoder architecture. The encoder and
decoder consists of stacked CGATs and temporal attentions. The encoder and decoder are linked
with attention. The loss function contains the prediction error, as well as three regularizers to ensure
the efectiveness of clustering.

2.2 FRAMEWORK OVERVIEW

Figure 3 shows the overview of the CGT framework. The CGT is an encoder-decoder based ar-
chitecture. The clustered graph attention layers (CGAT) and temporal attention layers are stacked
alternately in the encoder and decoder. For prediction problem (1), the input tensor to encoder is
Xt−Tx+1:t. In the training phase, the whole target sequence Xt:t+Ty is input to the decoder and
the masked attention controls the visibility of target sequence in each step of decoding. The Xt

is used to initialize the decoder state at the initial decoding step. In the testing phase, at step Ts
(Ts ≤ Ty), the decoder input tensor is [Xt, X̂t+1:t+Ts

], where X̂ represents predicted values from
previous steps. The multi-view position encoding (MVPE) is added to input tensors in both encoder
and decoder.

Our key novel contribution in CGT lies in the design and use of CGAT and MVPE. On spatial
mode, CGAT integrates self-clustering and a set of graph attention kernels (GAT), which are used
for region clustering and spatial feature extraction, respectively. CGATs firstly generate soft clus-
tering assignment scores for regions according to their temporal pattern in the sampled period. The
cluster scores are used as the weights to apply different GATs to each region. On temporal mode,

3



Under review as a conference paper at ICLR 2020

we use multi-view position encoding (MVPE) to manually inject ordering information, periodicity
information, and closeness information to the model.

2.3 MULTI-VIEW POSITION ENCODING

We design a multi-view position encoding mechanism (MVPE) for urban computing. The position
encoding consists of five channels as follows. There are two channels for weekly periodicity given
by

PE1(x) = (1 + sin(2πx/7))/2 and PE2(x) = (1 + cos(2πx/7))/2.

There are two channels for daily periodicity given by

PE3(x) = (1 + sin(2πx))/2 and PE4(x) = (1 + cos(2πx))/2.

There is one channel for closeness given by

PE5(x) = exp(−ax2),

where x represents the temporal difference between a fixed timestep (e.g. the time t+1 in formula-
tion (1)) and a specific timestep in inputs or outputs.

The MVPE mechanism injects ordering information and relevance information to the temporal mod-
eling. First, MVPE provides unique identifiers for all time-steps in temporal sequences, which is
critical for non-recurrent to model sequences. Second, according to Zhang et al. (2016), the weekly
and daily periodicity, as well as closeness are considered to be highly important in modeling urban
time series. The periodicity channels provide constant crest/trough values for timesteps spanned
by an integer number of periods. The closeness channel provides a surging value for the nearby
timesteps. The model will be trained to make predictions according to different temporal relevance
to avoid making over-smoothing ones.

2.4 CLUSTERED GRAPH ATTENTION

We propose the clustered graph attention layer (CGAT) for spatial feature extraction. It learns differ-
ent graph attention kernels for different regions based on a gradient-based self-clustering assignment
such that different regions are treated differently in spatial dependency modeling.

First, a vertex-level soft-assignment to K clusters is learnt from the temporal pattern of each vertex:

C = σs(σr(XfWf )tWt), (2)

where C is the cluster assignment score for each vertex to K clusters. Wf and Wt are parameters
for linear layers on the feature mode and temporal mode, respectively, and σr and σs represent the
relu and softmax activation functions. The feature dimension of input tensor Xf is first squeezed
to 1 using Wf , in order to provide summarized temporal pattern at each vertex. The Wt is further
applied to the temporal pattern to calculate a K−dimensional cluster assignment score.

Second, we use cxi,k to denote the assignment score of C for assigning vertex xi to cluster k. Then,
C is used to re-weight the latent output by using K GATs as follows:

hxi
=

K∑
k=0

G(xi)cxi,k, (3)

where hxi is the summed output for a CGAT layer at vertex xi and Gθk(xi) is the output for each
GAT at vertex xi. We use the GAT defined by Veličković et al. (2018). The attention between two
vertex xi and xj is calculated as:

αi,j =
exp(σ(aT [Wxi||Wxj ]))∑

xm∈Nxi
exp(σ(aT [Wxi||Wxm]))

, (4)

where W and aT are network parameters, Nxi
represents the neighborhood of region xi, [·||·] is the

concatenation operation, and σ(·) is the Leakyrelu activation function. The aggregation function for
GAT is given by G(xi) = σ(

∑
xj∈Ni

αi,jWxj).
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2.5 TEMPORAL ATTENTION AND TRANSFORMER

The temporal features are extracted by adapting the multi-head attention model to the temporal mode
of spatio-temporal tensor (Vaswani et al., 2017). Detailed information is included in Appendix C.

2.6 OPTIMIZATION OBJECTIVE

The optimization objective of CGT consists of two major components. The first component is the
prediction error given by

Lpred = ||y − ŷ||2, (5)
where || · ||2 the standard L2 norm and ŷ and y are, respectively, the tensor of predicted values and
that of true values.

The second component consists of three constraints for obtaining a good vertex cluster schema C.
Let the clustering result C = (Cb,l,v,k) be a tensor of order (B,L, V,K), where B is the batch size,
L is the number of all CGAT layers, V is the number of vertices, and K is the cluster number. Thus,
Cb1,l1,·,· denotes a V × K matrix and Cb,l,v,· is a K × 1 vector. The three constraints including
consistency, purity, and diversity are summarized below.

• Consistency: The clustering assignment is generated through the temporal pattern of each
vertex such that C should be temporally (batch) invariant and layer invariant. The loss
function for ensuring consistency is defined as

Lc =
4

BL(B − 1)(L− 1)V 2

B−1∑
b1=1

B∑
b2=b1+1

L−1∑
l1=1

L∑
l2=l1+1

||Cb1,l1,·,· − Cb2,l2,·,·||22. (6)

• Purity: Ideally, each vertex should be only assigned to one cluster. The loss function for
encouraging purity is given by

Lp =
1

BLV

B∑
b=1

L∑
l=1

V∑
v=1

(1− ||Cb,l,v,·||22). (7)

• Diversity: To balance the cluster size, we define the loss function for ensuring diversity as
follows:

Ld =
1

BLV 2

B∑
b=1

L∑
l=1

||
V∑
v=1

Cb,l,v,·||22. (8)

The overall minimization goal is to minimize the following object function

L = Lpred + α(Lc + Lp + Ld), (9)

where α is a tuning parameter. It is worth noting that each batch consists of training snippets within
a continuous short period of time (e.g., several hours). Keeping the clusters stable by using above
regularizations allows to capture the short-term stability of urban time series data, while it does not
violate the daily or long-term variability. We verify this short-term stability feature in Appendix B.

2.7 APPLICATION-LEVEL ADAPTATIONS

Several state-of-the-art techniques need to be considered for improving our implementation and
evaluation on real-world applications. First, we construct a set of graphs G = {G1, G2, G3} as
the graph adjacency matrix, each of which represents region-wise distance, region-wise functional
similarity and region-wise road connectivity, respectively. It follows the idea of Geng et al. (2019)
in order to encode multiple region-wise relationships as multi-graphs for the better utilization of
auxiliary data. Second, following Child et al. (2019), we implement spatial atrous attention to
reduce the extra large spatial dimension in order to reduce the computational cost for CGATs.

Denoting atrous stride and atrous offset as s and a, the atrous version of eq.(4) is revised to be:

αi,j,g,s,a =
exp(σ(aTg [Wgxi||Wgxj ]))Is,a(j)∑

xm∈Nxi
exp(σ(aTg [Wgxi||Wgxm]))Is,a(m)

, (10)
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where aTg and Wg denote the feature transformation operation for graph g. Is,a(·) is a masking
function for atrous attention:

Is,a(j) =

{
1 if j mod s = a;
0 otherwise.

To cover all the regions, atrous-GAT needs to traverse a = 0, · · · , s − 1 by in-layer aggregation.
The aggregated atrous-GAT output under single graph g ∈ G is calculated as:

Gg(xi) = σ(

s−1∑
a=0

∑
xj∈Ni

αi,j,g,s,aWxj). (11)

Each GAT outputs an aggregated output over multi-graph given by G(xi) =
∑
g∈G Gg(xi)/|G|. The

regularizers in eq.(6)-(8) are calculated separately for multi-graph and finally averaged for calculat-
ing the loss.

3 RELATED WORK

3.1 SPATIOTEMPORAL DEEP LEARNING

There have been various ways to model the spatial and temporal dependencies with deep neural
networks. The combination of CNN and RNN is the most intuitive one (Yao et al., 2018; Zhang
et al., 2017; Wang et al., 2017; Liao et al., 2018; Rodrigues et al., 2019). However, CNN-based
architectures are unable to handle non-Euclidean region-wise relationships. The STMGCN (Geng
et al., 2019), DCRNN (Li et al., 2018b) and GCNN-DDGF (Lin et al., 2018) use ChebNet (Kipf &
Welling, 2017) and diffusion convolution to extract spatial features based on rather complex graph
representations. The graph attention network (Veličković et al., 2018) is the third generation of
spatial modeling, which has more complex structures for discovering region-wise relationships. The
ST-MetaNet (Pan et al., 2019) is a representative work of GAT with application in urban computing.
In temporal feature extraction, attention-based methods outperform RNNs in terms of both accuracy
and efficiency. The ASTGCN (Guo et al., 2019) is an attention-based model on both spatial and
temporal domains. The GeoMAN (Liang et al., 2018) further adapts the attention-based model to
encoder-decoder architecture for long sequence prediction. However, all existing methods neglect
the unsmoothness problem of urban data.

3.2 GRAPH NEURAL NETWORKS

The research works on graph neural networks could be summarized in several categories (Zhou
et al., 2018). Spectral graph convolution (Hammond et al., 2011; Kipf & Welling, 2017) defines
convolution operator by the eigen-decomposition of the graph laplacian, based on the graph spectral
theorem. Non-spectral graph convolution (Duvenaud et al., 2015; Atwood & Towsley, 2016; Hamil-
ton et al., 2017) directly operates the spatial domain by defining a set of neighborhood aggregation
and updating rules on vertex-level. Moreover, the gated GNN (Li et al., 2015) leverages the gat-
ing technique from LSTM, which provides more complex operations for neighborhood aggregation.
GAT (Veličković et al., 2018) is using attention mechanism to discover the vertex-wise similarities
in a graph. In urban computing, the intuition is confident that regions are strongly correlated. The
GAT might help to discover this intrinsic structure in the region-based spatial distribution.

3.3 VERTEX CLUSTERING AND GRAPH POOLING

Vertex clustering is a frequently used method for graph pooling (Ying et al., 2018), which is a
common technique migrated from computer vision. However, the intuition for graph pooling and
vertex clustering proposed in this work is different. Graph pooling is to reduce the number of vertices
such that vertices in each cluster are regarded sampled into one in the next layer. Downscaling the
graph layer would improve model generality and reduce computational cost. The vertex clustering
in our approach is to discover a set of vertices sharing similar patterns, which is used for better
feature extraction.
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3.4 HANDLING UNSMOOTHNESS IN MACHINE LEARNING

Non-local mean methods are proposed for image denoising and restoration by investigating the
pixel-level self-similarity in images. Buades et al. (2005) proposed to calculate pixel pair-wise sim-
ilarity within a large search window. The densities for noisy pixels are interpolated by those similar
pixels. Wang et al. (2018b),Liu et al. (2018) designed non-local neural networks to incorporate the
similar idea in deep learning. However, these non-local mean methods are applied to fix part of the
spatial distribution at corrupted areas, which is different from our problem formulation. In time se-
ries prediction, Ding et al. (2018) proposed a extreme-value loss (EVL) for extreme event prediction
in time series data. Compared with our method, EVL has no model-level effort to extract unsmooth
features from data, which totally relies on the success of optimization algorithm.

4 EXPERIMENTS

We conduct experiments on a demand/supply dataset for ride-hailing services in two cities A and
B 2 from Jun 2017 to Jun 2019. The demand data is the number of ride-hailing orders in each
region within each time interval. The supply data is the summation of online duration for all ride-
hailing drivers. The spatial and temporal distribution is sampled and aggregated into 1km×1km
map gridding and 30 minutes temporal sampling interval3. For both datasets, we cut off the long tail
on the 95th quantile and normalize them by min-max normalization. The duration of the dataset is
two years, where first 70% is used for training, 10% for validation, and remaining 20% for test. The
multi-graph G involves region-wise relationships including neighborhood, functional similarity, and
road connectivity, which are identical to those used in (Geng et al., 2019). The functional similarity
graph is binarized on 0.9 so that three graphs have almost equal graph sparsity4.

4.1 OVERALL PERFORMANCE

In this section, the encoder and decoder both stack 3 CABs and TABs alternately, with 16 hidden
states each. The default clustering number is 3, with atrous stride being equal to 2. The number
of heads in TAB multi-head attention is set to be 3. The network is optimized by using scheduled
Adam on PyTorch (Paszke et al., 2017).

We conduct both one-step prediction and multi-step prediction experiments. To avoid the long
sequence problem, which may exhaust computational resource, we sampled 10 input time-steps
for each output time-step Tk. The input time-steps include 3 closest time-steps (Tk−1, Tk−2, Tk−3),
2 from daily periodicity (Tk−48, Tk−96) and 1 from weekly periodicity (Tk−48∗7). For multi-step
prediction, the default output length is 8, the encoder input length is 27.

One-step prediction Multi-step prediction
Data Demand Supply Demand
City City A City B City A City B City A
HA 12.20 / 0.261 12.35 / 0.298 4.14 / 0.184 2.68 / 0.167 18.07 / 0.345
LR 10.61 / 0.247 10.08 / 0.288 3.22 / 0.148 2.12 / 0.143 14.31 / 0.286
XGBoost 10.28 / 0.233 10.25 / 0.268 3.12 / 0.146 2.07 / 0.140 13.03 / 0.240
m-DMVST 9.85 / 0.223 9.45 / 0.259 2.88 / 0.152 1.94 / 0.137 12.22 / 0.270
m-DCRNN 9.59 / 0.217 9.34 / 0.249 2.88 / 0.149 1.97 / 0.148 10.74 / 0.245
ST-MGCN 9.55 / 0.226 9.34 / 0.259 2.85 / 0.136 1.91 / 0.139 12.29 / 0.276
m-GeoMAN 9.97 / 0.232 9.86 / 0.291 2.94 / 0.145 2.00 / 0.138 11.29 / 0.259
m-ASTGCN 10.23 / 0.273 9.48 / 0.252 3.14 / 0.181 1.98 / 0.140 12.66 / 0.262
DST-GCNN 9.72 / 0.226 - - - -
m-GAT+RNN 9.54 / 0.224 - - - -
Our Method 7.29 / 0.209 7.66 / 0.232 2.66 / 0.131 1.73 / 0.124 7.49 / 0.185

Table 1: The error metrics (RMSE/MAPE) based on the demand-supply datasets in two cities.

2Anonymous for blind review.
3Designed according to industrial practices
4In city A, it is roughly 12000 edges for 1296 vertices.
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Baselines are built based on following research works. For the sake of information fairness, all deep
learning models are slightly revised to take in multiple graphs.

• HA, LR and XGBoost: Historical average, linear regression and XGBoost. The model pa-
rameters for LR and XGBoost are shared across space and time. XGBoost is implemented
using LightGBM (Ke et al., 2017).

• DMVST (Yao et al., 2018): a CNN-RNN based model. Region-wise relationships are
encoded as external inputs.

• DCRNN (Li et al., 2018b) and ST-MGCN (Geng et al., 2019): Both are GCN-RNN based
model for spatiotemporal feature extraction. DCRNN is based on encoder-decoder archi-
tecture for multi-step traffic prediction.

• GeoMAN (Liang et al., 2018): The spatial and temporal features are extracted by spatial
attention and RNN. It is based on the encoder-decoder architecture.

• ASTGCN (Guo et al., 2019): an attention-based model on spatial and temporal domain.
Spatiotemporal features are extracted using GCN and convolution. ASTGCN don’t have
position encoding.

• DST-GCNN 5(Wang et al., 2018a): A two stream framework for traffic prediction. The first
stream constructs dynamic affinity graph. The second stream use the graph and spatiotem-
poral convolution for feature extraction.

• GAT+RNN 5(Xu & Li, 2019): a GAT+RNN structure for traffic forecasting.

Table 1 summarizes the RMSEs and MAPEs of CGT and state-of-the-art baselines. There are few
observations from above experiment results. First, the proposed CGT model outperforms all base-
lines in all prediction tasks by a large margin. Second, all encoder-decoder based models, including
m-DCRNN, m-GeoMAN and CGT, perform well in all multi-step prediction tasks.

4.2 ABLATION STUDY AND PARAMETER TEST

In this section, we show the experiment results of CGT on the one-step demand prediction problem
in city A with varying model configurations to show the parameter effect. As shown by figure 4, the
optimal result is achieved when α = 0.1 and k = 3. Table 2 shows the model performance when
specific component is removed from CGT. The ablation study shows the significance of our novel
contribution.

Figure 4: Parameter test for the trade-off parameter α and number of clusters k.

Ablation
component MVPE Clustering MVPE and

Clustering
RMSE 8.69 9.87 10.11

Table 2: Ablation study for novel components

5Made-up experiment according to reviewer’s comments. Unfinished due to time limit.
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Spatial Our
model

Baseline
model

Error
reduction

0-50%
(smooth) 2.64 3.77 30%

50-75% 6.29 9.30 32%
75-100%

(unsmooth) 11.51 17.65 35%

Temporal Our
model

Baseline
model

Error
reduction

0-50%
(smooth) 3.54 4.68 24%

50-75% 7.08 9.98 29%
75-100%

(unsmooth) 10.98 16.83 35%

Table 3: Error reduction ratio on different quantiles of unsmoothness in spatial and temporal do-
mains.

4.3 MODEL INTERPRETATION

We claim that the prediction error is reduced due to more accurate predictions in spatial and temporal
unsmooth areas. To validate this, we explore the relationship between the unsmoothness and the
error reduction from a baseline model. The baseline model is designed by removing clustering
and MVPE from CGT. Figure 5 shows a positive relationship between unsmoothness and error
reduction. Table 3 shows the error reduction from the baseline model on different quantiles of
spatial and temporal unsmooth areas. Conclusions could be drawn that CGT could improve the
prediction performance, especially in spatial and temporal unsmooth areas by significant margins.

Figure 5: Error reduction and unsmoothness in spatial and temporal domains.

Above improvements on spatial mode may be caused by the effective clustering technique, which
applies different spatial kernels to regions with different patterns. Referring back to Figure 2, the
neighbor 1 (yellow line) in Figure 2a is an unsmooth point in the neighborhood. It is assigned to
the same cluster with the target region (blue line) in Figure 2b, which is also an unsmooth region.
The remaining regions in Figure 2a stay in the same cluster. According to above case study, the
temporal pattern for inner-cluster regions are similar, while the temporal pattern for intra-cluster
regions are diverse. It is sensible to apply a shared operator to target regions in a single cluster,
since the relationship between target regions and their neighbors are more stable within a cluster.
However, applying one smoothing operator to different clusters does not work very well, since it
may introduce some artifacts. In conclusion, discriminating smooth and unsmooth patterns may
greatly improve the local spatial feature extraction.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed Clustered Graph-Transformer for spatiotemporal prediction problems
in urban computing. To handle the spatial and temporal unsmoothness problem, we use a gradient-
based clustering technique in GAT to construct spatial feature extractor. We use MVPE and attention
to handle temporal unsmoothness by providing a urban-specific temporal encoding to the temporal
mode. The experiment has shown the effectiveness of the proposed model. In the future, we plan
to explore long seq2seq problem using atrous transformer (Child et al., 2019) as well as explore the
explanation for the attention and clustering assignments.
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A PRELIMINARY ANALYSIS

In this section, we conduct a preliminary error analysis for a baseline GNN+RNN based model on
spatial and temporal unsmooth areas in order to prove our assumptions and motivate our design
methodology.

Figure 6: The averaged 24 hour tempo-
ral pattern for regions in each cluster,
shaded within 1 standard deviation.

For input spatial temporal signal X , denote Xs and Xt

as its spatial and temporal modes, respectively, and L as
the graph laplacian matrix for spatial distribution. The L
is the loss metric. The spatial and temporal unsmooth-
nesses could be represented by the difference between a
convoluted value and its true value. We define the spatial
convolution kernel as αL, which is a linear combination
of the features from all neighboring locations. The tem-
poral convolution kernel is defined as Wt∗, which is a 1d
convolution along temporal mode. The spatial and tempo-
ral unsmoothnesses are calculated as φs = L(X,αLXs)
and φt = L(X,Wt ∗ Xt), respectively. The α and Wt

are optimized using the same training set as the baseline
model. Spatial and temporal areas with larger unsmooth-
ness means that they are hard to be represented by using
a linear combination of observations in neighboring locations.

(a) Positive relationship between spatial unsmoothness
(X) and prediction error (Y) for the baseline model.

(b) Positive relationship between temporal unsmooth-
ness (X) and prediction error (Y) for the baseline model.

Figure 7: Baseline prediction error and unsmoothness

Figure 7 shows the positive relationship between baseline prediction error and spatial/temporal un-
smoothness. There are several reasons for this. First, the expressiveness of GNNs are limited. Using
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ChebNet as an example, it treats all neighbors in one convolution kernel homogeneously and shares
its weighted transformation on feature dimension to all neighboring vertices. Thus, ChebNet lacks
discriminativity within the neighborhood. Li et al. (2018a) also proves that the usage of laplacian
smoothing will cause serious problem in deep-stacked GCN models. Second, spatial feature ex-
tractors are shared among all regions, that is, it is assumed that spatial feature extraction rule is
universally applied to the whole city. In Figure 6, we clustered the regions in the city into 5 clusters
according to their similarities by using DTW (Senin, 2008) of temporal pattern in a short snippet and
print averaged 24 hour temporal pattern for them. The clustering result shows that the magnitudes
for regions from different clusters are different with high confidence. The overall temporal patterns
for different clusters are quite diverse.

B LOCAL STABILITY ON THE TEMPORAL MODE

In this section, we prove in details that the temporal patterns are stable within each batch, compared
with its large variation across the whole dataset. The average value for batch-level standard deviation
on temporal mode is 658.57. The standard-deviation on temporal mode for the whole dataset is
1074.84, which is significantly larger. The batch-size is the same with our experiment setting.

C CALCULATION FOR TEMPORAL ATTENTION IN TRANSFORMER

The temporal attention is calculated as follows:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V,

where QKT is a self-attention to represent relationships among different time-steps. Such relation-
ship is further applied on V by transforming its temporal mode.

The feed forward layer is a linear transformation on the feature mode as follows:

Hffn(X) = σr(XfWf ).

In encoder, the self-attention is used to discover temporal dependencies in the latent feature vector
h such that the attention is defined as

Q = hWq,K = hWk, and V = hWv. (12)

In decoder, the self-attention performs similarly, but a mask is applied on the input sequence so
that the feature extraction at time t could not view the temporal features later than it. The mask is
implemented by an upper triangular matrix. The encoder-decoder attention transforms the temporal
mode of decoder latent feature based on temporal dependencies from the encoder as follows:

Q = hencWq,K = hencWk, and V = hWv, (13)

where h is the decoder latent feature vector from previous decoder layers and henc is the encoder
feature vector which denotes the encoder state. In this application, the initial state for the decoder
input sequence (target sequence) is copied from the last time-step of the input sequence.

D VISUALIZATION FOR PERFORMANCE ON TEMPORAL UNSMOOTHNESS

Figure 8 shows the comparison between ground truth and machine learning models based on 24-
hour ride-hailing demand values in selected regions. According to the visualization, CGT model is
more close to ground truth, especially in those temporal unsmoothed areas.
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Figure 8: Plot 24-hour region demand values to compare ground truth with prediction result of CGT
and baseline
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