Under review as a conference paper at ICLR 2019

USING GANS FOR GENERATION OF REALISTIC
CITY-SCALE RIDE SHARING/HAILING DATA SETS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper focuses on the synthetic generation of human mobility data in urban
areas. We present a novel and scalable application of Generative Adversarial Net-
works (GANs) for modeling and generating human mobility data. We leverage
actual ride requests from ride sharing/hailing services from four major cities in
the US to train our GANs model. Our model captures the spatial and temporal
variability of the ride-request patterns observed for all four cities on any typical
day and over any typical week. Previous works have succinctly characterized the
spatial and temporal properties of human mobility data sets using the fractal di-
mensionality and the densification power law, respectively, which we utilize to
validate our GANs-generated synthetic data sets. Such synthetic data sets can
avoid privacy concerns and be extremely useful for researchers and policy makers
on urban mobility and intelligent transportation systems.

1 INTRODUCTION

Ride sharing or hailing services have disrupted urban transportation in hundreds of cities around
the globe (Times, 2018}, |(Cohen & Kietzmann| [2014). In United States, it has been estimated that
between 24% to 43% of the population have used ride-sharing services in 2018 (Recode, [2018al).
Uber alone operates in more than 600 cities around the globe (Recode,2018b). Ride sharing services
have turned urban transportation into a convenient utility (available any place at any time), and
become an important part of the economy in large urban areas (Hahn & Metcalfel 2017).

Ride request data from ride sharing services can potentially be of great value. Data gathered from
ride sharing services could be used to provide insights about traffic and human mobility patterns
which are essential for intelligent transportation systems. Ride requests in major cities with high
penetration by such services exhibit spatial and temporal variability. Modeling of such variability
is a challenging problem for researchers. Moreover, there are still unresolved challenges, such
as: optimal algorithms for dynamic pooling of ride requests (Chen et al., [2017), real-time pre-
placement of vehicles (Jauhri et al.,[2017b)), and city scale traffic congestion prediction (Maystre &
Grossglauser, 2016) and avoidance. Access to large amount of actual ride request data is essential
to understanding and addressing these challenges.

Data from ride sharing services have been used for real-time sensing and analytics to yield insights
on human mobility patterns (Song et al., [2010; Jauhri et al.| |2017a). Each city exhibits a different
pattern of urban mobility — there could be cultural or economical factors governing these patterns. If
ride sharing services constitute a significant percentage of the riders in a city, can we build models
from ride request data to model urban mobility for the whole city and provide societal benefit with-
out compromising personal privacy? This question motivates us to explore the potential of using
Generative Adversarial Networks (GANs) to generate synthetic ride request data sets that exhibit
very similar attributes as the actual ride request data sets.

This work proposes a novel approach of generating synthetic ride request data sets using GANS.
This approach involves viewing ride requests as a (temporal) sequence of (spatial) images of ride
request locations. The approach uses GANs to match the properties of the synthetic data sets with
that of real ride request data sets. Many recent works using neural networks have looked at demand
prediction (Yao et al., [2018b; |[Zhou et al., [2018)) and traffic prediction at intersections (Yao et al.|
2018a)). In our work, we are looking at generating actual ride requests for both spatially and tem-
porally granular intervals. Also, we compare and validate the spatial and temporal variations of the

Under review as a conference paper at ICLR 2019

(a) 6pm (b) 9pm (c) 12am (d) 3am

Figure 1: Ride requests for a small region of downtown San Francisco for a typical week day. Each
figure shows the aggregated ride-locations (red dots) over a period of an hour. Each red dot may
represent one or more ride-locations. Ride density varies spatially and temporally.

synthetic data sets with the real data sets. In dealing with large amount of data for many cities and
long training times for GANs, we develop effective ways to parallelize and scale our GANS training
runs using large CPU clusters on AWS. We present our GANs scaling approach and experimental
results, and show that significant reduction in training times can be achieved.

2 DATA SETS FROM RIDE SHARING SERVICES

In this section, we introduce the actual (real) ride request data sets used for our GANs training and
evaluation. We use the real data sets to compare with and validate the GANs generated synthetic
data sets.

Our real ride request data sets consist of all the ride requests for an entire week for the four cities.
There is a strong repeating pattern from week to week as shown in Figure[2] Hence the week-long
data should be quite representative. For all four cities, the ride sharing services have significant
penetration. Hence we believe the ride request data sets also reflect the overall urban mobility
patterns for these cities.

2.1 RIDE REQUESTS

Our real data sets are actual ride requests for four cities over one week period from ride sharing
services operating in the United States. Each ride request in the data set includes: request time and
pickup location (latitude & longitude), and drop-off time and location (latitude & longitude). For
this work we focus on ride request time and pickup location for generating pickup locations; and
ride request time and drop-off location to generate drop-off locations. After training independent
GANs models for pickup and drop-off locations, we generate synthetic locations using GANs and
leverage graph generator approach (Easley & Kleinberg), 2010} Jauhri et al.,[2017a)) to pair all pickup
and drop-off locations to obtain synthetic ride requests. The trajectory or optimal route for a ride is
not within the scope of this work.

For the rest of the paper, we will use the term ride-locations to refer to both pickup and drop-off
locations wherever they can be used interchangeably.

We do temporal and spatial quantization of the raw ride request data from ride sharing services. We
partition the entire week into 2016 time intervals of 5 minutes each, and lump together all the ride
requests within each interval. We partition spatially the area of the entire city into small squares
with side length, €, of 50 meters, and lump together all the ride-locations occurring within the same
square area. Each square area is then represented by a single pixel in a 2-D image with the gray
scale intensity of the pixel reflecting the number of ride-locations in that square area (in a time
interval). Occurrence of no ride-locations in an area is denoted by zero pixel intensity; positive
integers (1, 2, 3, .. .) as pixel intensity denote the number of ride-locations in the square area.

Combining the temporal and spatial quantizations, the real ride request data set for each city becomes
a time sequence of images with each image spatially capturing all the ride requests occurring in a
particular 5-min interval.

Under review as a conference paper at ICLR 2019

— Week 1
- - Week?2

volume of ride requests
volume of ride requests

L L 1 1 1 L L 1 1 1 1
Spm, Fri_ 5pm, Sat _ 5pm, Sun _ 5pm, Mon 5pm, Tue 5pm, Wed 5pm, Thur Spm, Fri__ 5pm, Sat _ 5pm, Sun _ 5pm, Mon 5pm, Tue 5pm, Wed 5pm, Thur

time time

(a) San Francisco (b) Los Angeles

Figure 2: Weekly ridership (y-axis) pattern of ride requests.

2.2 SPATIAL AND TEMPORAL PATTERNS

The actual ride requests in every city exhibit distinct patterns of variability in both the spatial dimen-
sion (over geographical area of the city) and the temporal dimension (over each day and over each
week). In Figure[T] this variability is illustrated. The ride request density is at its highest at 6pm, and
continually decreases over time till 3am. Spatially there are dense patches of ride requests and these
dense patches can shift with time, reflecting shifting concentrations of commuters in different areas
at different times of day. We observe similar repeating patterns of temporal and spatial variability
for all four cities.

Previous works have been able to characterize these temporal and spatial variability patterns (Jauhri
et al.,|2017a). A graph can be used to model the ride requests within a 5-min interval, with nodes
representing pickup and drop off locations and a directed edge connecting the pickup node and the
drop-off node. It was shown in (Jauhri et al.,[2017a) that the size and density of this Ride Request
Graph (RRG) evolves in time in response to the fluctuation of ride requests during each day and
through out each week.

It was observed that these ride request graphs exhibit and obey the Densification Power Law (DPL)
property, similar to other graphs modeling human behaviors such as social networking graphs and
publication citation graphs (Leskovec et al., [2005). It was further observed that the ride request
graphs for each city exhibit a distinct degree or exponent of the DPL, and that this DPL Exponent
(o) can be viewed as a very succinct quantitative characterization of the temporal variability of the
ride request patterns for that city. For any time snapshot ¢:

e(t) x n(t)” (1)

where e(t) and n(t) are the number of edges and number of nodes respectively, formed by all ride
requests occurring in the time interval ¢. Edge weight denote the number of requests from the same
source (pickup) to destination (drop-off) nodes in time snapshot ¢. The number of edges grows
according to a specific exponential power («) of the number of nodes.

There is also a comparable quantitative characterization of the spatial variability of the ride request
patterns for each city. The actual geographical locations of the nodes of the ride request graphs
is not explicitly represented and therefore another characterization is needed. Correlation Fractal
Dimension (Schroeder, 2009; Belussi & Faloutsos, |1998) provides a succinct description of a k-
dimensional point-set to provide statistics about the distribution of points; it provides a quantitative
measure of self-similarity. The spatial distribution of ride requests in each time interval can be
viewed as a point-set image. We can measure the Correlation Fractal Dimension (D3) as described
in (Jauhri et al., 2017b). Values for correlation fractal dimension computed for each time snapshot
t fall within a range for each city indicating the degree of self-similarity, and the consistent weekly
pattern. For our 2-dimenional space, we impose a 2D-grid with square of side ¢ El For the i-th
square, let C, ; be the count of requests in each square. The correlation fractal dimension is defined

"Each node covers a geographical region of a square of length e. Nodes within which no ride requests occur
are not considered in the graph.
%¢ parameter is equivalent to the square length for representing a node in the Ride Request Graph.

Under review as a conference paper at ICLR 2019

as:

Olo C2,
y = ;%;6” = constant € € (e1,€2))

For self-similar data sets, we expect the derivative to be constant for a certain range of ¢ (Traina Jr
et al., 2010). We observe that this range varies for our four cities, and each city exhibits a distinct
value range for its correlation fractal dimension (D2).

We use the Densification Power Law Exponent () and the Correlation Fractal Dimension (D3)
to capture and characterize the temporal and spatial variability, respectively, for the ride request
patterns for each city. RRG created for every time snapshot captures ridership fluctuations over
time; nodes in a RRG do not encode any spatial information. Therefore, we compute Correlation
Fractal Dimension for each time snapshot to capture the spatial distribution of both pickup and drop-
off locations. The temporal evolution, and spatial distribution at any give time snapshot capture the
dynamics of ride requests. We use these two parameters independently to confirm the similarity
between the real data sets and the GANs generated synthetic data sets. We can claim strong similarity
if the values of these two parameters (o and D5) of the synthetic data sets match closely the values
of the same two parameters of the real data sets.

3 GENERATING RIDE REQUESTS USING GANS

3.1 IMAGE GENERATING USING GANS

Generative Adversarial Networks learn to generate high quality samples (Goodfellow et al., [2016)
i.e. sample from the data distribution p(z). Previous works by (Denton et al., [2015; [Ledig et al.,
2017) synthesized images of a higher quality using GANs which were hard for humans to distin-
guish from real images. Conditional GANs are an extension of GANs to sample from a conditional
distribution given each image has an associated label which is true for our case of ride requests.

In our framework, we would apply conditional GANs using ride request data in the form of images;
similar to as shown in Figure[T|but without the base map shown in color.

3.2 USING GANS FOR RIDE REQUEST GENERATION

GANSs learn a mapping from a random noise vector z to output image x. Conditional GANs learn a
mapping from noise vector z and a label y to x (Mirza & Osindero, |2014;|Gauthier). The additional
variable in the model allows to generate and discriminate samples conditioned on y. The generator
accepts noise data z along with y to produce an image. The discriminator accepts an image x
and condition y to predict the probability under condition y that came from the empirical data
distribution rather than from the generative model. The objective function can be expressed as:

E [logD(x,y)] + E [log(1 - D(G(2,9),9))] 3)

Z,Y ~Pdata(T,Y) z ~p(2),y~py

where G tries to minimize to this objective function against an adversarial D that tries to maximize
it.

3.3 TRAINING PROCESS & ARCHITECTURE

Every image is assigned a label from the set {0,1,2,...,23} representing the hour of a day. All
twelve instances of five minute snapshots within an hour are assigned the same hour label E} To
accelerate our training using multiple machines, we exploit spatial parallelism by dividing the entire
geographical region of a city into an array of blocks. Figure[3]illustrates the division of San Francisco
downtown into nine blocks. Keeping our image size similar to MNIST (Salimans et al., [2016), each
block is set to represent an image of size 24 x 24 pixels, with each pixel representing one 50m x 50m
square area. Hence, each block covers an area of 1200m x 1200m.

3One could easily extend this approach to a label within the set {0,1, ...,287} if looking at labels associated
with any five minute slots of a day or the set {0, 1, ..., 2015} if looking at labels associated with any five minutes
slots of a week.

Under review as a conference paper at ICLR 2019

)

Block 1 |

Block 4 —

Block 7 |

Figure 3: An illustration of how the geographical region of each city is divided into smaller blocks
of equal size and trained independently. Note: image above is not drawn to scale.

Each block, representing a grey scale image of 24 x 24 pixels, depicts all the ride-locations in
that block. Separate images are formed for pickup and drop-off locations; models trained are also
separate for pickup and drop-off locations. Each image of a block is labeled with a time interval
(for our experiments, the hour in a day) which is similar for both images created from pickup and
drop-off locations. The synthetically generated images from an array of blocks with the same time
interval label are combined by stitching together all the processed blocks of a city.

The generator network takes an input of a 100-dimensional Gaussian noise sample as well as a one-
hot vector encoding of the time snapshot to be generated. It has a single, fully-connected hidden
layer without any convolution (Goodfellow, 2018])) consisting of 128 ReL.U-activated neurons which
then passes to a sigmoid activated output layer with the same number of output neurons as the total
number of pixels in each block.

The discriminator network has a single hidden layer of 128 ReLU-activated neurons with a single
sigmoid activated output neuron. We find that small networks are appropriate for the training data
and allow for a quick and stable convergence to be achieved between the discriminator and the gener-
ator. Using relatively simple network architectures makes it possible to ensure that the discriminator
and generator are evenly matched such that the loss for either network does not saturate early in the
training process.

In addition to the standard GANSs architecture of generator and discriminator, an additional network
is introduced which is referred to as the classifier (Lee & Seokl[2017); it is pre-trained on the training
data with the five minute label of the data serving as the classification target. In this way the time
information that is encoded into the synthetic data by the generator network is then decoded by
the classifier network. The generator is then trained on a weighted sum of the loss from both the
classifier and discriminator networks as shown in the following equation:

Blog D(G(z,y)) + (1 — B)log C(G(z,y)) 4)

where (3 is a tune-able hyper-parameter.

This allows for more explicit loss attribution such that the generator receives two different error sig-
nals; one indicating the realism of the synthetic data and the other indicating accuracy relative to the
conditioning values. By experiments using MNIST data and (Lee & Seok, 2017), we found adding
a classifier increases the efficiency of the training process and results in higher quality synthetic data
while incurring considerably less training time than other conditional GANs architectures we have
experimented.

4 EXPERIMENTAL RESULTS

In this section, we present the cloud infrastructure used for running our experiments. We also present
performance results on scaling our GANs workloads on the cloud infrastructure.

4.1 RUNNING GANS ON AWS

All experiments are conducted on Amazon Web Services (AWS) using ¢5.18x instances with each
instance containing an Intel Xeon Scalable Processor with 72 virtual cores (vCores) running at
3.0GHz and 144 GB of RAM. In this work we set the block size for each of the four cities to be

Under review as a conference paper at ICLR 2019

City | Number of Blocks
San Francisco 1402
Los Angeles 1978
New York 765
Chicago 1155

Table 1: Training Workload for Different Cities. Each block is trained independently. Doubling
the value provided in the table for each city, would give the approximate number of models trained
because we have pickup and drop-off locations trained and generated separately.

1200 x 1200 meters; each block is trained separately. Enlarging the block size will increase the
computational time for training; and the complexity of the model can potentially impact scalability.
The total number of blocks for each city are shown in Table [I] The number of blocks are mainly
determined by the size of the greater metropolitan area of each city.

To help enhance the scalability of our GANs workload across multiple nodes we make use of
Ray (Moritz et al., 2017) from Berkeley, a distributed framework for Al Applications, to efficiently
parallelize our workload across cluster of CPU nodes on AWS. Ray provides a convenient API in
Python to scale deep learning workloads for numerous libraries, and support for heterogeneous re-
sources like CPUs and GPUs. We also make use of Intel’s Math Kernel Library |[Intel (2018b) (MKL)
which provides machine learning libraries for supporting operations like activation (ReLU), inner
product, and other useful functions (Intel, [2018al).

4.2 TRAINING TIME

Using Ray we scale our training runs by using from 2 to 8 ¢5.18x instances (containing from 144
cores to 576 cores) on AWS. The scalability results are shown in Figure[d] As can be seen increasing
the number of ¢5.18X Xeon CPU instances can significantly reduce the GANS training time up to
8 ¢5.18x instances. For the city of Los Angeles, the training time can be reduced from over one
hour to less than 20 minutes. For New York City the training time can be reduced to just minutes.
Running times for sampling ride requests from the trained models and stitching the images of all the
blocks together are significantly less than the training times, and are not included in these results.

We also conduct our GANs scaling experiments using GPU instances on AWS. In our initial exper-
iments we observe no real performance improvements using GPUs. Training time using GPUs on
AWS was observed to be 5.93 hours on a p3.8xlarge instance using NVIDIA’s Multi-Process Service
(MPS) (Nvidial 2018). With MPS, the GPU utilization is close to maximum by running multiple
of our small GANS training jobs in parallel on a single GPU. Although, the number of jobs which
could be executed in parallel on a GPU are not that many in comparison to Xeons. Scaling on GPUs
requires more investigation. In this work, we show that it is possible to achieve very nice scalability
of our GANs workload using only CPU cores supported by Intel’s MKL library and Berkeley’s Ray
framework.

5 VALIDATION OF SYNTHETIC DATA SETS

5.1 SPATIAL VARIATION

The correlation fractal dimension (Ds) gives a bound on the number of ride requests within a ge-
ographical region. This is an essential characteristic to match for the data set we are generating
using GANs. In Tables 2| & [3] we provide the fractal range for each city within which the fractal
dimension remains constant. It is important to note that the fractal range for each city differs. The
fractal range provides the e range for which the data exhibits statistical self-similarity (Belussi &
Faloutsos|, [1998). The variation in the fractal ranges for the different cities can be attributed to the
geographical shape of the city for which the ride requests are generated. We hypothesize that due to
Los Angeles’s sprawling nature, a larger € is needed to observe self-similar patterns in comparison
to the other three cities, which have a more corridor-like geographical region.

Under review as a conference paper at ICLR 2019

—— New York
Chicago

—— San Francisco

—— Los Angeles

e e 4 g
IS o o o

#training time (hrs)

e
N}

#instances

Figure 4: Training Time Performance Results for training our GANs for pickup locations on AWS
with ¢5.18xlarge Xeon CPU instances. Results for training using drop-off locations show a similar
trend.

City Fractal Range Real Data Sets Synthetic Data Sets
Do min. D max. Dsmean | Do min. D max. Dy mean
New York (450, 2500) 1.441 1.753 1.647 1.415 1.663 1.541
Chicago (600, 3000) 1.139 1.558 1.384 1.188 1.567 1.435
San Francisco (450, 2500) 1.283 1.731 1.548 1.242 1.65 1.426
Los Angeles (1500, 4000) 0.962 1.638 1.355 1.048 1.489 1.314

Table 2: Summary of measured correlation fractal dimensions (D) for four cities; computed over a
day for every hour using pickup locations of real and synthetic data sets.

One may also interpret D5 as a way to measure the fidelity of generated images to that from real data.
Comparison of the ranges of values of Do, in terms of min, max, and mean values, for the real and
the synthetic data sets are fairly close although not identical. In most instances the mean value for
D, is lower for the synthetic data sets in comparison to the real data sets. We believe this discrepancy
in the values of D5 require further investigation. Recent works to improve capture learning of high-
resolution details of an image (Karras et al., 2017) can potentially benefit the learning for our ride
request images.

5.2 TEMPORAL VARIATION

DPL provides a characterization of the temporal evolution of ride requests. In the top row of Figure[3]
we observe the plot of the DPL exponents « (slop of the line) based on the temporal patterns of the
real data sets. For the ride request graph to obey DPL properties, we use graph generator proposed
by (Jauhri et al.,[2017a)) to connect source and destination locations. In the bottom row of Figure 3]
we see the same results based on the synthetic data sets. We can see that the DPL exponent values o
correlated quite nicely with that from the real data sets for New York, Chicago, and San Francisco.

City Fractal Range Real Data Sets Synthetic Data Sets
Do min. Dy max. Ds;mean | Do min. Dy max. Do mean
New York (450, 2500) 0.613 1.718 1.498 0.914 1.595 1.414
Chicago (600, 3000) 0.315 1.47 1.216 0.378 1.539 1.234
San Francisco | (450, 2500) 0.499 1.689 1.363 0.570 1.685 1.335
Los Angeles (1500, 4000) 0.123 1.487 1.036 0.214 1.456 1.042

Table 3: Summary of measured correlation fractal dimensions (D-) for four cities; computed over a
day for every hour using drop-off locations of real and synthetic data sets.

Under review as a conference paper at ICLR 2019

C=0.009, alpha=1.527 C=0.026, alpha=1.415 C=0.030, alpha=1.390 C=0.480, alpha=1.053
o 10 3 o 10° y o 10 o 10°
: - TE - g
S .»' 8 S 8 ‘
gmi guﬂ 7 gmi guﬂ -
bS] o bS] o
w w w w
095 10° 10° et 100 10° 075 10° 10° et 100 10°
Node count Node count Node count Node count
C=0.041, alpha=1.506 C=0.071, alpha=1.492 C=0.117, alpha=1.393 C=0.014, alpha=1.614
o 104 / o 10° o 104 o 10°
c [= c [= 4
guﬂ gwi A guﬂ k gwi
ks o ks o
w w w w
096 10° 10° T 10° 104 096 10° 10° T 10° 104
Node count Node count Node count Node count
New York Chicago San Francisco Los Angeles

Figure 5: DPL plots from real data (top row) and synthetic data (bottom row) for four cities. The
red line is the least square fit of the form y = C'z®, where y and x are number of edges and nodes
respectively. R? = 1.00 for all of them.

For Los Angeles, the synthetic exponent is higher than the real observed value; the geographical
region for LA is much larger and due to many prominent regions of high request density, the model
may likely suffer from bias towards generating more requests in prominent regions leading to a faster
increase of the number of edges connecting nodes present in high density regions.

Another validation of our GANs approach is provided in Figure[6] Here we observe temporal vari-
ation of ride requests in terms of the volume of ride requests generated for each hour of a typical
weekday. We see that for all four cities, the temporal variation of the synthetic data sets match quite
well the temporal variation exhibited by the actual data set.

6 CONCLUSION

The emergence of ride sharing services and the availability of extensive data sets from such services
are creating unprecedented opportunities for: 1) doing city-scale data analytics on urban transporta-
tion for supporting Intelligent Transportation Systems (ITS); 2) improving the efficiency of ride
sharing services; 3) facilitating real-time traffic congestion prediction; and 4) providing new pub-
lic services for societal benefit. Moreover, the power of neural networks for machine learning has
allowed the creation of useful models which can capture human behavior and dynamic real-world
scenarios. The key contributions of this paper include:

e We map the ride requests of ride sharing services into a time sequence of images that
capture both the temporal and spatial attributes of ride request patterns for a city.

e Based on extensive real world ride request data, we introduce a GANs based workflow for
modeling and generating synthetic and realistic ride request data sets for a city.

e We further show that our GANs workload can be effectively scaled using Xeon CPU clus-
ters on AWS, in reducing training times from hours to minutes for each city.

e Using previous work on modelling urban mobility patterns, we validate our GANs gen-
erated data sets for ride requests for four major US cities, by comparing the spatial and
temporal properties of the GANs generated data sets against that of the real data sets.

There are other promising avenues for further research. Some open research topics include:

Under review as a conference paper at ICLR 2019

New York

Chicago
12000 real 12000 real
predicted /\\ predicted
10000 10000
., 8000 ' ., 8000
o o
4 4
3 3
g g 6000
2 6000 g
* * T
4000 4000
2000 - 2000 -
0 5 10 15 20 0 5 10 15 20
hour of day hour of day
San Francisco Los Angeles

— real

120001 predicted

— real
predicted

12000 4

/ ._\\ 10000

8000 4 —f\/ \ 8000 4
[\ s

10000

/\\
/TN
X

#requests
#requests

o
o
S
5

6000 -
4000 A 4000 A

2000 + 2000 +

0 5 10 15 20 0 5 10 15 20
hour of day hour of day
Figure 6: Plots for four cities highlighting the temporal variability of ride requests visible in both
real and our model (predicted) for ride request generation. The pattern is representative of any
typical day of week.

o Using the GANs generated data sets for experiments on new algorithms for dynamic ride
pooling, real-time pre-placement of vehicles, and real-time traffic congestion predictionE]
e Using the GANs generated data sets for conducting experiments on what-if scenarios re-

lated to traffic congestion prediction and mitigation, and planning for future development
of transportation infrastructures.

We are currently pursuing these research topics. As our GANs generated data sets are used in our
follow up research, we plan to further validate the synthetic data sets by comparing our research
results with results from using the real data sets. We plan to continue to tune our GANs models and
generate improved synthetic data sets that can be made available for other researchers.

“We plan to publically release the code and models of our GANs along with algorithms for looking at
transportation related problems like pooling and placement.

Under review as a conference paper at ICLR 2019

REFERENCES

Alberto Belussi and Christos Faloutsos. Estimating the selectivity of spatial queries using thecorre-
lation’fractal dimension. Technical report, 1998.

Min Hao Chen, Abhinav Jauhri, and John Paul Shen. Data driven analysis of the potentials of
dynamic ride pooling. In Proceedings of the 10th ACM SIGSPATIAL Workshop on Computational
Transportation Science, pp. 7-12. ACM, 2017.

Boyd Cohen and Jan Kietzmann. Ride on! mobility business models for the sharing economy.
Organization & Environment, 27(3):279-296, 2014.

Emily L. Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In Advances in neural information processing systems,
pp. 1486-1494, 2015.

David Easley and Jon Kleinberg. Networks, crowds, and markets, 2010.
Jon Gauthier. Conditional generative adversarial nets for convolutional face generation.

Ian Goodfellow. Introduction to GANs. http://efrosgans.eecs.berkeley.edu/
CVPR18_slides/Introduction_by_Goodfellow.pdf, 2018. [Online; accessed 31-
August-2018].

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Robert Hahn and Robert Metcalfe. The ridesharing revolution: Economic survey and synthesis.
Technical report, 2017.

Intel. Intel MKL-DNN: Primitive Operations. https://intel.github.io/mkl-dnn/
group__c__api__primitive.html} 2018a. [Online; accessed 31-August-2018].

Intel. Introducing DNN primitives in Intel Math Kernel Library. https://software.intel.
com/en-us/articles/introducing-dnn-primitives—in-intelr-mkl,
2018b. [Online; accessed 31-August-2018].

Abhinav Jauhri, Brian Foo, Jerome Berclaz, Chih Chi Hu, Radek Grzeszczuk, Vasu Parameswaran,
and John Paul Shen. Space-time graph modeling of ride requests based on real-world data. arXiv
preprint arXiv:1701.06635, 2017a.

Abhinav Jauhri, Carlee Joe-Wong, and John Paul Shen. On the real-time vehicle placement problem.
arXiv preprint arXiv:1712.01235, 2017b.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic
single image super-resolution using a generative adversarial network. In CVPR, volume 2, pp. 4,
2017.

Minhyeok Lee and Junhee Seok. Controllable generative adversarial network. arXiv preprint
arXiv:1708.00598, 2017.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining, pp. 177-187. ACM, 2005.

Lucas Maystre and Matthias Grossglauser. Choicerank: Identifying preferences from node traffic in
networks. arXiv preprint arXiv:1610.06525, 2016.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

10

http://efrosgans.eecs.berkeley.edu/CVPR18_slides/Introduction_by_Goodfellow.pdf
http://efrosgans.eecs.berkeley.edu/CVPR18_slides/Introduction_by_Goodfellow.pdf
https://intel.github.io/mkl-dnn/group__c__api__primitive.html
https://intel.github.io/mkl-dnn/group__c__api__primitive.html
https://software.intel.com/en-us/articles/introducing-dnn-primitives-in-intelr-mkl
https://software.intel.com/en-us/articles/introducing-dnn-primitives-in-intelr-mkl

Under review as a conference paper at ICLR 2019

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
William Paul, Michael I Jordan, and Ion Stoica. Ray: A distributed framework for emerging ai
applications. arXiv preprint arXiv:1712.05889, 2017.

Nvidia. = Multi-Process Service. https://docs.nvidia.com/deploy/pdf/CUDA_
Multi_Process_Service_Overview.pdf, 2018. [Online; accessed 31-August-2018].

Recode. How many Americans use ride-sharing services? https://is.gd/Ed14R1, 2018a.
[Online; accessed 31-August-2018].

Recode. Uber powered four billion rides in 2017. https://is.gd/cgSzFel 2018b. [Online;
accessed 31-August-2018].

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pp. 2234-2242, 2016.

Manfred Schroeder. Fractals, chaos, power laws: Minutes from an infinite paradise. Courier Cor-
poration, 2009.

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-Laszl6 Barabdsi. Limits of predictability
in human mobility. Science, 327(5968):1018-1021, 2010.

New York Times. Taxi Medallions, Once a Safe Investment, Now Drag Own-
ers Into Debt. https://www.nytimes.com/2017/09/10/nyregion/
new-york-taxi-medallions—uber.html, 2018. [Online; accessed 31-August-2018].

Caetano Traina Jr, Agma Traina, Leejay Wu, and Christos Faloutsos. Fast feature selection using
fractal dimension. Journal of Information and data Management, 1(1):3, 2010.

Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, Yanwei Yu, and Zhenhui Li. Modeling
spatial-temporal dynamics for traffic prediction. arXiv preprint arXiv:1803.01254, 2018a.

Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, and Jieping
Ye. Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint
arXiv:1802.08714, 2018b.

Xian Zhou, Yanyan Shen, Yanmin Zhu, and Linpeng Huang. Predicting multi-step citywide pas-
senger demands using attention-based neural networks. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 736-744. ACM, 2018.

11

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://is.gd/Ed14R1
https://is.gd/cgSZFe
https://www.nytimes.com/2017/09/10/nyregion/new-york-taxi-medallions-uber.html
https://www.nytimes.com/2017/09/10/nyregion/new-york-taxi-medallions-uber.html

	Introduction
	Data Sets from Ride Sharing Services
	Ride Requests
	Spatial and Temporal Patterns

	Generating Ride Requests Using GANs
	Image generating using GANs
	Using GANs for ride request generation
	Training Process & Architecture

	Experimental Results
	Running GANs on AWS
	Training Time

	Validation of Synthetic Data Sets
	Spatial Variation
	Temporal Variation

	Conclusion

